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1.1 SCHRÖDINGER PARTICLE IN A BOX . . . . . . . . . . . . . . . . 10

1.2 DYNAMICS AT ZERO-TEMPERATURE . . . . . . . . . . . . . . . 14

1.3 RELATIVISTIC FERMI GAS . . . . . . . . . . . . . . . . . . . . . . 21

1.4 FINITE TEMPERTURE EFFECTS . . . . . . . . . . . . . . . . . . 23

2 MATTER AT HIGH DENSITY 35

2.1 MATTER AT HIGH DENSITY . . . . . . . . . . . . . . . . . . . . . 35

2.2 WHITE DWARFS — INTRODUCTION . . . . . . . . . . . . . . . . 40

2.3 WHITE DWARFS — DYNAMICS . . . . . . . . . . . . . . . . . . . 42

2.4 WHITE DWARFS — CHARACTERISTIC SOLUTIONS . . . . . . . 45

2.5 AN INTRODUCTION TO NEUTRON STARS . . . . . . . . . . . . 50

2.6 QUARKS AND QUARK MATTER . . . . . . . . . . . . . . . . . . . 55

3 GREEN’S FUNCTIONS 63

3.1 GREEN’S FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 THE DENSITY OF STATES . . . . . . . . . . . . . . . . . . . . . . 68

3.3 EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 SURFACE TENSION . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 THE THOMAS–FERMI MODEL OF ATOMS 77

4.1 ATOMIC ENERGY . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 THE THOMAS–FERMI EQUATION . . . . . . . . . . . . . . . . . . 79

4.3 BOUNDARY CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 IMPROVEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1



2

5 ELECTRONS IN PERIODIC POTENTIALS 91

5.1 A FERMI GAS MODEL . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 ELECTRONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 PERIODIC POTENTIALS . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 PERIODIC POTENTIAL II . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 AN EXAMPLE: THE KRONIG–PENNEY MODEL . . . . . . . . . 112

5.6 METALS, INSULATORS AND SEMICONDUCTORS . . . . . . . . 113



DEGENERATE FERMION
SYSTEMS

Many of the systems which command the attention of modern physicists are dense

collections of spin-1/2 particles (fermions) whose dynamics are dominated by the Pauli

exclusion principle. Famous examples are the electrons in heavy atoms, in metals and

in white dwarf stars, the nucleons (protons and neutrons) in nuclei and neutron stars.

Even quarks may form such systems deep within collapsed stars. In this state the

specific forces between particles are often less important than the general structure

impressed on the system by the exclusion principle.

At high temperatures, particles have lots of energy and (as we shall see) many

quantum states available to them. On the average, the probability that any quantum

state is occupied is rather small (<< 1) and the exclusion principle plays little role.

At lower temperatures, particles have less energy, fewer quantum states are available

and average occupation number of each state increases. Then the exclusion principle

becomes essential: the available levels up to some maximum energy (determined by

the density) are, on average, nearly filled; higher levels are, on average, nearly empty.

Such systems are then termed “degenerate,” hence the title of this section. Actually

these statements are strictly true only at zero temperature and when the mutual

interactions of the fermions are ignored.

The maximum energy of a filled level is known as the Fermi energy (EF ). A

collection of degenerate fermions is often referred to as a Fermi gas, and sometimes,

picturesquely, as a “Fermi sea,” though the “sea” with its “Fermi surface” dividing

filled from unfilled levels, exists in energy space rather than configuration space.

Thermal effects (and interactions) smear out the top of the Fermi sea, allowing states

which would be filled at zero temperature some probability of being empty and vice-

versa. The scale of temperatures is set by the Fermi temperature, TF ≡ EF /k, where

k is Boltzmann’s constant. When T << TF thermal effects are small. Often in

systems of interest to us the approximation T = 0 will be good enough because the

high density of the matter makes EF (hence TF ) very large compared to ambiant

temperatures.
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Chapter 0

NATURAL UNITS

Most of us are used to the cgs system of units in which all physical quantities are

measured in combinations of centimeters, grams and seconds. This is a convenient,

practical system for most macroscopic applications. When we leave the scale of human

dimensions to study very small sizes and very energetic processes, the cgs system is

no longer so natural. When relativity and quantum mechanics are important, the

fundamental constants h̄ (Planck’s constant) and c (the speed of light) set natural

scales for action and velocity. There is a particularly simple and elegant system

of units which makes use of h and c and which is used by all particle physicists,

most nuclear and astrophysicists and theorists of all kinds. It is known, somewhat

arrogantly, as “natural” units. We will often use this unit system in this section.

This section provides an introduction to natural units for those of you who have

never encountered them before.

In the cgs system all quantities can be expressed in terms of fundamental unit of

length (�), time (t) and mass (m). It is worth remembering how this is accomplished

for such diverse quantities as electric charge, electric and gravitational fields and so

forth. Of course, mechanical quantities such as momentum, energy or viscosity are

easily expressed as powers of m, �, and t1

[momentum] = m�t−1 (1)

[energy] = m�2t−2

[viscosity] = m�t−1 .

Electromagnetic quantities can be expressed in terms of m, � and t by means of

dynamical equations of electromagnetic theory. Thus Coulomb’s law:

F = e1e2/r
2 (2)

1In the subsequent equations [x] is to be read “the dimensions of x.”
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tells us that

[charge] = [force]1/2� = m1/2�3/2t−1 . (3)

So the basic unit of charge in the cgs system is the gm1/2cm3/2/sec(!). It is the

charge which produces a force of 1 dyne at a separation of 1 cm from an equal

charge. Since this is a cumbersome notation this unit is given its own name: the

esu or stat Coulomb, but one should not forget that the unit of charge is a derived

quantity in the cgs system. [This is not the case in the MKS system, where the

Coulomb is defined to be the charge of so many electrons. To accommodate this

ad hoc definition a constant (1/4πε0) must be added to Coulomb’s law in MKS. For

an excellent discussion of electromagnetic units see the Appendix on units in J. D.

Jackson, Classical Electrodynamics .]

Similar exercises tell us the dimensions of many familiar quantities:

[resistance] = �−1t (4)

[inductance] = �−1t2

[magnetic field] = m1/2�1/2t−2

[compressibility] = m−1�−2t2 ,

for example.

There is no fundamental reason to use mass, length and time as the basic units of

the system. One could choose any three independent quantities as the fundamental

objects in which all physical objects are measured. “Natural units” are a case in

point. They are obtained by using action, velocity and energy as the fundamental

dimensional quantities. Remembering

[action] = m�2t−1 (5)

[velocity] = �t−1

[energy] = m�2t−2

we can easily re-express quantities in terms of some basic units of action, velocity

and energy. Just as we obtain the cgs system by taking the centimeter as the unit of

length, the gram as the unit of mass and the second as the unit of time; so we obtain

the natural system by taking Planck’s constant (actually h̄ = h/2π) as the unit of

action, the speed of light (c) as the unit of velocity and the electron volt (eV) as the

unit of energy

h̄ ≡ h

2π
= 1.05457266(63) × 10−27 gm cm2sec−1 (6)

c = 2.99792458 × 1010 cm sec−1

eV = 1.60217733(49) × 10−12 gm cm2sec−2 .
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With (6) and (7) we can proceed to express physical quantities in natural units.

Here are some examples:

[time] = (eV)−1h̄ (7)

[length] = (eV)−1h̄c

[force] = (eV)2h̄−1c−1

[pressure] = (eV)4h̄−3c−3

[charge2] = h̄c

[magnetic field] = (eV)2h̄−3/2c−3/2 .

I suspect that the advantages of this system are not yet apparent. The great

advantage — and the great confusion for non-experts — comes when we suppress

mentioning the factors of h̄ and c, leaving all physical quantities measured in units

of electron volts . Such a step could be taken in the cgs system, too. We could, for

example, suppress the “cm” and “sec” and measure all quantities as some power of a

fundamental unit of mass, the gram. This is not done for two reasons: first, because

there is nothing particularly fundamental about one second or one centimeter so we

are not eager to suppress the label which tells us that time was measured in seconds

and length in centimeters; and second, because we are used to having a different set

of units for every different physical quantity — thus, for example, momentum and

energy (see (2)) have different units in cgs, but they would both be measured in grams

is we suppressed cm and sec. If you quoted an answer to a calculation in grams, you

would have to tell your reader whether it was a momentum or an energy before he

would be able to evaluate it in cgs units.

In the case of natural units the first disadvantage is eliminated: h̄ and c are natural

units for action and velocity in fundamental physics; and the second disadvantage is

outweighed by the great advantage of measuring all quantities in the same units.

One must be careful, however, to specify the physical quantity of interest to avoid

confusing things measured in the same powers of eV. The problem of converting back

from natural units to cgs units is made easier by conversion factors

h̄c = 195.327053(59) MeV fm (8)

h̄ = 6.5821220(20) × 10−22 MeV sec

(1 MeV = 106 eV, 1 fm = 10−13 cm). Note h̄c is equal to unity in natural units.

At this point several examples will (I hope) make the use of natural units clearer

and more compelling.
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Example 1:

The energy equivalent of the electron’s rest mass is 511 keV:

mec
2 = 511 keV .

What length is [511 keV]−1?

Answer:

�e =
h̄c

mec2
= 197 MeV fm/511 keV

= 385 fm = 3.85 × 10−11 cm .

This is the electron’s Compton wavelength.

What time is [511 keV]−1?

Answer:

te =
�e

c
= 1.28 × 10−21 cm

which is the time it takes light to travel an electron’s Compton wavelength.

What pressure is [511 keV]4?

Answer:

P = [511 keV]4/(h̄c)3

= [511 keV]4/[195 MeV fm]3

= 8.9 × 10−3 eV/fm3

= 8.9 × 10−3(1.6 × 10−12 erg)/(10−39 cm3)

= 14.2 × 1024 dyne/cm2 .

Example 2: An electron with kinetic energy 10 eV scatters at an angle of 0.2 radian

from an atom. What length scale structure within the atom does it probe?

Answer: First calculate its momentum:

p =
√

2mE

= (2 × (511 keV) × 10 eV)1/2

= 3.2 keV .

Use the uncertainty principle:

∆p ∼= 0.2p = 0.64 keV ,

∆x ∼= 1/∆p = (0.64 keV)−1 .

Restore cgs units:

∆x ∼= 197 MeV fm/0.64 keV ∼= 3.1 Å
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Example 3: According to (8), e2 — the square of the electron’s charge — is dimen-

sionless when measured in natural units. What is its value?

Answer:

e = 4.803 × 10−10 esu

e2 = 2.307 × 10−19(esu)2

(1 esu)2 = 1 dyne-cm2 = 1 gm cm3/sec2

h̄c = 3.161 × 10−17 gm cm3/sec2

e2 = 2.307 × 10−19/2.161 × 10−17(h̄c) = 1/137(h̄c) .

e2/h̄c ≡ α is known as the “five structure constant.” Its measured value is α =

(137.0359895(61))−1.

Example 4: What is the energy of interaction of the magnetic moment of an electron

in the magnetic field of a proton at a distance of 1 Å, when the spins are as shown in

Fig. 0.1.

e p
Figure 1: Proton and electron with spins parallel.

Answer:

E = −�µe · �B =
�µe ·�µp

r3
= −µeµp

r3

µe =
eh̄

2me

µp = 2.793

(
eh̄

2mp

)

E = −2.793
e2h̄2

4mpmer3
.
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Now quickly:

e2 → α

h̄2 → 1

mp → 938 MeV

me → 511 keV

197 MeV fm = 1 → 1Å = 105/197 MeV

So

E = −2.793
(

1

4

) (
1

137

) (
1

938

) (
1

0.511

) (
197

105

)3

MeV

= 8.13 × 10−8 MeV .



Chapter 1

INTRODUCTION TO THE
PROPERTIES OF DEGENERATE
FERMION SYSTEMS

The simplest system with which to begin a study of degenerate fermions is a collection

of identical, spin-1/2 fermions confined to a cube of side � by a boundary condition

ψ = 0. We will be able to draw a lot of insight from this simple case and use it to

study a very wide variety of problems. First we remind ourselves of the solutions

to the single particle Schrödinger equation, then construct the properties of the N -

particle system. Later we shall include the effects of relativity, some interactions and

non-zero temperature.

1.1 SCHRÖDINGER PARTICLE IN A BOX

Consider the Schrödinger wavefunction in coordinate space, ψ(�x, t). It obeys the

Schrödinger equation

Hψ = i
∂

∂t
ψ

with

H =
�p2

2m
= − h̄2�∇2

2m
.

The energy eigenstates are

ψE(�x, t) = e−iEt/h̄ψE(�x)

obeying

HψE = EψE .

10
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In a three-dimensional box, 0 ≤ xj ≤ �, (j = 1, 2, 3) the energy eigenstates,

subject to ψ = 0 on the boundary, are

ψn1n2n3(�x) =

√
8

�3
sin

n1πx1

�
sin

n2πx2

�
sin

n3πx3

�
nj = 1, 2, . . .

with eigenenergies

E(n1, n2, n3) =
π2h̄2

2m�2

(
n2

1 + n2
2 + n2

3

)
. (1.1)

The states are orthonormal∫
d3�x ψ∗

n1n2n3
(�x)ψm1m2m3(�x) = δn1m1δn2m2δn3m3

and complete ∑
n1n2n3

ψn1n2n3(�x)ψ∗
n1n2n3

(�y) = δ3(�x −�y)

for any �x and �y in the box.

It is very useful to define a “density of states” available for a single particle in the

box. First, let N(E) be the number of states with energy below E,

N(E) =
∑

n1n2n3

Θ (E − E(n1, n2, n3)) .

Θ(x) is the step function:

Θ(x) =

{
1 x > 0
0 x < 0 .

It is the integral of the Dirac δ-function, defined by

δ(x) = 0 for x �= 0∫
dx δ(x)f(x) = f(0) for a suitably smooth function f(x) .

To see this, observe that the derivative of Θ(x) is zero except at x = 0, where it is

infinite, and the area under Θ′(x) is Θ(+ε)−Θ(−ε) = 1. Both δ(x) and Θ(x) can be

viewed as the limit of a sequence of ordinary functions. For example

δ(x) = lim
ε→0

1

π

ε

x2 + ε2

Θ(x) = lim
ε→0

1

π

[
tan−1 x

ε
+

π

2

]
.

This representation of the δ-function is known as the “Lorentzian representation.”

Note N(E) is an integer valued, discontinuous function which jumps in integer steps

when each eigenvalue is passed.
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We define a density of states per unit energy, ρ(E), by

ρ(E) ≡ dN

dE
=

∑
n1n2n3

δ (E − E(n1, n2, n3))

which is a sum of spikes of unit area (in E). When E is large and the spacing between

states, δE, is small, ρ(E) can be approximated by a continuous function. This kind

of approximation will emerge naturally and will suffice for all our applications.

Our object is to count the number of states with energy below E. This is facilitated

by considering a three-dimensional space with axes labeled by n1, n2 and n3. Each

integer point in the positive (n1 > 0, n2 > 0, n3 > 0) octant of this space corresponds

to a single state. Each point in turn can be associated with a unit volume. Equation

(1.1) defines a sphere of radius
(
2m�2E/π2h̄2

)1/2 ≡ ξ in (n1, n2, n3) space. Ignoring

the issue of whether cubes at the sphere’s surface or on the planes nj = 0 should be

counted we estimate N(E) to be

N(E) =
(

1

8

)
4π

3

(
2m�2E

π2h̄2

)3/2

(1.2)

=
1

6π2
V

(
2mE

h̄2

)3/2

.

where V ≡ �3. Note the factor 1/8 because we want only the positive octant of the

sphere.

The approximation of ignoring the “roughness” at the surface is measured by the

surface area divided by the volume, or approximately by

1

ξ
=

πh̄√
2mE �

.

√
2mE ≡ p is the characteristic momentum of particles we are trying to describe.

Although momentum is not conserved for particles in a box
√

2mE is its rsm expecta-

tion value. h/p ≡ λ is their DeBroglie wavelength. Thus our smooth approximation

to N(E) is valid provided ξ >> 1, or equivalently, λ/� << 1. It is certainly not valid

for the lowest energy eigenstates, where λ ≈ �, but should work well when we dis-

cuss energetic single particle states. Later in this section we will explore important

corrections to N(E) and look for situations in which they are physically significant.

Return to N(E) and differentiate to obtain ρ(E),

ρ(E) =
1

4π2

(
2m

h̄2

)3/2

V
√

E . (1.3)
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n3

n1

n2

Figure 1.1: Each state of a particle in a box corresponds to a cube of unit volume in
(n2, n2, n3) space.
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It is often convenient to introduce p =
√

2mE and the wave number, k ≡ p/h̄ and to

define the associated density of states per unit k:

ρ(k) ≡ dN

dk
= ρ(E)

dE

dk
=

4πk2

(2π)3
V . (1.4)

Although this result was derived for a cube and for large energy, it suggests a gener-

alization

dN =
d3k d3x

(2π)3
(1.5)

to an arbitrarity shaped domain by means of the replacement

4πk2 dk → d3k

V → d3x .

Equation (1.5) has a nice, semiclassical ring to it: There is one quantum state per

volume h3 in phase (d3x d3p) space.

However the jump from (1.4) to (1.5) was hardly convincing. It suggests that the

density of states is in some sense universal — independent of the potential energy,

independent of the shape of the box, etc. In fact, (1.5) is universal but only as the

leading term in an expansion valid at high density. We’ll be able to establish this

result more rigorously later at least under certain circumstances.

1.2 DYNAMICS AT ZERO-TEMPERATURE

To begin a study of fermion systems we consider zero temperature. For many appli-

cations of interest to us the temperatures are “small” and the zero temperature limit

is accurate.

At T = 0 the ground state of a system of N fermions will have all single particle

energy levels filled up to some maximum E (or p) and the remainder empty. This

maximum single particle energy is known as the “Fermi energy,” EF . For a localized

system momentum will not be conserved. It is convenient nevertheless to define

a momentum p ≡
√

2mE as in (1.1). The momentum corresponding to EF , pF =√
2mEF ≡ h̄kF , is known as the “Fermi momentum.” pF is determined by the density

alone, from (1.4),

N = g
∫ pF

0

4πp2dp

(2πh̄)3
V (1.6)

n =
N

V
=

gp3
F

6π2h̄3 (1.7)
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where n is the particle density. Here we have introduced a “degeneracy factor,” g,

which counts the number of states available with the same momentum and position.

The simplest example is spin: for a particle of spin-1/2, two states (↑ or ↓) are

available for each �x and �p. For spin s, g = 2s + 1. Other examples occur: “nucleons”

come in two species — the proton and neutron — so g = 2(2s + 1) = 4 for nucleons;

quarks come in three “colors” and several “flavors” leading to a large value of g. It

is only useful to introduce g if the interactions do not distinguish between the states

at hand. Thus electrons with spin up and down must be treated separately when a

sample is placed in a magnetic field.

We can also calculate the total internal energy (U) of the fermion system as a

function of kF . First we consider the case of a non-interacting, non-relativistic system

E(p) =
p2

2m
(1.8)

so

U =
∫ pF

0
dp

dN

dp
E(p)

= g
∫ pF

0

4πp4dp

2m(2πh̄)3
V (1.9)

u =
U

V
=

gh̄2k5
F

20mπ2
(1.10)

where u is the energy density. Clearly, all the intensive properties of the system

— density, energy density, pressure, etc. — are functions of a single independent

variable, which we may take to be kF .

Now, using the style and method of thermodynamics (although we’re at T = 0),

let’s deduce some important dynamical properties of the system. We assume that u

and n are functions of kF alone but we do not limit ourselves to the specific functional

form of (1.7) and (1.10). U can be regarded as a function of V and N (cf. (1.7) and

(1.10)), so

dU =

(
∂U

∂V

)
N

dV +

(
∂U

∂N

)
V

dN (1.11)

The pressure, P , is defined by

P = −
(

∂U

∂V

)
N

. (1.12)

We can also define a “chemical potential,” µ, by

µ =

(
∂U

∂N

)
V

(1.13)
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FE

E

µ

Figure 1.2: The chemical potential, µ, is the energy of the most energetic particle in
a degenerate fermi system at zero temperture. All states with E < µ are occupied;
all states with E > µ are unoccupied.

µ measures the change in internal energy of the system when a single particle is added

while V is held fixed, so no mechanical work is done. That is, µ is the energy cost

of putting a particle at the top of the Fermi “sea.” On the basis of this, we expect

µ = EF = p2
F /2m. We will see below that this is a correct argument.

Since n and u depend on kF but not V , we may write

N = n(kF )V (1.14)

U = u(kF )V . (1.15)

Substituting from (1.14) and (1.15) into (1.11),

dU = V u′
[(

∂kF

∂N

)
V

dN +

(
∂kF

∂V

)
N

dV

]
+ udV (1.16)

where ′ denotes d/dkF . Now from (1.14),

dn = n′dkF = d
(

N

V

)
=

dN

V
− N

V 2
dV

whence

V

(
∂kF

∂N

)
V

=
1

n′ (1.17)

V

(
∂kF

∂V

)
N

= − n

n′ . (1.18)
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Combining these with (1.16), we obtain

dU = u′
(

1

n′dN − n

n′dV
)

+ udV .

So we can read off,

µ =
u′

n′ (1.19)

P =
u′n − un′

n′ . (1.20)

While we’re at it, let’s compute some other useful dynamical properties of the

system. First we compute the (inverse) compressibility, dP/dn, relying again on the

fact that kF is the only independent intensive variable,

dP

dn
=

dP

dkF

dkF

dn
=

1

n′
d

dkF

(
u′n − un′

n′

)

dP

dn
=

n

(n′)3 (u′′n′ − u′n′′) . (1.21)

A very useful dimensionless quantity related to the compressibility is the “adiabatic

index,” γ, defined by

γ ≡ n

P

dP

dn

γ =
n2

n′2

(
n′u′′ − n′′u′

nu′ − n′u

)
. (1.22)

γ is important in many applications where dynamical stability is obtained by balanc-

ing the internal pressure of the gas against an “external” pressure like gravity. If γ is

a constant, the definition of γ can be integrated to yield

P

nγ
= const.

This, you will recognize, is the adiabatic (no heat flow) pressure-volume relation

derived in thermodynamics.

Finally, another useful quantity is the speed of sound. The compressibility of

the fermion system determines the restoring force while the mass density or energy

density (in the relativistic case) determines the inertia. Not surprisingly the general

expression for the speed of sound, v, is

v2 = c2dP

dū
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where c is the speed of light and ū is the energy density including the particle’s rest

mass. Returning to earlier work

ū = mc2n + u . (1.23)

We can apply all these formulas to the case of a non-interacting, non-relativistic

Fermi gas, as a simple example,

n =
gp3

F

6π2h̄3

µ =
p2

F
2m

γ = 5
3

P = 2
3u ,

v2

c2 = 1
3

p2
F

m2

u =
gp5

F

20mπ2h̄3

dP
dn = 2

3µ

(1.24)

The relation P = 2
3
u captures one of the striking features of degenerate Fermi systems:

they exert pressure even at zero temperature. This follows from the exclusion principle

which requires the population of high energy levels at high density. “Degeneracy

pressure,” as it is called, is responsible for the remarkable stability of degenerate

Fermi systems and for their prevalence in Nature.

To get some idea of the scale of common fermion systems we estimate the density,

Fermi energy and pressure for some classical examples.

1. Electrons in Metals

As we shall see soon, metals can be reasonably approximated as a regular array of

atoms permeated by a gas of electrons. Only a few (typically one or two) “valence”

electrons per atom are free to move, the rest — “core” electrons — remain localized

about each particular atom. At densities of ordinary matter, ρ ∼= 10 gm/cm3, most

of the mass comes from nucleons, mN = 1.67× 10−24 gm so the number of density of

nucleons is nN ≈ 6× 1024 cm−3 (Arogodro’s number). Roughly 1/2 are protons, each

screened by an electron, so

ne ≈ 3 × 1024 cm−3 .

To be specific, consider silver with Z = 47 and a single valence electron. We estimate

an electron gas with a density

ne ≈ 1

47
× 3 × 1024 cm−3

≈ 6 × 1022 cm−3 .
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The Fermi momentum is determined from (1.24), ne = p3
F /6π2h̄3

pF =
(
6π2ne

)1/3
h̄

pF ≈ 1.8 keV/c

How high an energy is this?

EF = µ =
p2

F

2m
≈ 3 eV .

Note that EF is small compared to mc2 so the electrons are definitely non-relativistic;

also kT ∼ 1/40 eV at room temperature, so EF >> kT . The electron Fermi gas in

matter at room temperature is very energetic. Many of the striking properties of

metals are explained by the presence of this hidden hot gas of electrons. Note that

thermal effects are scaled by kT/EF ∼ 1/100 so they may be ignored entirely or

included by means of a low temperature expansion.

2. Nucleons and Electrons at Nuclear Densities

At very high densities matter is stabilized by nuclear forces which are attractive

at distances ∼ 1 fm ≡ 10−13 cm and strongly repulsive at very small distances ∼
0.2 fm. In equilibrium, nuclear matter is characterized by a volume of about 6 fm3

per nucleon (proton or neutron) corresponding to a single nucleon in a sphere of radius

1.2 fm. Since roughly half the nucleons are protons, the charge density would be half

the nucleon density. This positive charge density could be shielded by electrons or

eliminated by converting protons to neutrons. That is a dynamical issue we’ll discuss

later in connection with neutron stars. Here let’s estimate the Fermi momentum of

nucleons and electrons at nuclear densities

nN
∼= 1

6
fm−3 =

1

6
× 1039 cm−3 =

gN

(
pN

F

)3

6π2h̄3

gN = 4 = 2× 2 for spin and proton/neutron. Using MeV as our units for energy and

MeV/c as our units for momentum

pN
F =

(
6π2

4
nN

)1/3

h̄ ∼= 270 MeV/c .

This is a large momentum — pN
F c ∼ 1

4
mNc2 and mNc2 ∼= 940 MeV — but, fortunately

the motion is still approximately non-relativistic. At the top of the Fermi sea

(
vF

c

)2

=

(
pN

F

)2

M2
Nc2

= 0.083 .
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NNV

r
0.2 fm

1 fm

Figure 1.3: A “cartoon” of the nucleon-nucleon force — attractive at distances of
order 1 fm., and repulsive at distances of order 0.2 fm.

The electrons are another story: Their density is ≈ 1
2
nN ; the degeneracy factor is

also down by a factor of two ge = 1
2
gN , so pe

F
∼= pN

F ; and the electrons are extremely

relativistic. So to describe electrons at nuclear matter densities (or even much lower

densities) one must use relativistic momentum/energy relations.

3. Quarks at and above Nuclear Matter Densities

At densities so high that internucleon separations are significantly less than 1 fm,

a description in terms of nucleons breaks down. Nucleons, it terms out, are bound

states with size of order 1 fm made of quarks. Matter at densities exceeding that

of nuclear matter will have to be discussed in terms of quarks. The quark Fermi

momentum can be measured relative to pN
F

pq
F

pN
F

=
(

2

3

nq

nN

)2/3

.

The factor 2/3 comes because each species of quark has a degeneracy factor 6.

Quark masses differ from one type to another. The commonly accepted values are

listed in Table 1.1.

For nq ≈ nN the different species of quark range from extremely relativistic to

very non-relativistic. The s-quark is very interesting — neither limit applies.
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Electric Approximate
Flavor Name Spin Charge Mass (MeV)

u up ±1/2h̄ 2/3 5 MeV
d down ±1/2h̄ −1/3 10 MeV
s strange ±1/2h̄ −1/3 150 MeV
c charm ±1/2h̄ 2/3 1500 MeV
b bottom ±1/2h̄ −1/3 5,000 MeV
t top ±1/2h̄ 2/3 ∼ 170 GeV

Table 1.1: The names, electric charges and masses of the six quarks.

1.3 RELATIVISTIC FERMI GAS, OTHER

EQUATIONS OF STATE AT T=0

As we saw at the conclusion of the last section, the electron Fermi gas at nuclear

densities and the quark Fermi gas system are relativistic. In this section we briefly

summarize the relativistic Fermi gas, the extreme relativistic case and a simple ap-

proximate form which often suffices to connect the non-relativistic and relativistic

cases.

1. Extreme Relativistic Case: E = |�p|c
It is easy to repeat the general analysis of Section 1.2 with the results

n(kF ) =
gp3

F

6π2h̄3

u(kF ) =
gcp4

F

8π2h̄3

µ = pF c

P =
1

3
u

dP

dn
=

1

3
pF c =

1

3
µ

γ =
4

3
.

Note that the relativistic gas is more compressible than the non-relativistic one(
dn

dP

)
REL

>

(
dn

dP

)
NR

provided one is comparing systems at the same density and pressure.
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2. General Case: E =
(
�p2c2 + m2c4

)1/2

For convenience, use relativistic units, c = 1, so E =
(
�p2 + m2

)1/2
. In this case the

integrals are complicated, though elementary functions,

ū(pF ) =
4πg

(2πh̄)3

∫ pF

0
p2dp

√
p2 + m2 .

[Note that for p2
F << m2 this reduces to the non-relativistic result including the rest

mass energy (Eq. (1.23)).]

ū =
4πgm4

(2π)3

∫ xF

0
x2 dx

√
x2 + 1 ≡ gm4

2π2
f(xF )

where xF ≡ kF /m. f(xF ) can be evaluated by elementary means,

f(x) =
1

4
x

(
1 + x2

)3/2 − 1

8
x

(
1 + x2

)1/2 − 1

8
ln

(
x +

√
1 + x2

)

but we can evaluate the compressibility without knowing this integral

dP

dn
=

1

3

p2
F√

p2
F + m2

(1.25)

which interpolates between the non-relativistic result, p2
F /3m, and the relativistic

result, pF /3. Not surprisingly, the adiabatic index, γ, slowly changes from 5/3 to 4/3

as xF goes from 0 to ∞.

3. Polytropes

For matters of dynamic stability the adiabatic index, γ, plays a central role. A

particularly simple family of equations of state are those characterized by a constant γ

γ =
n

P

dP

dn
= const.

It is easy to show that this requires

u = σp3γ
F

for some constant σ. So with

n =
g p3

F

6π2h̄3

we find

P = σ(γ − 1)p3γ
F = (γ − 1)u . (1.26)
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It is easy to verify that n
P

dP
dn

= γ, but more interesting perhaps is the speed of sound

ū = u + n mc2 = σp3γ
F +

gmc2p3
F

6π2h̄3

v2 = c2dP
dū = γ − 1

1 + nmc2

γσp3γ
F

.

Since v2 > 0, we see γ ≥ 1 is required. Causality requires v2 ≤ c2, so γ ≤ 2 is also

required. Thus

1 ≤ γ ≤ 2 .

For “large” Fermi momentum and γ > 1, n/p3γ
F → 0, so

v

c
→

√
γ − 1 . (1.27)

In particular, for the extreme relativistic case, γ = 4/3, v =
√

1
3
c is the velocity of

sound.

It should be noted that the interest in polytropic equations of state does not

appear to come from any fundamental physical arguments but instead because, 1)

they yield tractable differential equations for stellar structure and 2) they apply to

any equation of state in a region where n ≈ constant, since γ(n) → γ is a good

approximation.

1.4 FINITE TEMPERTURE EFFECTS

So far we have been studying the quantum mechanical ground state of the N -fermion

system. The particles occupy the lowest energy states available. Those states with

energy below EF have unit probability to be occupied, those with energies above EF

have unit probability to be empty. Now we consider what happens when such a system

is brought into thermal equilibrium at a temperature T . These fermions can exchange

energy with the heat bath. It is most convenient to describe the thermodynamics of

this system in a framework where the number of particles in the system is regarded

as variable and is known only as a thermal, or “ensemble” average. This requires an

extension of statistical mechanics beyond 8.044 level which is developed in subsection

1 below.

The result of this work is a famous formula for the (thermal) average occupation

number of an energy level with energy E:

f(E) =
1

1 + e(E−µ)/kT
(1.28)
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where k is Boltzmann’s constant and µ is the generalization of the “chemical poten-

tial” introduced in §1.b to finite temperature. f(E) behaves as expected as T → 0,

namely

lim
T→0

f(E) =

{
1 E < µ
0 E > µ .

(1.29)

In this limit we can identify µ with the Fermi energy, EF . For T > 0, (1.28) describes

the way in which thermal effects smear out the top of the Fermi sea. At very large

temperatures, T >> EF /k, f(E) reduces to the familiar Boltzmann’s factor

f(E) ∼
E→∞

e−E/kT . (1.30)

f(E) and its derivative are plotted for a variety of values of kT in Fig. 1.4.

According to (1.28), the occupation number of each energy level is specified only

on (thermal) average. The chemical potential, µ, is determined by constraining the

total number of particles to sum to some value, N̄ , on (thermal) average:

N̄ =
∫ ∞

0
dE ρ(E)f(E) (1.31)

where ρ(E) is the density of states (1.30). Equation (1.31) should be regarded as an

equation for µ as a function of other thermodynamic variables like T , P and N̄ .

f(E) is a pretty singular function, as can be seen from its behavior as T → 0. It is

difficult, in general, to perform the calculations involving integrals of f(E) necessary

to extract thermodynamic properties of the Fermi gas. We are primarily interested

in low temperatures where Fermi systems remain approximately degenerate and their

special features persist. Fortunately, there is an approximation to f(E) for this limit

which makes calculation easier. Readers who are familiar with the derivation of f(E)

or are willing to accept (1.28) without proof might want to skip directly to §1.d.2

where the approximation is developed. Finally, in §1.d.3 we proceed with developing

the thermal properties of a Fermi Gas at low temperatures.

1. The Fermi Distribution Function

In thermodynamics, the properties of a system at fixed volume (V ), temperature

(T ) and particle number (N̄) may be summarized by the Helmholtz free energy, F ,

defined by

F ≡ U − TS (1.32)

where U and S are the internal energy and entropy, respectively. For reversible

processes

dU = −PdV + TdS (1.33)
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Figure 1.4: The Fermi distribution (a) and its derivative (b) plotted for several values
of the temperature.
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(we consider only the possibility of mechanical, “PdV ,” work), so

dF = −PdV − SdT (1.34)

or (
∂F

∂V

)
T

= −P and

(
∂F

∂T

)
V

= −S . (1.35)

A standard trick in thermodynamics is to trade independent variables by a Leg-

endre transformation. For example, it is inconvenient to use F to study systems at

constant pressure because V , not P , is regarded as an independent variable in (1.32)

and (1.34). To get around this we define the “Gibbs” free energy,

G(P, T ) ≡ F + PV (1.36)

where P = P (V, T ) ≡ − (∂F/∂V )T , so that

dG = V dP − SdT (1.37)

or (
∂G

∂P

)
T

= V and

(
∂G

∂T

)
P

= −S . (1.38)

G(P, T ) is then the appropriate function for the study of mechanical systems at

constant pressure. The same transformation is used to trade velocity for momentum

in going from the Lagrangian to Hamiltonian form of mechanics.

We now play the same trick with particle number. All of the quantities we have

been discussing depend on the number of particles in the system, N̄ . Up to now we

have suppressed that dependence. Now we make it explicit: F = F (T, V, N̄), etc. We

define the chemical potential as the derivative of F with respect to N̄ ,

µ =

(
∂F

∂N̄

)
V,T

. (1.39)

µ measures the change of free energy when an additional particle is added to the

system (at fixed V and T ). Next we trade the N̄ dependence of F for the µ dependence

of a new thermodynamic function known as the “thermodynamic potential,” Ω,

Ω ≡ F − µN̄ (1.40)

with

dΩ = −PdV − SdT − N̄dµ (1.41)
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or (
∂Ω

∂V

)
T,µ

= −P ,

(
∂Ω

∂T

)
V,µ

= −S

(
∂Ω

∂µ

)
T,V

= −N̄ . (1.42)

Next we turn to statistical mechanics and relate Ω to the microscopic character-

istics of the system. For fixed particle number this connection was made (in 8.044)

through the partition function,

Z(T, V, N) =
∑
ν

exp
(
−Eν

kT

)
(1.43)

(where the sum ranges over all states of the system labeled by ν) and through the

interpretation of the Boltzmann factor, exp−Eν/kT , as the (thermal) average relative

probability to find the system in a state with energy Eν . Thus, for example, the

internal energy is given by

U(T, V, N) = 〈Eν〉 =
1

Z

∑
ν

Eν e−Eν/kT

= kT 2 d

dT
ln Z(T, V, N) . (1.44)

Similarly, the Helmholtz free energy is given by

F (T, V, N) = −kT ln Z(T, V, N) . (1.45)

We shall give the generalization to indefinite particle number without proof. [The

proof requires introducing and developing the “grand canonical ensemble” and is

given in any reasonable introduction to statistical mechanics, e.g. Morse, Thermal

Physics ; Huang, Statistical Mechanics .] We define the “grand partition function” by

Z(T, V, µ) ≡
∑
N

eµN/kT Z(T, V, N) (1.46)

and interpret

e(µN−Eν)/kT (1.47)

as the relative probability to find the system with particle number N and energy Eν .

We then assert that Ω is given by

Ω = −kT lnZ (1.48)
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in analogy to (1.45). Equation (1.46) is not all that obvious. It is, perhaps, reasonable

that µN enters into the exponential in a manner analogous to Eν , since µ is identified

with the free energy per particle. However, the sign seems surprising. In fact, it is an

entropy effect: configurations with larger N are favored (at fixed T and E) because

they can be put together in more ways (higher entropy).

Having balked at deriving (1.46) and (1.47) we shall at least show that they

are consistent with the thermodynamic definition of Ω. In particular, we expect

(∂Ω/∂µ)T,V = −N̄ from (1.42) and find from (1.47) and (1.48)

(
∂Ω

∂µ

)
T,V

= −

∑
N

N eµN/kT Z(T, V, N)

Z (1.49)

which gives −N̄ provided e(µN−Eν)/kT is interpreted as a relative probability.

The great virtue (and the whole point!) for us to study Z is that it factors into

a product of individual particle contributions for a Fermi gas. Consider a system

of fermions with energy levels E1, E2, E3, . . . available. The quantum state of this

system is determined completely by given the occupation numbers n1, n2, n3, . . . of

each level. In this case

Eν =
∑
j

njEj

N =
∑
j

nj (1.50)

and

Z =
∏
j

⎛
⎝∑

nj

enj(µ−Ej)/kT

⎞
⎠ (1.51)

where we have used the familiar fact that the exponential of a sum is the product of

exponentials. For fermions the only possibilities are nj = 0 or 1, so (1.51) becomes

Z ≡
∏
j

Zj =
∏
j

(
1 + e(µ−Ej)/kT

)
(1.52)

and from (1.48)

Ω =
∑
j

Ωj = −kT
∑
j

ln
(
1 + e(µ−Ej)/kT

)
. (1.53)

To see how to interpret this result we calculate the mean particle number,

N̄ = −
(

∂Ω

∂µ

)
V,T

(1.54)
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and internal energy

U ≡ 1

Z
∑
N

eµN/kT
∑
ν

Eν e−Eν/kT

= µN̄ + kT 2 ∂

∂T
lnZ = µN̄ + Ω − T

∂

∂T
Ω

and find

N̄ =
∑
j

e(µ−Ej)/kT

1 + e(µ−Ej)/kT

so

N̄ =
∑
j

f(Ej) (1.55)

with

f(Ej) =
1

1 + e(Ej−µ)/kT
. (1.56)

Similarly we obtain

U =
∑
j

Ejf(Ej) . (1.57)

Equations (1.55), (1.56) and (1.57) are our principle results: We can apparently

interpret f(Ej) as the thermal average occupation number of the single particle state

with energy Ej. In the continuum approximation, (1.55) and (1.57) become

N̄ =
∫ ∞

0
dE ρ(E)f(E) (1.58)

U =
∫ ∞

0
dE E ρ(E)f(E) (1.59)

Ω = kT
∫ ∞

0
dE ρ(E) ln (1 − f(E))

where ρ(E) is the density of states (1.3), (1.58) is to be understood as an equation

for the chemical potential, µ, as a function of N̄ , T and V. Equation (1.59) is one

example of many which express the thermal properties of a Fermi system as an integral

over ρ(E)f(E). Before proceeding with the development of the thermodynamics we

introduce an approximation scheme for f(E).

2. Low Temperature Expansion for f(E).

At T = 0, f(E) is a step function

f(E) =

{
1 0 < E < µ
0 E > µ .

(1.60)

Its derivative is a δ-function at E = µ,

df

dE
= f ′(E) = −δ(µ − E) (1.61)
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and f(E) can be reconstructed from (1.61) plus the condition f(0) = 1. At low

temperatures f ′(E) is no longer a δ-function at E = µ, but it is still very strongly

peaked near E = µ. f(E) and f ′(E) have been plotted in Fig. 1.4 for various values

of kT including cases where kT << µ. In the limit kT << µ, integrals of smooth

functions multiplying f ′(E) are determined entirely by the properties of the smooth

function (its value and its derivatives) in the vicinity of E = µ, where f ′(E) varies

violently. The simplest way to evaluate such integrals, of the form1

I[g] =
∫ ∞

0
dE f ′(E)g(E) (1.62)

for smooth functions g(E), makes use of a “generalized function” expansion for f ′(E).

This method has wide application elsewhere in physics, so we take the time to develop

it here. What we are after is a power series expansion of I[g] in kT/µ, which is a

small parameter at low temperature (compared to density). What we will obtain is

a power series in kT/µ — technically an asymptotic expansion — which is accurate

up to corrections which vanish exponentially, like e−1/T , as T → 0.

The idea is to replace f ′(E) by a series of δ-functions and derivatives, of the form

f ′(E) = −δ(µ − E) +
∞∑

j=1

cj(kT )jδ(j)(µ − E) (1.63)

where δ(j)(x) is the jth derivative of the δ-function,

δ(j)(x) =
dj

dxj
δ(x) . (1.64)

Some properties of δj(x) are obtained in the problems. For our purpose, it is enough

to know:

δ(j)(x) = 0 for x �= 0∫
dx δ(j)(x)g(x) = (−1)jg(j)(0) (1.65)

where the latter is valid for functions g(x) which are smooth (all derivatives exist) in

the neighborhood of x = 0 (g(j)(x) ≡ dj/dxj g(x)). Note that Eq. (1.65) is just what

one would expect for derivatives of the δ-function combined with integration-by-parts.

Let us use (1.63) – (1.65) to evaluate I[g]

I[g] = −g(µ) +
∞∑

j=1

(−1)jcj(kT )jg(j)(µ) . (1.66)

1We shall see that we need only integrals of f ′(E), not f(E), for thermal properties.
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So the virtue of this method is that the {cj} are properties of f(E). Once they

are known, any integral of the form of I[g] can be performed by the (much easier)

operation of differentiating g(E).

To calculate the coefficients cj, we choose very simple forms for g(x) and calculate

the integral against f ′(E) explicitly. Now

f ′(E) = − 1

kT

e(E−µ)kT

[1 + e(E−µ)/kT ]
2 (1.67)

is easily seen to be even in (E − µ).2 This tells us that cj = 0 for j-odd, so

f ′(E) = −δ(µ − E) + c2(kT )2δ′′(µ − E) + c4(kT )4δiv(µ − E) + . . . (1.68)

To find c2 consider g(E) = (µ − E)2. According to (1.67)

∫ ∞

0
dEf ′(E)(µ − E)2 = 2c2(kT )2 (1.69)

and by explicit calculation (see box),

c2 = −π2

6
. (1.70)

A slightly longer calculation of the same form yields

c4
∼= −1.8940 . (1.71)

Putting this together with (1.68) we obtain

f ′(E) = −δ(µ − E) − π2k2T 2

6
δ′′(µ − E) − 1.8940(kT )4δiv(µ − E) − . . . (1.72)

which is the primary result of this section.

To perform the integral

c2 =
1

2k2T 2

∫ ∞

0
dE(µ − E)2

{
− 1

kT

e(µ−E)/kT

[1 + e(µ−E)/kT ]
2

}

define x ≡ (E − µ)/kT , so

c2 = −1

2

∫ ∞

−µ/kT
dx

x2ex

(1 + ex)2 .

2This is not quite correct since f ′(E) = 0 for E < 0 but not for E > 2µ. By neglecting this we
are making errors which are exponentially small (∼ e−µ/kT ) at low temperature.
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At the cost of an error of order e−µ/kT we can replace the lower limit by x = −∞ and

use f ′(x) = −f ′(−x),

c2 = −
∫ ∞

0
dx

x2e−x

(1 + e−x)2 .

Now, expand (1 + e−x)
−2

= 1 − 2e−x + 3e−2x − 4e−3x . . ., so

c2 = −
∞∑

a=1

(−1)a+1a
∫ ∞

0
x2 e−ax

= −2
[
1 − 1

22
+

1

32
− 1

42
. . .

]
= −π2

6

where the final step is a standard result found in textbooks and tables. The general-

ization to arbitrary j is straightforward,

cj = −2
∞∑

a=1

(−1)a+1

aj
= −2

(
1 − 21−j

)
ζ(j) .

Here ζ(j) is Riemann’s zeta function (ζ(s) ≡ ∑∞
k=1 k−s) which is tabulated in many

books. ζ(2n) is related to a Bernoulli number, ζ(2n) = (2π)2n|B2n|/2(2n)! and B0 =

1, B2 = 1/6, B4 = −1/30 . . . For large j, cj converges quickly to −2.

3. Thermodynamic Properties at Low Temperature

Let us begin by calculating N̄ as a function of µ, V and T . From (1.58)

N̄ =
∫ ∞

0
dE ρ(E)f(E) (1.58)

where ρ(E) = dN/dE is given by (1.3). Integrating by parts,

N̄ = N(E)f(E)
∣∣∣∣∞
0
−

∫ ∞

0
dE N(E)f ′(E) . (1.73)

The surface term vanishes because limE→∞ f(E) = 0 and N(0) = 0. Upon substitut-

ing for f ′(E), we obtain

N̄ = N(µ) +
∞∑

j=1

(−1)jcj(kT )jN (j)(µ) . (1.74)

At low temperatures we can keep only the first non-trivial term, of order T 2,

N̄ ∼= N(µ) +
π2k2T 2

6
N ′′(µ) . (1.75)

Referring back to (1.3)

N(µ) =
g

6π2

(
2mµ

h̄2

)3/2

V (1.76)
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and

N ′′(µ) =
g

8π2

(
2m

h̄2

)3/2 V√
µ

(1.77)

so

N̄ ∼= mg

3π2h̄2

(
2m

h̄2

)1/2

V

(
µ3/2 +

π2k2T 2

8

1

µ1/2

)
. (1.78)

To the same accuracy, keeping terms through order T 2, we can invert (1.78) and obtain

the chemical potential as a function of the mean density, N̄/V and the temperature:

µ(T ) ∼= µ(0) − π2k2T 2

12

(
1

µ(0)

)
(1.79)

where

µ(0) ≡ EF =
h̄2k2

F

2m
=

h̄2

2m

(
6π2N̄

gV

)2/3

. (1.80)

µ(T ) is the energy at which the fermion occupation number is on average one-half.

According to (1.79) this measure of the degeneracy of the Fermi system drops with

temperature. As we promised in §1, the natural scale of temperatures in the degen-

erate Fermi system is TF ≡ EF /k. Degeneracy effects are important at temperatures

below TF .

In a similar fashion we can calculate the internal energy defined by (1.59) and

obtain

U ∼= gV

4π2

(
2m

h̄2

)3/2 {
2

5
µ5/2 +

1

4
π2k2T 2µ1/2

}
(1.81)

through order T 2. It is more useful to have U as a function of N̄ , T and V rather

than µ, T and V , so we substitute (1.79) for µ = µ(T, N̄ , V ) and find

U ∼= gV

4π2

(
2m

h̄2

)3/2 {
2

5
µ(0)5/2 +

1

6
π2k2T 2µ(0)1/2

}
. (1.82)

From (1.82) we can easily obtain the heat capacity at constant volume

CV ≡
(

∂U

∂T

)
N̄,V

∼= N̄k

(
π2

2

T

TF

)
. (1.83)

Notice that CV goes to zero at low temperatures and does not approach the classical

result (CV = 3
2
N̄k) until T ∼ TF . The small heat capacity of a degenerate Fermi gas

can be understood as a consequence of the limited role of fermions below the Fermi

surface, E ∼= EF . Particles with |EF −E| >> kT cannot be excited thermally because

very few unoccupied states are available to them. They are effectively “frozen out” of

the thermal dynamics, and don’t contribute to CV . In fact, one can estimate CV by
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arguing that the heat capacity per “active” particle is (3/2)k, but that only a fraction

of the total number of particles, ∆N/N , estimated by

∆N

N
∼ dN

dE

∆E

N
∼ 1

N

(
dN

dE

)
kT ∼ T

TF

contributes. This is an example of a phenomenon known as “Pauli blocking,” in

which most of the particles in a degenerate Fermi gas do not respond to small external

perturbations, in this case thermal.

The practical consequences of (1.83) are well-known in everyday life. The small

heat capacity of the electrons in good conductors is an example we shall encounter

shortly.

Finally let us construct the equation of state of a free Fermi gas. We calculate

the pressure from (1.42), (1.46), (1.48) and (1.53)

P = −
(

∂Ω
∂V

)
µ,T

= − ∂
∂V

{−kT lnZ}

= kT ∂
∂V

∫ ∞
0 dE ρ(E) ln

(
1 + e(µ−E)/kT

)
. (1.84)

The only volume dependence in (1.84) (at fixed T and µ) is in ρ(E), which is linearly

proportional to V , so

P =
kT

V
lnZ = −Ω

V
. (1.85)

To evaluate PV , we apply the low temperature expansion to Ω

Ω = −kT
∫ ∞

0
dE

dN

dE
ln

(
1 + e(µ−E)/kT

)

= −kT
{
N(E) ln

(
1 + e(µ−E)/kT

) ∣∣∣∣∞
0

+
1

kT

∫ ∞

0
dE N(E)f(E)

}
.

(1.86)

The surface term vanishes at both limits, so

Ω =
∫ ∞

0
dE N(E)f(E) . (1.87)

Defining N(E) = dN /dE and integrating by parts again

Ω = −
∫ ∞

0
dE N (E)f ′(E) . (1.88)

Using (1.72) for f ′(E) and (1.21) for N(E) we find

−Ω = PV = P0V

(
1 +

5

12

π2k2T 2

E2
F

)
(1.89)

where P0 = 2/3
(
gp5

F /20mπ2h̄2
)

is the pressure we calculated in §1.1 for zero tem-

perature. Once again, the effect of quantum mechanics and the exclusion principle

are all important. The equation of state looks nothing like the classical ideal gas:

the pressure does not vanish at low temperatures but instead reduces to the quantum

degeneracy pressure. Thermal effects increase P quadratically with T , at least for

temperatures low in comparison with EF /k.
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MATTER AT HIGH DENSITY

Strong attractive forces are able to raise matter to very high densities at which the

degeneracy of fermions plays a major role in providing stability. The classic exam-

ples are gravitationally bound systems: white dwarf and neutron stars in which the

degeneracy pressure of electrons and neutrons, respectively, balances the attractive

force of gravity. Another example may be quark matter: a degenerate Fermi gas of

quarks held together either by the strong chromodynamic forces between quarks or

by strong gravitational forces in the cores of neutron stars. In this section we apply

the methods of §1 to the study of these systems.

Our first task is to study the composition and the equation of state of cold matter

at densities above ordinary ones. This discussion can be carried out without regard to

how matter is brought to such extreme conditions. After tracing matter from densities

of a few grams per cm3 up to enormous densities of order 1020 gm/cm3, we turn to

the issue of how such extraordinary densities might arise in Nature. First we study

white dwarf stars in some detail, then we look very briefly at neutron stars. Much

of this discussion is based on the presentation in two excellent texts: Landau and

Lifshitz, Statistical Physics and Shapiro and Teukolsky, Black Holes, White Dwarfs

and Neutron Stars. Finally we explore the dynamics of cold quark matter.

2.1 A BRIEF SURVEY OF THE COMPOSITION

OF MATTER AT HIGH DENSITY

We wish to follow the history of matter as a function of the density for high densities

and low temperatures. We ignore for now the external agent which has brought the

system to high densities. We also ignore thermal effects, which is justified provided

35
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T << TF , where TF is the Fermi temperature appropriate to whatever constituents

and density we are studying.

Ordinary matter remains qualitatively unchanged as the density is increased until

the volume per atom becomes smaller than atomic dimensions. Then atoms lose their

individuality and matter begins to resemble a gas of electrons and nuclei. A measure

of this transition is the density (p1) at which the Fermi energy of an electron gas is

comparable to the electrostatic interaction between electrons and nuclei:

〈 p2
F

2me

〉 ≈ 〈Z e2

r
〉 , (2.1)

where Z is the nuclear charge. Using (1.7)

n =
1

3π2

p3
F

h̄3 (1.7)

and estimating very crudely

〈1
r
〉 ≈

(
4πn

3

)1/3

(2.2)

we find

n ≈ 4

(
2mee

2

3πh̄2 Z

)3

. (2.3)

A more sophisticated estimate based on the Thomas–Fermi approximation (see §4)

takes Coulomb interactions into account in determining 〈1/r〉 and gives

n ≈
(

me e2

h̄2

)3

Z2 . (2.4)

To obtain the corresponding mass density (ρ) we must introduce a parameter Ye,

which measures the electron to nucleon ratio in the material

ρ =
mpn

Ye

. (2.5)

Ye = 1 for ordinary hydrogen, Ye = 1/2 for nuclei with equal numbers of protons and

neutrons and Ye = 0.46 for 56Fe, the most stable atomic nucleus. [In (2.5) we ignore

the small effects of nuclear binding on the mass of the system.] Combining (2.4) and

(2.5)

ρ1 ≈
mp

Ye

(
mee

2

h̄2

)3

Z2 (2.6)

(h̄2/me2) = 0.529× 10−9 cm is the Bohr radius. As an example, for 56
26Fe, ρ1 ≈ 1.66×

104 gm/cm3. This density corresponds to an electron Fermi energy of ≈ 10 KeV and a

nuclear Fermi energy (for iron) of ≈ 1 eV. So we have reason to believe electrons form
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a degenerate Fermi gas at densities in excess of ρ1 provided the ambient temperature

is below 10 KeV, whereas the gas of nuclei is not degenerate unless the temperature

is far lower. At these densities the electrons exert significant degeneracy pressure,

from (1.24),

P =
p5

F

15mπ2h̄3 =
3

5

(
3π2

)2/3 h̄2

me

n5/3 . (2.7)

The nuclei contribute insignificantly to the pressure because their masses are so much

larger than me. On the other hand, the nuclei dominate the mass density of the

system.

As the density is increased the electron Fermi energy increases and the electron

Fermi gas becomes relativistic. A measure of the density at which relativistic ef-

fects become important for electrons can be obtained by setting pF = mec. The

corresponding mass density is

ρ2 =
mp

3π2Ye

(
mec

h̄

)3

. (2.8)

Again taking 56
26Fe as an example, ρ2 = 2.13 × 106 cm/cm3.

At yet higher densities it becomes energetically favorable for electrons at the top

of the Fermi sea to react with nuclei via reactions which absorb electrons. If ZA is

a nuclear species with charge Z and mass number A, the sort of reaction we have in

mind is

e− + ZA → Z−1A + νe , (2.9)

a typical weak interaction known as inverse β-decay. The massless neutrino is not

bound to matter and is radiated away. Exactly which nuclear reactions occur depends

on the composition of the material. For the sake of definiteness let’s study the case

of a gas of protons, neutrons and electrons. These can react with one another via

β-decay

n → p + e− + ν̄e (2.10)

and its inverse

p + e− → n + νe . (2.11)

Because protons are lighter than neutrons,

Q ≡ (mn − mp)c
2 = 1.293 MeV , (2.12)

at low densities the system consists entirely of protons and electrons. Neutrons first

appear when the electron Fermi energy exceeds Q, for then it is energetically favorable
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for an electron at the top of the Fermi sea to combine with a proton via (2.11). This

corresponds to a matter density of

ρ3 =
mp

3π2Ye

(Q2 − m2
ec

4)
3/2

h̄3 = 1.23 × 107 gm/cm3 . (2.13)

The exact composition of a real material depends on the Q-values of thousands of

nuclear β-decay reactions. The first serious attempt to model this system was made

by Harrison and Wheeler in the 1950’s. Their work was based on a simple, semi-

empirical mass formula for nuclei. Later Salpeter and Baym, Pethick and Sutherland

(BPS) improved on the Harrison–Wheeler formalism. The result of their work is as

follows: At densities above ρ3 electrons are absorbed by nuclei forming neutron rich

nuclei. There are, however, limits to the neutron-to-proton ratio of nuclei above which

nuclei become unstable to neutron emission, a phenomenon known as neutron drip.

This limit is reached, according to BPS, at a density of

ρ4 ≈ 2.4 × 1011 g/cm3 . (2.14)

At densities above ρ4, matter consists of a gas of ultra-relativistic electrons, non-

relativistic neutrons and nuclei at the neutron rich limit of stability. Eventually,

the neutron degeneracy pressure replaces the electron degeneracy pressure as the

dominant pressure. The two are equal at

ρ5 ≈ 1012 gm/cm3 . (2.15)

This marks the beginning of a density regime in which matter may be regarded

as essentially a degenerate non-relativistic gas of neutrons. While ρ5 is an enormous

density by ordinary standards, it is still far below the density of ordinary nuclei:

The radii of ordinary nuclei are well-described by the simple rule R(A) = 1.2 A1/3 ×
10−13 cm corresponding to a density of

ρ6 ≈ 2.3 × 1014 gm/cm3 . (2.16)

So it is reasonable to treat matter in the range ρ5 < ρ < ρ6 as a diffuse, weakly

interacting gas of neutrons, at least as a first approximation. Even at nuclear matter

densities this gas of neutrons is not very relativistic: The Fermi momentum corre-

sponding to ρ6 is

pn
F c ≈ 320 MeV

so
p2

F

m2
nc

2
≈ v2

c2
≈ 0.12 .
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The description of matter in terms of neutrons and protons begins to break down

when the separation between neutrons becomes small compared to their intrinsic size,

which is known to be of order 10−13 cm. We must then turn to the quarks which

compose protons and neutrons. At densities above 1 nucleon per cubic fermi (1 fermi

≡ 10−13 cm), or

ρ7 ∼ 1.7 × 1015 fm/cm3 , (2.17)

a description in terms of quarks appears necessary. Quarks come in several varieties

with rest mass (we quote mc2) ranging from about 5 MeV and 10 MeV for the up and

down quark, upwards through ∼ 150 MeV for the strange quark, to ∼ 1,500 MeV,

∼ 5,000 MeV and 1.7 × 105 MeV for the charm bottom and top quarks. We believe,

then, that matter at densities exceeding ρ7 consists of a degenerate Fermi gas of

quarks in equilibrium with the weak interactions — which turn quarks of different

types into one another. This description of matter is believed to be correct up to

Fermi energies of at least hundreds of GeV (1 GeV = 103 MeV) corresponding to

densities of 1020 gm/cm3!

ρ
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Figure 2.1: Landmarks in the description of matter as a function of density, ranging
from a gas of quarks at arbitrarily high density to a diffuse gas of atoms at arbitrarily
low density.

This rather grand survey of the character of dense matter is summarized in Fig. 2.1.

Which, if any, of the scenarios introduced above actually occurs in Nature depends

on the dynamical history of stars or other astrophysical objects capable of producing

the gravitational pressure necessary to raise matter to such enormous density. There

is ample evidence that relativistic electrons provide the degeneracy pressure which

support white dwarf stars and that the neutrons do the same for neutron stars.
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2.2 WHITE DWARFS — INTRODUCTION

The actual path history of stellar evolution is a complex and not entirely understood

subject. We will give only a cartoon sketch to motivate our study of white dwarfs and

neutron stars. The primary energy source for young stars is hydrogen fusion. The

thermal pressure this generates counteracts the attractive forces of gravity. When its

hydrogen supply is depleated a star begins to contract. If sufficient heat is generated

from gravitational potential energy then the stellar core temperature will rise to the

point when helium burning begins. Helium is present both as a primordial constituent

of stars and as a product of hydrogen burning. Cycles of burning and contraction can,

in principle, continue until the star’s nuclear fuel is exhausted, that is, until it consists

mainly of iron, the most stable (as measured in binding energy per nucleon) of nuclei.

During this time, as the star contracts, electron degeneracy pressure increases. If

the degeneracy pressure is great enough it can oppose further contraction and arrest

further cycles of nuclear burning and contraction. It appears that relatively low

mass stars (M <∼1.4 M�) stop burning nuclear fuel at some stage before complete

conversion to iron. When they reach this state, stars slowly cool as they radiate away

their residual energy. These stars are known as “white dwarfs”; they have masses of

order M�, radii of order 5,000 km and mean densities of order 106 gm/cm3, in the

range where their dynamics is dominated by electron degeneracy pressure.

The history of the discovery and understanding of white dwarfs is a particularly

interesting one. A very brief summary is given in the material transcribed below from

Shapiro and Teukolsky’s book, Black Holes, White Dwarfs and Neutron Stars :

White dwarfs are stars of about one solar mass with characteristic radii of

about 5,000 km and mean densities of around 10−6 g cm−3. These stars no

longer burn nuclear fuel. Instead, they are slowly cooling as they radiate away

their residual thermal energy.

We know today that white dwarfs support themselves against gravity by the

pressure of degenerate electrons. This fact was not always clear to astronomers,

although the compact nature of white dwarfs was readily apparent from early

observations. For example, the mass of Sirius B, the binary companion to

Sirius and the best known white dwarf, was determined by applying Kepler’s

Third Law to the binary star orbit. Early estimates placed its mass M in

the range from 0.75 M� to 0.95 M�. Its luminosity L was estimated from the

observed flux and known distance to be about 1/360 of that of the sun. In 1914

W. S. Adams (1915) made the surprising discovery that the spectrum of Sirius

B was that of a “white star,” not very different from its normal companion,

Sirius. By assigning an effective temperature of 8,000K to Sirius B from
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these spectral measurements and using the equation for blackbody emission,

L = 4πR2σT 4
eff , a radius R of 18,800 km could be inferred for the star. (This

is about four times bigger than the modern value.)

Referring to Sirius B in his book The Internal Constitution of the Stars,

the great astrophysicist Sir Arthur Eddington (1926) concluded that “we have

a star of mass equal to the sun and of radius much less than Uranus.” He also

reported in his book the extraordinary new measurements by W. S. Adams

(1925) of the gravitational redshifts of several spectral lines emitted from the

surface of Sirius B. By applying the theory of general relativity, the ratio M/R

could be inferred from the measured redshifts. As the mass was already known

from the binary orbit, the radius of Sirius B could be determined. The redshifts

obtained by Adams, though crude, confirmed the previous estimates of R and

the compact nature of the white dwarf. Eddington (1926) thus wrote in his

book that “Prof. Adams has killed two birds with one stone; he has carried out

a new test of Einstein’s general theory of relativity and he has confirmed our

suspicion that matter 2,000 times denser than platinum is not only possible,

but is actually present in the Universe.”1

Eddington (1926) went on to argue that although only three white dwarfs

could be firmly established at that time, white dwarfs are probably very abun-

dant in space, since the known ones were all very close to the sun. But regard-

ing the means by which white dwarfs supported themselves against collapse,

Eddington could declare only that “it seems likely that the ordinary failure of

the gas laws due to finite sizes of molecules will occur at these high densities,

and I do not suppose that the white dwarfs behave like perfect gas.”

In August of 1926, Dirac (1926) formulated Fermi–Dirac statistics, build-

ing on the foundations established only months earlier by Fermi. In December

1926, R. H. Fowler (1926), in a pioneering paper on compact stars, applied

Fermi–Dirac statistics to explain the puzzling nature of white dwarfs: he iden-

tified the pressure holding up the stars from gravitational collapse with electron

degeneracy pressure.

Actual white dwarf models, taking into account special relativistic effects in

the degenerate electron equation of state, were constructed in 1930 by Chan-

draskhar (1931a,b). In the course of this analysis, Chandrasekhar (1931b)

made the momentous discovery that white dwarfs had a maximum pass of

∼ 1.4 M�, the exact value depending on the composition of the matter. This

1Adams’ value for the redshift, and also the separate value obtained by Moore, agreed with general
relativity, although using an incorrect observational value for the radius. The modern situation is
described in Shapiro and Teukolsky Section 3.6.
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maximum mass is called the Chandrasekhar limit in honor of its discoverer.

Chandrasekhar (1934) was immediately aware of the important implication of

his finding, for he wrote in 1934: “The life history of a star of small mass must

be essentially different from the life history of a star of large mass. For a star

of small mass the natural white-dwarf stage is an initial step towards complete

extinction. A star of large mass cannot pass into the white-dwarf stage and

one is left speculating on other possibilities.”

In 1932, L. D. Landau (1932) presented an elementary explanation of the

Chandrasekhar limit. He applied his argument several months later to neutron

stars when he learned of the discovery of the neutron (Section 9.1).

The role of general relativity in modifying the mass-radius relation for massive

white dwarfs above 1M� was first discussed by Kaplan (1949). He concluded that

general relativity probably induces a dynamical instability when the radius becomes

smaller than 1.1 × 104 km. The general relativistic instability for white dwarfs was

discovered independently by Chandrasekhar in 1964.2

2.3 WHITE DWARFS — DYNAMICS

In a cold white dwarf, electron degeneracy pressure balances gravity. Because elec-

trons are so much less massive than nucleons (me
∼= (1/2,000)mp,n, the electrons

contribute negligibly to the star’s mass and the nuclei contribute negligibly to the

degeneracy pressure. The densities of electrons and nuclei scale together according

to (2.5), however, because electrostatic forces will keep the material locally neutral

on average. For simplicity we assume spherical symmetry and ignore stellar rotation,

so that n and ρ are functions of r, the distance from the star’s center, alone.

In equilibrium, the gravitational force on a small volume element must be coun-

tered by Fermi pressure. Consider the volume element shown in Fig. 2.2, consisting

of a slice between r and r + dr with cross section A. The gravitational force on this

element is

dF = −Gm(r)ρ(r)

r2
Adr (2.18)

where m(r) is the mass enclosed within a radius r:

m(r) = 4π
∫ r

0
dr′r′2ρ(r′) . (2.19)

2See Chandrasekhar and Tooper (1964).
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A

r + dr

r

P(r)

P(r + dr)

Figure 2.2: Hydrostatic equilibrium — the force of gravity is balanced by a pressure
gradient in equilibrium.

Let P (r) be the pressure profile of the star. The outward force on the area A due to

this pressure at r is F (r) = P (r)A; the inward force at r+dr is F (r+dr) = P (r+dr)A.

The net outward force must balance gravity:

dP

dr
= −Gm(r)ρ(r)

r2
. (2.20)

Equations (2.19) and (2.20) can be combined into a single equation involving P (r)

and ρ(r):
1

r2

d

dr

r2

ρ(r)

d

dr
P (r) = −4πGρ(r) . (2.21)

The relation between the pressure, P (r), and the mass density, ρ(r), depends on

the equation of state of the degenerate electron gas,

dP

dr
=

dP

dρ

dρ

dr
=

Ye

mp

dP

dn

dρ

dr
. (2.22)

And dP/dn is given by (1.25)

dP

dn
=

1

3

p2
F c√

p2
F + m2

ec
2

(2.23)

where

pF = (3π2n)1/3h̄ . (2.24)
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Equation (1.25) applies to a completely degenerate (T = 0), free electron gas. Correc-

tions due to interactions and finite temperature effects are small at low temperature

and high density. It’s convenient to reexpress dP/dn in terms of ρ(r) and, since it

has units of energy, measure dP/dn relative to mec
2,

dP

dn
=

1

3
mec

2 (ρ/ρ0)
2/3

[
1 + (ρ/ρ0)

2/3
]1/2

(2.25)

where

ρ0 ≡
(

mec

h̄

)3 mp

3π2Ye

(2.26)

is the density corresponding to a mass of order mp in a volume of order the electron’s

Compton wavelength. It was called ρ2 in the survey of § 2.a. dP/dn has simple

non-relativistic and relativistic limits

dP

dn
=

⎧⎪⎪⎨
⎪⎪⎩

1
3
mec

2
(

ρ
ρ0

)2/3
Non − Relativistic

1
3
mec

2
(

ρ
ρ0

)1/3
Relativistic .

(2.27)

It is straightforward to substitute dP/dn from (2.25) back onto (2.21) and integrate

it numerically. Many of the important features of white dwarfs structure can be

obtained by analytic means if we approximate dP/dn by a function which is easier

to integrate. Since both limits in (2.27) are special cases of the polytropic form of

dP/dn, we will try the general case,

dP

dn
=

1

3
mec

2

(
ρ

ρ0

)γ−1

. (2.28)

Finally, it is useful to let (ρ/ρ0)
γ−1 be the independent variable, so we define

κθ(r) ≡
(

ρ

ρ0

)γ−1

(2.29)

and choose the constant κ so that θ = 1 at r = 0, i.e.

κ =

(
ρc

ρ0

)γ−1

(2.30)

where ρc is the central density. Substituting all of this back into (2.21) we obtain

1

r2

d

dr
r2 d

dr
θ = −12π(γ − 1)Gmpρ0κ

( 2−γ
γ−1)

Yemec2
θ1/γ−1 . (2.31)
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To simplify (2.31) we define a scaled length variable

r ≡ aξ (2.32)

and choose

a2 ≡ πh̄3Y 2
e

4(γ − 1)m2
em

2
pGcκ

2−γ
γ−1

(2.33)

so that
1

ξ2

d

dξ
ξ2 d

dξ
θ = −θ

1
γ−1 . (2.34)

This is known as the Lane-Emden equation. For γ = 5/3 and 4/3 it describes the

non-relativistic and ultra-relativistic cases precisely. Otherwise, it’s a polytropic ap-

proximation.

We need the boundary conditions on (2.34). One is already known from (2.29)

and (2.30),

θ(0) = 1 . (2.35)

Since (2.34) is second order, we need another condition to uniquely fix a solution. To

find it, integrate (2.34) once to obtain

θ′(ξ) = − 1

ξ2

∫
dξ′ξ′2θ

1
γ−1 (ξ′) (2.36)

Since θ is finite as ξ → 0 and since γ > 1 (see §1), we see θ′ vanishes at ξ = 0,

θ′(0) = 0 . (2.37)

Equations (2.35) and (2.37) together uniquely specify the solution to the Lane-Emden

equation.

2.4 WHITE DWARFS — CHARACTERISTIC

SOLUTIONS

Before discussing solutions in detail we can obtain their gross features from dimen-

sional considerations. For the polytropic equation of state the solution to (2.34)

subject to θ(0) = 1, θ′(0) = 0 determines the profile of the star in dimensionless

variables. Equations (2.26) and (2.33) restore the natural scales to the problem. The

only significant free parameter is the central density, or κ as defined by (2.30). We

have already defined a characteristic density

ρ0 =
(

mec

h̄

)3 mp

3π2Ye

=
1

Ye

9.81 × 105 gm/cm3 (2.38)
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and a characteristic length scale

R0 =

[
3πh̄3

4Gm2
pm

2
ec

]1/2

Ye = 7.72 Ye × 103 km . (2.39)

Here we have set γ = 4/3 and κ = 1 in (2.33) to have a representative length scale.

Finally from (2.19) we obtain a representative mass

M0 ≡ 4πR3
0ρ0 =

(
3πh̄3c3

G3

)1/2
Y 2

e

m2
p

= 5.66 Y 2
e × 1033 gm (2.40)

which is of order M�. Equations (2.38) – (2.40) give us an indication of the scale of a

collapsed object supported by electron degeneracy pressure. Notice that the mass is

particularly simple — it depends only on mp and on fundamental constants of Nature

(h̄, c and G).

The solutions to the Lane–Emden equation, θ(ξ), decrease monotonically with ξ

and vanish at ξ ≡ ξ1 provided γ > 6/5. Then R = aξ1 defines the surface of the star.

R =

⎡
⎣ 1

3(γ − 1)κ( 2−γ
γ−1)

⎤
⎦

1/2

R0ξ1 . (2.41)

Similarly the mass can be expressed in terms of M0, ξ1, κ and γ,

M = 4π
∫ R

0
r2 dr ρ(r)

= 4πa3ρ0κ
1/γ−1

∫ ξ1

0
dξ ξ2θ(ξ)

1
γ−1

= −4πa3ρ0κ
1

γ−1

[
ξ2
1θ

′(ξ1)
]

(2.42)

where, in the last step, we used (2.36). Substituting for a, we find

M =

[
κ3γ−4/γ−1

3(γ − 1)

]1/2

M0

[
−ξ2

1θ
′(ξ1)

]
. (2.43)

Values of ξ1 and −ξ2
1θ

′(ξ1) for various γ are given in Table 2.1. Together with

ρc = ρ0κ
1/γ−1 (2.44)

these equations determine the characteristics of polytropic white dwarfs. The un-

known central density parameterized by κ can be eliminated from (2.42) and (2.43)

to give a relation between M and R:

M ∼ 1

R3γ−4/2−γ
(2.45)



47

γ ξ1 −ξ2
1dθ/dξ

∣∣∣∣
ξ1

5/3 3.65375 2.71406
5/4 4.35287 2.41105
7/5 5.35528 2.18720
4/3 6.89685 2.01824

Table 2.1: Parameters of solutions to the Lane–Emden equation

which gives M ∼ 1/R3 for the non-relativistic limit, γ = 5/3.

This connection between M and R is the key to understanding several important

features of white dwarfs. Let us reexamine these results and their implications from

a very physical point of view proposed by Landau in 1932. First suppose the electron

Fermi gas were always non-relativistic. It is an easy exercise using the methods of

§1 to calculate its total kinetic and gravitational potential energies as a function of

N (the total number of nucleons — protons and neutrons). We have, for the total

kinetic energy

U = uV =
h̄2k5

F

10mπ2
∝ N

p2
F

2m
∝ N

(
N

V

)2/3

so

U ∝ N5/3

R2
, (2.46)

and for the gravitational potential energy,

VG = −G
∫ m(r)dm(r)

r
= −G

∫ R

0
dr 4πrρ(r)m(r)

VG ∝ −N2

R
. (2.47)

Comparing (2.46) and (2.47) we see that the sum of the two expressions always has

a minimum and that the minimum occurs when R ∼ N−1/3. Since the total mass

scales linearly with N we find R ∼ M−1/3.

We conclude that a non-relativistic and self-gravitating degenerate Fermi gas al-

ways has an equilibrium configuration. It does not undergo gravitational collapse. Of

course, when M gets very large and R gets very small, the system becomes very dense

and the non-relativistic approximation breaks down. Before studying what happens

in this case, it is worth remarking that the result R ∼ M−1/3 implies a maximum

size for cold self-gravitating matter. When M is very small atomic forces keep the
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density relatively constant, so R ∼ M1/3. But when M is very large we’ve just shown

that R ∼ M−1/3. Somewhere in between R takes on a maximum, Rmax. Landau and

Lifshitz give a simple estimate leading to Rmax ∼ 105Ye/Z
1/3 km, where Ye and Z

characterize the material of interest.

To learn more about non-relativistic white dwarfs, we return to (2.45) and supply

the missing proportionality factors for γ = 5/3:

MR3 =
9π2h̄6

128G3m5
pm

3
e

Y 5
e

[
−ξ5

1θ
′(ξ1)

]
(2.48)

=
91.9h̄6

G3m3
em

5
p

Y 5
e . (2.49)

For Ye ≈ 0.46,

MR3 ≈ 0.9 × 1060 gm cm3

or
M

M�

(
R

7,700 km

)3

= 1 (2.50)

This simple mass radius relation governs white dwarfs from the lowest masses, where

electrostatic interactions modify it, up to large masses, where the electrons become

relativistic. It is shown as the curve marked “Non-relativistic White Dwarfs” in

Fig. 2.3. For comparison in Fig. 2.3 we show a realistic plot of M versus R (marked

A) in which the composition is assumed in equilibrium with the weak interactions

[taken from Shapiro and Teukolsky Fig. 3.1].

Now let us consider the opposite extreme: the completely relativistic, degenerate

electron gas. The gravitational potential energy remains the same, VG ∝ −N2/R, but

the kinetic energy now scales as N4/3/R. Since both terms in the energy scale with

the same power of the radius equilibrium is not possible: either the kinetic energy

dominates and the system expands until it loses its extreme relativistic behavior, or

the potential energy dominates and the system collapses until new dynamics takes

over. Since the potential energy goes with a higher power of N than the kinetic

energy, larger systems tend toward collapse. The value of N at which the two terms,

U and VG, are equal is a measure of the maximum mass a white dwarf can have. The

proper way to calculate this maximum mass is to leave the polytropic approximation

and return to the actual equation of state defined by (2.23). The problem must be

solved numerically (see Chandrasekhar); however, the result is that near the maximum

mass the electrons are ultra-relativistic throughout nearly all of the star. So we can
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Figure 2.3: Idealized and more sophisticated descriptions of white dwarfs and neutron
stars. The curves labeled “A” and “B” were taken from Shapiro and Teukolsky.

estimate the maximum mass by solving the Lane–Emden equation for γ = 4/3. The

result of that simple numerical calculation is ξ1 = 6.897 and ξ2
1θ

′(ξ1) = −2.018, so

R = 3.35 × 104 km

(
ρc

9.81 × 105 gm/cm3

)−1/3

(2Ye)
2/3 (2.51)

and

M = 1.44(2Ye)
2M� . (2.52)

Equation (2.52) was first derived by Chandrasekhar and is known as the Chan-

drasekhar limit. It is marked as MCH in Fig. 2.3. The results of integration of the

dynamical equation for the exact Fermi gas equation of state can be found in Chan-

drasekhar’s 1939 paper. They agree with the polytropic results for γ = 5/3 and 4/3

in the case of very light and very heavy white dwarfs as expected. The very simple

dimensional argument of Landau gives a result very close to (2.52). The dynamics of

realistic white dwarfs are complicated by many features we have ignored. To mention

a few:

1. Electrostatic interactions between electrons and nuclei and electrons and one-

another.

2. Thermal processes: the temperature is not zero, nor is it uniform. Heat is

transported throughout the system and it is not in thermal equilibrium.
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3. The composition is not uniform and changes with time. Inverse β-decay becomes

important at large masses.

These and others can be found in the monograph by Shapiro and Teukolsky. The

results of a more sophisticated analysis are shown in Fig. 2.3. As is clear from

the figure, the simple Fermi gas analysis we have pursued gives a pretty good first

approximation for white dwarfs.

2.5 AN INTRODUCTION TO NEUTRON

STARS

A star with mass greater than the Chandrasekhar limit cannot form a white dwarf.

Either it expels enough mass during some cataclysmic event (a nova) or it collapses

beyond the white dwarf domain to higher density regime. The possibility that there

might be another regime of stable stars at density for greater than that of a white

dwarf was perceived by Landau shortly after the discovery of the neutron. He ap-

parently applied the stability argument he had developed for white dwarfs to a cold,

degenerate neutron gas. Credit for the idea of neutron stars goes, however, to Baade

and Zwicky, who in 1934 not only described their properties in detail but suggested

that they would be formed in supernova explosions. Once again we quote liberally

the historical background given in Shapiro and Teukolsky:

In 1934 Baade and Zwicky proposed the idea of neutron stars, pointing

out that they would be at very high density and small radius, and would

be much more gravitationally bound than ordinary stars. They also made

the remarkably prescient suggestion that neutron stars would be formed

in supernova explosions.3

The first calculation of neutron star models was performed by Oppen-

heimer and Volkoff (1939), who assumed matter to be composed of an

ideal gas of free neutrons at high density. Work on neutron stars at this

time focused mainly on the idea the neutron cores in massive normal stars

3Baade and Zwicky (1934): “With all reserve we advance the view that supernovae represent the
transitions from ordinary stars into neutron stars, which in their final stages consist of extremely
closely packed neutrons.”

According to Rosenfeld (1974), on the day that word came to Copenhagen from Cambridge telling
of Chadwick’s discovery of the neutron in 1932, he, Bohr, and Landau spend the evening discussing
possible implications of the discovery. It was then that Landau suggested the possibility of cold, dense
stars composed principally of neutrons. Landau’s only publication on the subject was concerned with
neutron cores (Landau, 1938).
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might be a source of stellar energy. When this motivation faded as the

details of thermonuclear fusion become understood, neutron stars were

generally ignored by the astronomical community for the next 30 years.

However this was by no means universally so. For example, the papers

of Harrison, Wakano, and Wheeler (1958), Cameron (1959a), Ambart-

sumyan and Saakyan (1960), and Hamada and Salpeter (1961) contain

detailed discussions of the equation of state and neutron star models, and

the book by Harrison, Thorne, Wakano and Wheeler (1965) contains an

extensive discussion. A reason often given for the neglect of the neutron

star idea is that because of their small area, their residual thermal radia-

tion would be too faint to observe at astronomical distances with optical

telescopes.

However, the discovery of cosmic, nonsolar X-ray sources by Giacconi

et al.4 in 1962 did generate a great flurry of interest in neutron stars.

A sizeable number of theorists independently speculated that the X-ray

telescope was observing a young, warm neutron star, and they fervishly

began to calculate the cooling of neutron stars. The identification of the

first “quasi-stellar object” (QSO, or quasar) by Schmidt at Mt. Palomar

in 1963 triggered further interest in neutron stars. This interest stemmed

from the possibility that the large redshifts of spectral lines observed for

quasars might be attributed to the gravitational redshift at the surface

of a compact object. Arguments showing that the largest quasar redshift

already exceeded the maximum gravitational redshift from a stable neu-

tron star soon dispelled any connection between quasars and (isolated)

neutron stars.

In any case, with the discovery of X-ray sources and quasars, dozens

of theoreticians focused their attention on the equilibrium properties of

compact stars and on star collapse. But in spite of this mounting theoret-

ical effort, most physicists and astronomers did not take the possibility of

neutron stars (let along black holes!) very seriously. Probably the vast ex-

trapolation from familiarly known physics was the most important reason

for their attitude!

All his changed when pulsars were discovered in late 1967. Gold (1968)

proposed that they were rotating neutron stars, and this is generally ac-

cepted today (see Chapter 10).

4Ciaconni, Gursky, Paolini and Rossi (1962).
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Since 1968, there has been much theoretical work on properties of

neutron stars. This was further stimulated by the discovery of pulsat-

ing compact X-ray sources (“X-ray pulsars”) by the UHURU satellite in

1971. These are believed to be neutron stars. Although the idea of ac-

creting binary systems for X-ray sources had been proposed earlier, the

first conclusive evidence for periodicity was found in the sources Cen X-3

and Her X-1.

The near simultaneous discoveries, of the Crab and Vela pulsars in the

late fall of 1968, both of which are situated in supernova remnants, pro-

vided evidence for the formation of neutron stars in supernova explosions.

The crab nebula, for example, is the remnant of the supernova explosion

observed by Chinese astronomers in 1054 A.D.

Optical and X-ray observations of binary X-ray sources allow one to

determine the neutron star masses in some of these systems. The discovery

of the first binary pulsar by Hulse and Taylor (1975) also provides an

opportunity to measure the mass of a neutron star and, as we shall see

later, to test for the existence of gravitational radiation.

At the time of this writing, about 350 pulsars are known, three of

which are in binary systems. Over 300 compact X-ray sources are known,

about 19 of which show periodicity, and so are probably in binary systems.

The analysis we performed for white dwarfs is easily adapted to an idealized “neu-

tron star” consisting of a degenerate, non-relativistic gas of self-gravitating neutrons.

This is a mere “cartoon” of a neutron star, ignoring as it does the rich nuclear physics

and general relativistic effects which occur in neutron stars. We will nevertheless cap-

ture enough of the correct physics to see why neutron stars are stable and what are

their size and mass scales. Replacing the electron gas by a neutron one, in §2.c. we

obtain

ρn
0 =

mn

3π2

(
mnc

h̄

)3

= 6.1 × 1015 gm/cm3

Rn
0 =

[
3π2h̄3

4Gm4
nc

]1/2

= 4.20 km

Mn
0 =

(
3π2h̄3c3

G3

)1/2
1

m2
n

= 5.66 × 1033 gm (2.53)

and (for γ = 5/3)

ρn
c = ρ0κ

3/2

Mn =
κ3/4

√
2

M0

[
−ξ2

1θ
′(ξ1)

]

Rn =
1√

2 κ1/4
R0ξ1 . (2.54)
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Eliminating κ we obtain

MR3 =
91.9h̄6

G3m5
n

= 7.2 × 1051 gm cm3 (2.55)

or
M

M�

(
R

15 km

)3

≈ 1 . (2.56)

These results suggest that neutron stars have masses comparable to white dwarfs

but radii a factor of me/mn ≈ 2,000 smaller and density of order (mn/me)
3 ∼ 6×109

greater than white dwarfs.

Next we turn to the issue of whether or not neutron stars are stable. Once again,

answering this question properly requires time and analysis beyond the scope of this

course. We can get an indication of the issue, however, by following a simple analysis

due to Landau. Consider the non-relativistic “neutron star” we have just constructed.

At the outer limits of this object the pressure must vanish. Thus it is clear that the

outer region of a neutron star consist of a shell of electrons and nuclei at low pressure

and density. The thickness of this shell may be large, but its density is much lower

than the neutron core, so the core accounts for nearly all of the neutron star’s mass.

Let us compare the energy of neutrons at the core radius (Rn) with the energy of the

nuclei and electrons into which they would disassociate if they were transported to

the outer limit of the star (R′). At the core radius

E ≈ mnc
2 − GMmn

Rn
(2.57)

is the energy per neutron, and at the surface of the star

E ′ ≈
(

MA + Zme

A

)
c2 − GMmn

R′ . (2.58)

If the star is to be stable we must require E < E ′. In comparing (2.57) and (2.58)

we may ignore 1/R′ compared to 1/R, so we obtain

GMmn

R
> ∆ (2.59)

where ∆ = [mn − (1/A) (MA + Zme)] c
2. Comparing (2.59) with the mass-radius

relation (2.56) we find numerically M > 0.17 M� for oxygen and M > 0.18 M� for

iron. This calculation gives a lower limit on M for a neutron star to be stable against

a differential change — transporting a small amount of material from a region of

high density to low density. However it would not detect an instability requiring a

global change in the configuration of the star. For this reason the neutron star is

only metastable in this mass region. A more general analysis shows neutron stars
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to be truly stable for M >∼0.3 M�. The mass-radius relation for a non-relativistic

neutron star is graphed in Fig. 2.3 along with the results of more realistic studies.

The “realistic” curve (marked B) is taken from a schematic diagram in Shapiro and

Tuekolsky [Fig. 6.3]. The failure of the neutron model results from the omission of

the electrons which greatly increase the radius at low mass.

To determine an upper limit on the masses of neutron stars we need to incorporate

the effects of general relativity. The most obvious modification of the hydrostatic

analysis of §2.c. is that energy also gravitates — energy here includes both the

kinetic energy of the neutron Fermi gas and the gravitational potential energy itself.

The equations of hydrostatic equilibrium for a spherical self-gravitating body in the

context of general relativity were worked out by Oppenheimer and Volkoff. They

should be compared with (2.19) and (2.20)

dm

dr
= 4πr2ρ (2.60)

dP

dr
= −G

mρ

r2

(
1 +

P

ρc2

) (
1 +

4πPr3

mc2

) (
1 − 2mG

rc2

)−1

. (2.61)

General relativistic effects become important when P ∼ ρc2 which is certainly the

case at densities of order ρn
0 (Eq. (2.53)). The potential singularity suggested by the

last term in (2.61) is associated with gravitational collapse;

rs =
2mG

c2

rs = 2.95 km for M = M�, so this singularity is significant for neutron star stability.

Consider, first a pure, ideal Fermi gas of neutrons.5 Direct integration of the

Oppenheimer–Volkoff equations gives Mmax = 0.7 M�, R = 9.6 km and ρc = 5 ×
1015 gm/cm3. Had we ignored general relativity the result would have been quite

different: the Chandrasekhar limit for a neutron gas (γ = 4/3 polytrope) is 5.73 M�.

General relativity lowers this for two principle reasons :1) The maximum occurs at a

value of ρc well below the ultra-relativistic limit as assumed by the γ = 4/3 polytrope;

2) 5.73 M� includes the neutron rest mass but not the (negative) gravitational binding

energy. The mass-central density relation for white dwarfs and ideal neutron stars is

displayed in Fig. 2.4 (borrowed from Shapiro and Teukolsky).

More realistic calculations differ in their treatment of neutron and nuclear inter-

actions at high densities and give upper limits to neutron star masses which range

from ≈ 1.5 M� up to about 3 M�. At this point we must abandon this brief sketch of

neutron stars and return to the main body of the course. For a complete and readable

survey of neutron stars see Shapiro and Teukolsky’s excellent book.

5Taken from Shapiro and Teukolsky.
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Figure 2.4: The mass of a compact star as a function of its central density ρc in
[gm/cm3].

2.6 QUARKS AND QUARK MATTER

We have already alluded to the possible importance of quark matter in the dynamics

of neutron star cores, where the density is so great that the description of matter

in terms of nuclei and nucleons breaks down. In this section, we wish to describe

another, highly speculative and bizarre possibility: that a degenerate Fermi gas of

quarks may be the time ground state of matter at zero external pressure. Like all

speculative ideas, this one is most likely wrong. But in this case as in many others,

the fruit of speculation is a significant insight into the workings of Nature in the

ordinary world.

To begin we have to say something about quarks and their interactions. We shall

be concerned with the three lightest species, or “flavors” of quarks, known as the u-, d-

and s-quarks, for “up,” “down” and “strange.” They are spin-1/2 fermions with rest

masses (mc2) of about 5 MeV, 10 MeV and 150 MeV, respectively. Quarks are never

observed in isolation so their masses are a subject of considerable uncertainty. These

numbers may be off by as much as a factor of two in either direction, although the

ratios of quark masses are much better known. The three quarks have different (and

unusual) electromagnetic charges: Qu = 2/3|e|, Qd = −1/3|e| and Qs = −1/3|e|.
In addition, quarks carry another quantum number, “color,” which is essential in

understanding the strong interactions which bind quarks together into protons, neu-

trons and other strongly interacting particles known collectively as “hadrons.” Each
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quark comes in three colors and two spins for a total degeneracy factor of six. Some

important properties of quarks were summarized in Table 1.1.

The interactions which confine quarks to the interior of hadrons depend on the

color quantum number. In many ways they resemble electrodynamics and are known

as chromodynamic forces. For reasons which are not yet totally understood the forces

between quarks grow very strong if one attempts to isolate a single quark. This

phenomenon, known as “quark confinement” is the focus of much current research.

Only systems of quarks which are neutral with respect to color appear to be allowed

as real particles. Color neutrality differs from electromagnetic charge neutrality —

understanding the difference requires an excursion into group theory which we will

take later in the course. For example, a bound state of a quark and antiquark may be

color neutral, much in the same way that an electron-positron bound state is charge

neutral. In addition, a bound state of three quarks may be color neutral — in contrast

to a state of three electrons which has electric charge −3. All color neutral states

consist of multiples of three quarks and/or quark-antiquark pairs. Hadrons with no

excess of quarks over antiquarks are known as mesons. Hadrons with an excess of

quarks (or antiquarks) are baryons (or antibaryons). Protons, neutrons and nuclei

are examples of baryons. The net excess of quarks over antiquarks is conserved by

all known interactions and (divided by three) is known as baryon number, A,

A =
1

3

(
NQ − NQ̄

)
. (2.62)

Once quarks are confined into color neutral states the residual interactions among

the quarks appear to be rather weak. This is one of the most puzzling aspects of quark

dynamics and is only partially explained by a famous property of chromodynamics

known as “asymptotic freedom.” This catchy slogan refers to the fact that interquark

interactions weaken at very short distances. Roughly speaking it’s as though the

charge which enters Coulomb’s law decreases logarithmically as r → 0

V 12(r) ∼
α0

r| ln r| . (2.63)

In practice, quark interactions within hadrons are even weaker than this behavior

would suggest. A very simple and successful model of hadrons ignores them entirely.

This model, developed here at MIT, and known as the “Bag Model,” supposes that

the vacuum exerts a universal pressure on any color neutral collection of quarks, pre-

venting them from escaping to large distances. The dynamics of hadrons is governed

by the balance between this vacuum pressure, B, and the Fermi degeneracy pressure

of the quarks. Estimates of B center around 1.0× 1029 atmospheres, or in units more

suitable to quark physics

B ≈ 62.5 MeV/fm3 . (2.64)
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This huge pressure is responsible for the tiny size of hadrons. The fact that the units of

pressure may be expressed either as force/area of energy/volume helps us understand

the physical origin of the bag model. Apparently there is a cost (in energy) in opening

up a region of space in which quarks may live: quarks are sources of strong color fields.

The vacuum, in its normal state cannot support color fields — they are quenched

much as ordinary magnetic fields are quenched inside a superconductor. Very near

the quarks, the color fields are so intense that they alter the conformation of the

vacuum and create a region in which they can live more or less normally. Toward the

edges of this region the color field weakens and eventually the normal vacuum reasserts

itself quenching the fields to zero. Magnetic fields inside superconductors behave the

same way: strong enough fields drive out the condensate of Cooper pairs and create a

“normal region.” The boundary of this normal region comes when the fields are not

strong enough and the Cooper pair density and associated supercurrents arise and

quench the magnetic field to zero. The bag constant, B, is the cost — energy per unit

volume — of changing the conformation of the vacuum to allow for the presence of

quarks and their associated color fields. These arguments are illustrated graphically

in Fig. 2.5.

E

E

Figure 2.5: The lines of magnetic field surrounding a point magnetic dipole in vacuum
(left) and inside a bulk superconductor (right). We believe that the same pictures
apply to quarks bound in hadrons with magnetic fields ↔ color electric fields.

Quark matter can be described in the Bag Model as a degenerate Fermi gas of

quarks confined to finite volume by the universal pressure B. B also contributes to

the energy of the system:

E = T + BV . (2.65)

where T is the kinetic energy of the quark Fermi gas. With the problem reduced to

this simple model let’s explore a few applications.

Protons, neutrons and nuclei are composed entirely of up and down quarks. A

look at Table 2.2 shows that the rest masses of the u- and d-quarks are very small

compared to the scale of nucleon and nuclear masses. Apparently most of the mass
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of the nucleons comes from the kinetic energy of relativistic confined quarks. In fact,

to a good approximation we can ignore the rest masses of the quarks. Let us now

consider a collection of u- and d-quarks large enough so that they can be described as

a Fermi gas ignoring surface effects (see §3 for a discussion of surface effects). Each

quark species will be characterized by a Fermi momentum, pj
F (j = u, d). Since the

average of the u- and d-quarks charge is positive, electrons will be present to ensure

overall charge neutrality. Using the ultra-relativistic limit from §1.c.,

nu =
(pu

F )3

π2h̄3 ,

nd =

(
pd

F

)3

π2h̄2 ,

ne =
(pe

F )3

3π2h̄3 ,

uu =
3c (pu

F )4

4π2h̄3

ud =
3c

(
pd

F

)4

4π2h̄3

ue =
c (pe

F )4

4π2h̄3 .

Charge neutrality requires
2

3
nu − 1

3
nd − ne = 0 (2.66)

and equilibrium with respect to the weak interaction

d → u + e− + ν̄e (2.67)

requires

pd
F = pu

F + pe
F . (2.68)

Finally, the total energy density is given by

u = uu + ud + ue + B . (2.69)

The ground state configuration of the system is determined by minimizing the

energy per quark subject to the constraints (2.66) and (2.68). This is equivalent to

minimizing the total energy subject to the constraint that the total number of quarks

is conserved. We parameterize pu
F , pd

F and pe
F by

pd
F ≡ p

pu
F = p cos θ

pe
F = p(1 − cos θ) (2.70)

then charge neutrality (2.66) constrains θ

cos3 θ − cos2 θ + cos θ − 2

3
= 0 (2.71)
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so

θ = cos−1(0.7959) ≈ cos−1 1

21/3
. (2.72)

For this value of θ, ne is negligibly small,

ne

nd

≈ 1

3
(1 − cos θ)3 ≈ 2.8 × 10−3 (2.73)

so we can ignore the electrons in the rest of the calculation. The energy per quark is

given by
u

n
=

(3/4)pc(1 + cos4 θ) + (π2h̄3B/p3)

(1 + cos3 θ)
(2.74)

and p is determined so that u/n is a minimum,

p =

[
4π2h̄3B

c(1 + cos4 θ)

]1/4

(2.75)

and at the minimum

u = 4B

n =

[
4π2B

h̄c(1 + cos4 θ)

]3/4
(1 + cos3 θ)

π2

u

(1/3)n
=

U

A
= 3

(
4π2Bh̄3c3

)1/4 (1 + cos4 θ)3/4

1 + cos3 θ
. (2.76)

Some comments are in order: u = 4B is a general “virial theorem” for the ultra-

relativistic system subject to an external pressure. u/(1/3)nv = U/A is the energy

per baryon. If we take B = 62.5 MeV/fm3 then U/A = 965 MeV, which is only

slightly greater than the mass per baryon of a nucleus (Mc2/A ≈ 930 MeV). So we

conclude that there is another configuration of the quarks which go together to make

up a nucleus. Unlike a normal nucleus, which consists of protons and neutrons in

non-relativistic motion, this “quark matter’ state consists of an ultra-relativistic de-

generate Fermi gas of u- and d-quarks in one big bag. The quark matter state has

never been seen because it is slightly (∼ 4%) more energetic than the normal nuclear

configuration. Earlier on, I remarked that B is not a very well-known parameter of

chromodynamics. With a somewhat smaller value of B, quark matter consisting of

u- and d-quarks would have been bound. This possibility can be excluded experi-

mentally: It if were bound, ordinary nuclei like 56
26Fe would decay quickly into lumps

of quark matter. We have lots of evidence that ordinary nuclei are composed of pro-

tons and neutrons, not a Fermi gas of quarks. So this possibility is ruled out by

experiment.
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There remains the very interesting possibility that quark matter becomes energet-

ically favored compared to nuclear matter under extreme conditions of temperature

or pressure. Much effort has been put into exploring these ideas both experimentally

and theoretically. On the theoretical side, the temperature dependence of quantum

chromodynamics has been studied using models and large scale computer calcula-

tions. There’s considerable evidence at a temperature of order 200 MeV (≡ kT )

chromodynamics undergoes a phase transition from a phase in which quarks are con-

fined to hadrons to one in which quarks and gluons form a sort of plasma. Less is

known about the density dependence of chromodynamics. There may be a phase

transition from the “low”density nuclear phase to a high density quark matter phase

at some critical density ρ0, or perhaps the change is gradual much like the transition

in which the electrons and ions disassociate from one another in a gas at high temper-

ature or density. Phase diagrams for chromodynamics showing both possibilities are

presented in Fig. 2.6. On the experimental side, the aim is to briefly raise nuclei to

high temperature and density by colliding two of them together. Some of the kinetic

energy of the colliding nuclei goes into heating them up; collisions raise the system

to higher density. A hypothetical trajectory followed by the colliding nuclei is shown

in Fig. 2.6. Whether the collisions will produce enough heating and/or overpressure

to produce quark matter is as yet not known.

T

ρ

(a)

Deconfined
Confined

T

ρ

(b)

Deconfined

Confined

Critical Point

Figure 2.6: Possible phase diagrams for QCD. At low temperature and pressure quarks
are confined in hadrons. At high temperature and pressure quarks are deconfined.
The abruptness of the transition is not known. Two possibilities are shown. The
trajectory shown might describe what happens to nuclei in heavy ion collisions.

There is another, even more exciting and more speculative possible role for quark

matter in Nature. To see its origin, return to the results obtained in (2.76) for u- and

d-quark matter. The Fermi energy (chemical potential) for a u- or d-quark is just its

Fermi momentum, µ = pF c, because we are ignoring quark rest masses.

µu = µd =

[
4π2h̄3c3B

1 + cos4 θ

]1/4

. (2.77)
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For B = 62.5 MeV/fm3 and cos θ = 0.7959 we find µu = µd = 340 MeV. This Fermi

energy is well-above the mass of the strange quark msc
2 ≈ 150 MeV, so quark mat-

ter could lower its energy if it was possible to convert up and/or down quarks into

strange quarks. This is an example of a common phenomenon known as “symmetry

energy” in Fermi systems involving several species of fermion: At chemical poten-

tials large compared to the difference in rest mass of the fermion species, interactions

which transform are species into another will tend to equalize the numbers of differ-

ent species. For the case of u-, d- and s-quarks, the weak interactions provide the

mechanism via the reactions

e− + u ←→ νe + s

d + u ←→ u + s . (2.78)

These “strangeness changing” weak interactions have a natural time scale of order

τ ≡ 10−10 sec. So a lump of non-strange quark matter held together for times of

order τ will spontaneously develop strangeness and lower its total energy (radiating

away neutrinos and photons). Perhaps it will radiate away so much energy that it

actually becomes stable!

FE

u d s

sm

weak

E

processes

FE

u d s

Figure 2.7: Quark fermi seas. With strangeness changing interactions “turned off”, u
and d quarks equilibrate (left). When strangeness changing interactions are “turned
on”, the system can lower its energy if EF > ms (right).

The startling proposition, then, is that strange quark matter or “strange matter”

as it is known may actually be the true ground state of collections of quarks at

zero temperature and external pressure. We define “strange matter” to be quark

matter in equilibrium with the weak interactions which change flavor. The process

of equilibration is illustrated in Fig. 2.7. The reader might protest that the existence

of nuclei is prima facia evidence against the absolute stability of any form of quark

matter, since the time scale for quarks to rearrange themselves within a nucleus
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is ∼ 10−24 second. [This is the time it takes light — or any signal — to cross a

nucleon.] This argument was generally accepted until the mid-1980’s when Witten

pointed out an elementary flaw: A weak interaction is suppressed by a factor of order

10−14 compared to the natural time scale of nuclear motions. One weak interaction

à la (2.78) converts one u- or d-quark into an s-quark. A single weak interaction

inside a nucleus converts a nucleon into a strange nucleon known as a hyperon and

known to be much heavier than a proton or neutron. The symmetry energy discussed

above cannot be realized until a significant number of nucleons convert to hyperons

at which time it is then energetically favorable for the many nucleons in a nucleus to

convert collectively into strange matter. Thus, for example, it might be that 56
26Fe is

unstable against decay to a quark Fermi gas containing on the order of 50 s-quarks,

however one, two or even several weak interactions will not adjust the quark flavor

composition to the point where the reorganization into quark matter will occur. Each

weak interaction brings with it a suppression factor of roughly 1014. The likelihood

of many strangeness changing weak interactions occurring over the same brief time

period within a single nucleus is so small that the lifetime of a nucleus like 56
26Fe against

decay into strange quark matter far exceeds the age of the universe.

It could be that strange matter, though the true ground state of matter, has never

been made in the history of the universe. On the other hand it might be that deep in

the cores of neutron stars, neutrons are raised to such high densities that they coalesce

into non-strange quark matter, which then converts at its leisure (so to speak) into

strange quark matter. Whether strange matter is made in neutron stars and how it

might subsequently get distributed through the universe are open issues in the new

and active field of particle astrophysics.

The properties of strange matter: a degenerate Fermi gas of u-, d- and s-quarks

have been worked out in a series of papers over the last decade. Time doesn’t permit

us to treat this subject here, but a few of the more striking properties of strange

matter are explored in the problems.



Chapter 3

GREEN’S FUNCTIONS AND
THE DENSITY OF STATES

The method Green’s functions is a powerful tool for the analysis of differential equa-

tions. In general application the method allows one to

a. Incorporate information about boundary conditions into the problem in a nat-

ural way.

b. Solve the homogeneous (“isolated”) and inhomogeneous (“externally driven”)

problems with the same method, often at the same time.

c. Incorporate constraints like causality naturally into the propagation of signals.

d. Study, at one time and in a single function, the generic properties of all solutions

to a problem.

Here we are primarily interested in d.

The price of this power is a somewhat more complicated formalism. Here we

introduce only what we need to study the density of states. Later (e.g. in the unit

on scattering theory) we develop more aspects of Green’s function theory.

3.1 GREEN’S FUNCTIONS

Consider the time-independent Schrödinger equation with Hamiltonian H:

(E − H)ψE(�x) = 0 (in D) . (3.1)

63
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(3.1) is valid in some domain D bounded by a surface ∂D on which we assume

ψ(�x) = 0 (on ∂D) . (3.2)

The region D may have any shape. It may be compact or infinite in extent. H may

contain a potential energy V (�x).

Now consider the related problem of the same differential operator with the addi-

tion of a point source at the point �y:

(E − H)G(�x,�y, E) = ih̄δ3(�x −�y) (in D) (3.3)

and subject to

G(�x,�y, E) = 0 (�x on ∂D) . (3.4)

G is called the Green’s function for the differential operator E − H. [In other cases

the form of (3.3) can be motivated as the actual response of the system to a sharp

impulse at some time or place. That interpretation doesn’t work for E − H because

we wouldn’t know how to interpret (E − H)ψ(�x) = f(�x) physically. So the Green’s

function method is more formal in this case.]

Using the completeness and orthonormality of energy eigenstates it is easy to

construct G(�x,�y, E). The solutions to (3.1) and (3.2) obey

∫
d3x ψ∗

n(�x)ψn′(�x) = δnn′ (orthonormality) (3.5)

∑
n

ψn(�x)ψ∗
n(�y) = δ3(�x −�y) (completeness) . (3.6)

where n is a short-hand for all labels necessary to specify a unique state. These forms

hold if D is compact. If not, it is necessary to use continuum normalization. Using

(3.5) and (3.6) it’s easy to see

G(�x,�y, E) = ih̄
∑
n

ψn(�x)ψ∗
n(�y)

E − En

(3.7)

satisfies both the differential equation and the boundary condition required of G.

(3.7) is singular whenever E = En — one of the energy eigenvalues. Analysis of there

singularities is a key part of Green’s function theory but it is not necessary for study

of the density of states, so we postpone it until a later section.

Some examples are in order:
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Example 1: A free particle in unbounded space

For this special, simple case we call the Green’s function G0. H reduces to

H0 =
�p2

2m
= − h̄2

2m
�∇2

,

so (
E +

h̄2

2m
�∇2

)
G0(�x,�y, E) = ih̄δ3(�x −�y)

or (
�∇2

+ k2
)

G0(�x,�y, E) =
2mi

h̄
δ3(�x −�y) (3.8)

where k2 ≡ 2ME/h̄2. Now, we know a solution to a related problem from electro-

statics:
�∇2

(
1

r

)
= −4πδ3(�x) , (3.9)

the potential due to a point charge. It is easy to see that a slight modification yields

a solution for G0:

G0(�x,�y, E) = −2mi

4πh̄

e±ikr

r
(3.10)

where r ≡ |�x −�y|.
The same result can, of course, be obtained from the general solution, (3.7), with

the replacements

ψn(�x) → ψ�p(�x) =
1

(2πh̄)3/2
ei�p·�x/h̄

δnn′ → δ3
(
�p −�p′

)
∑
n

→
∫

d3p

so

G → G0(�x,�y, E) = ih̄
∫ d3p

(2πh̄)3

ei�p·(�x−�y)/h̄

E − p2/2m
. (3.11)

To evaluate this integral we must learn how to handle the singularity at p2 = 2mE. It

turns out that there are two choices — corresponding to closing a contour in the upper

or lower half complex p-plane — yielding after some elementary analysis, Eq. (3.10)

with either sign.
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Example 2: A free particle in a bounded domain

Consider next the case of a particle in an arbitrary domain, D, with no potential

energy term in H. We can then write

G = G0 + G̃ (3.12)

where G0, given in (3.7), is the free Green’s function and upon substitution in (3.3),

G̃ is found to obey

(E − H)G̃(�x,�y, E) = 0

G̃ = −G0

(�x in D)

(�x on ∂D) .
(3.13)

In some cases G̃ is easy to find. Consider, for example, the case of a half space,

x3 < 0, bounded by the infinite plane at x3 = 0. Then an argument borrowed from

the method of images in electrostatics tells us,

G̃(�x,�y, E) = −G0

(
�x,�̃y, E

)
(3.14)

where �̃y is defined as follows: If �y = (y1, y2, y3) then �̃y = (y1, y2,−y3). The geometry

is shown in Fig. 3.1. Clearly G̃ obeys (E − H)G̃ = 0 for both �x and �y in D (since �x

cannot coincide with �̃y). To show G̃ = −G0 for �x on ∂D note that |�x −�y| = |�x − �̃y|
when x3 = 0. Since G0(�x,�̃y, E) depends only on |�x − �̃y| we have established

G̃(�x,�y, E) = −G0

(
�x,�̃y, E

)
= −G0(�x,�y, E) ,

for �x on ∂D.

Example 3: Particle in a potential V (x), no boundaries

H = H0 + V

So G obeys

(E − H0 − V ) G (�x,�y, E) = ih̄δ3(�x −�y) . (3.15)

This is apparently satisfied by the infinite series

G(�x,�y, E) = G0(�x,�y, E) +
1

ih̄

∫
d3z1 G0(�x,�z1, E)V (�z1)G0(�z1,�y, E)

+
(

1

ih̄

)2 ∫
d3z1 d3z2 G0(�x,�z1, E)V (�z1)

×G0(�z1,�z2, E)V (�z2)G0(�z2,�y, E)

+ . . . (3.16)
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y  = 03

y y~

Figure 3.1: The point �y and its reflected point �̃y.

as can be seen by direct substitution.

Here is a derivation.

(E − H0 − V (�z)) G(�z,�y, E) = ih̄δ3(�z −�y)

Multiply by G0(�x,�z, E) and integrate d3z,

∫
d3z G0(�x,�z, E) (E − H0 − V (�z)) G (�z,�y, E) = ih̄G0(�x,�y)

Integrate ∇2
z (in H0) by parts and use

(
E +

h̄2

2m
∇2

z

)
G0(�x,�z, E) = ih̄δ3(�x −�z)

[Note the Laplacian acts on �z, not �x as in the definition of G0. This result follows

from the explicit form of G0 (3.10) which is clearly symmetric in �x ↔ �z.] This leaves

an integral equation

ih̄G(�x,�y, E) = ih̄G0(�x,�y, E) +
∫

d3zG0(�x,�z, E)V (�z)G(�z,�y, E)

which yields (3.16) by iteration. This series solution is only useful when it converges,

which is determined by how small and how smoothly varying is V (�z). Generally

speaking if V is smooth and small the expansion is useful (more on this later).
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3.2 RELATION OF GREEN’S FUNCTION TO

THE DENSITY OF STATES

Consider N(E), the number of states with energy less than E,

N(E) =
∑
n

Θ(E − En)

and its derivative

ρ(E) =
∑
n

δ(E − En) .

Let us use the Lorentzian representation for the δ-function introduced in §1.1

δ(x) =
1

π
lim
ε→0

ε

x2 + ε2

so

ρ(E) =
1

π

∑
n

lim
ε→0

ε

(E − En)2 + ε2
.

As a way of smoothing out this sum over δ-functions, we propose to keep the width

of these Lorentzian’s finite while we study the sum. In effect we are replacing the

sharp spikes by smoothed peaks of unit area.

ρ(E) → ρε(E) =
1

π

∑
n

ε

(E − En)2 + ε2

ρε(E) =
1

π
�

∑
n

1

E − En − iε
. (3.17)

δ(  )x

x x

πε

ε

Figure 3.2: A delta function and the smoothed out, “Lorentzian” approximation,
ε
π

1
ε2+x2 .

We might have taken (3.17) as our starting definition of the smoothed density of

states. Comparing (3.17) with the expression, (3.7) for the Green’s function, we see

ρε(E) = − 1

πh̄
�

∫
d3x G(�x,�x, E − iε) (3.18)

This is the fundamental connection we were seeking. Let us now exploit it to learn

more about the density of states for various systems. We will prove useful results by

going over the three examples for which we constructed Green’s functions.
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3.3 EXAMPLES

Example 1: Free particle

G0(�x,�y, E − iε) = ih̄
∫ d3p

(2πh̄)3

ei�p·(�x−�y)/h̄

E − iε − p2/2m

The angular integration is easily carried out with the result,

G0(�x,�y, E − iε) =
i

2π2h̄r

∫ ∞

0
dp

p sin pr/h̄

E − iε − p2/2m

Now change the integration variable to k ≡ p/h̄, and analyze the structure of the

integrand in the complex plane,

1

E − iε − k2h̄2/2m
=

iε(
E − k2h̄2/2m

)2
+ ε2

+ Real part

= iπδ
(
E − h̄2k2/2m

)
+ Real part

�G0(�x,�y, E − iε) = − h̄

2πr

∫ ∞

0
kdk sin kr δ

(
E − h̄2k2

2m

)

= − m

2πh̄

sin kr

r
with

k ≡
√

2mE
h̄2 .

Since lim
x→0

sin x/x = 1,

�G0(�x,�x, E − iε) = − mk

2πh̄

and from (3.18),

ρε(E) =
mk

2π2h̄2 × Volume (3.19)

which is independent of ε, so ε can be taken to zero. This agrees with our earlier,

naive calculation, ρ(E) = 4mπ
(2πh̄)3

√
2mE V .

Example 2: Free Particle Near a Plane Boundary

Choose the boundary to be the plane at x3 = 0. From our previous work

G(�x,�y, E) = G0(�x,�y, E) − G0

(
�x,�̃y, E

)



70

where ỹ = (y1, y2,−y3). Using results from the previous example,

�G(�x,�y, E − iε) = − m

2πh̄

(
sin kr

r
− sin kr̃

r̃

)

where r ≡ |�x −�y| and r̃ =
∣∣∣�x − �̃y

∣∣∣. The first term gives our previous result, so

ρε(E) =
m

2π2h̄2

(
kV −

∫
d3x

sin kr̃

r̃

∣∣∣∣
�x=�y

)
.

Let’s calculate r̃ at �x = �y:

r̃ =
[
(x1 − y1)

2 + (x2 − y2)
2 + (x3 + y3)

2
]1/2 → |2x3| when �x = �y .

So we need the integral

I ≡
∫

d3x
sin 2kx3

2x3

= S
∫ 0

−∞
dx3

sin 2kx3

2x3

=
S

2

∫ 0

−∞

du

u
sin u .

This is a well-known integral which is π/2. Here, S is the area of the bounding

surface. So

ρ(E) =
m

2π2h̄2

(
kV − π

4
S

)
(3.20)

(having taken ε → 0). Thus the density of states is modified near a plane surface on

which the Schrödinger wave function vanishes. The modification is proportional to

the surface area.

This is a very interesting result with many applications. Here are a series of

comments.

1. Physical origins: Because ψ = 0 at the boundary, the states available to a

particle are depleted near the boundary, hence the minus sign in (3.20). This

is also the reason that the effect is proportional to the surface area.

2. A simpler form: Replace ρ(E) = dN/dE, by ρ(k) = dN/dk = ρ(E)dE/dk

ρ(k) =
h̄2k

m
ρ(E)

ρ(k) =
1

2π2

(
k2V − πk

4
S

)
. (3.21)
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3. Our derivation assumed a plane boundary, but we found that the modification of

ρ(k) comes from distances of order 1/k from the boundary. From close enough,

any smooth surface looks like a plane, so we suspect — and indeed it is the case

— that the surface modification of ρ(k) in (3.21) is accurate for any smooth

surface when k is large enough. More complicated aspects of the geometry of

the boundary surface give rise to corrections to ρ(k) which grow more slowly

or even fall with k. These dependences have been worked out [Ref. R. Balian

and C. Bloch, Ann. Phys. (NY) 60, 401 (1970)] and give decreasing powers of

k multiplying progressively more detailed aspects of the geometry

ρ(k) =
1

2π2

(
k2V − π

4
kS +

1

3

∮
d2s

1

2

(
1

R1

+
1

R2

)
+ . . .

)
. (3.22)

Here R1 and R2 are the principal radii of curvature defined at each point on the

surface. To see the usefulness of this expansion consider a region characterized

by a typical length, �. Successive terms are down by powers of (1/k�), so the

expansion is useful in a fixed region at high density or at fixed density in the

limit of large size. [At each point (x0, y0) a surface can be approximated by

z = 1
a
(x − x0)

2 + 1
b
(y − y0)

2, which is a paraboloid (a, b > 0 or a, b < 0) or

a hyperboloid (a > 0, b < 0 or vice versa). Note, the x and y axis are to be

oriented in the tangent plane oriented in a way such that no x − y cross terms

appear. Then R1 =
√
|a|, R2 =

√
|b|. For a sphere R1 = R2 = R. For more

detail see standard introductions to differential geometry.]

4. Generality: Our result is actually a property of the wave equation, (∇2+k2)φ =

0, but the surface modifications depend on the form of the boundary condition.

A “Neumann boundary condition,” n̂ · �∇φ = 0, yields a different surface term.

In fact, the coefficient of S is positive in this case. This is to be expected: for

this boundary condition, φ tends to have a maximum at the surface, so the

availability of states is enhanced on account of the surface.

The first term, ρ(k) ∼ 1
2π2 k

2V , is asymptotically (k → ∞) exact provided the

surface satisfies appropriate smoothness conditions (shown by Hermann Weyl

(1911)). All other terms are boundary dependent.

The general subject of the relation between the geometry of a manifold and the

distribution of eigenvalues of the wave equation is a subject of current research in

advanced mathematics as well as one of practical interest in acoustics, structural

engineering and music!
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Figure 3.3: Parabolic approximation to a surface at x0 defines the principal radii of
curvature.

Example 3: Particle in a Potential V (�x)

We can use the expansion of G(�x,�y, E) (3.16) to find the effect of the presence of a

potential V (�x) on the density of states. We shall study a specific case, namely an

external potential whose volume integral exists so we can define the volume average

of V (x):

〈V (x)〉 ≡ 1

V

∫
d3x V (�x) .

We require

ρε(k) = − h̄k

πm
�

∫
d3x G(�x,�x, E − iε)

where now

G(�x,�y, E) = G0(�x,�y, E) + G1(�x,�y, E) + . . .

as given in (3.16). We compute the effect of the first interaction dependent term, G1.

Using the explicit form of G0 (3.11), setting �x = �y and performing the coordinate

space integrations,

∫
d3x G1(�x,�x, E − iε) =

ih̄
∫

d3x V (x)

(2π)3

∫
d3k

(
E − iε − h̄2k2

2m

)−2

.
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If we now write
(
E − iε − h̄2k2

2m

)−2
= − d

dE

(
E − iε − h̄2k2

2m

)−1
the real part can be

recognized as a δ-function, and with a bit of algebra we obtain

ρ(k) = lim
ε→0

ρε(k) =
k2V

2π2

(
1 − m〈V (x)〉

h̄2k2
+ . . .

)

where the ellipses denote the higher terms in the expansion of G(�x,�y, E), which are

further suppressed at large k.

The conclusion of this exercise is that we are justified in ignoring these sorts of

interactions at large k (high density). In fact we can consistently keep surface effects

O(1/k) while ignoring interactions O(1/k2). Of course other sorts of interactions,

such as two-body forces between fermions remain to be analyzed and (as far as I

know) require the full apparatus of many-body theory which is beyond the syllabus

of this course.

3.4 SURFACE TENSION OF NUCLEI AND

QUARK MATTER

The modification of the density of states due to the boundary generates a surface

area dependent term in the energy. To study this in detail we would have to treat

the statistical mechanics of a system dependent on three extensive variables, volume,

V , surface area S, and particle number N . Rather than go off in this direction, we

will do a couple of simple examples to illustrate the importance of this effect.

The surface energy of nuclei

Consider nuclei , which behave roughly like a gas of Z non-relativistic protons and N

non-relativisitic neutrons (Z + N = A), bounded by a surface on which ψ = 0, and

with kF independent of A at large A. The dynamics behind this is the short-range

repulsion between nucleons which keeps the density from growing large. We calculate

the energy as a function of kF (which we view as a parameter) and A, the particle

number:

A = g
∫ kF

0

dA

dk
dk =

g

2π2

(
1

3
V k3

F − π

8
Sk2

F

)
(3.23)

U = g
∫ kF

0

(
h̄2k2

2m

)
dA

dk
dk =

gh̄2

4π2m

(
1

5
V k5

F − π

16
Sk4

F

)
(3.24)

The surface depletes the number of states at a given energy, thus the more surface,

the higher the energy for fixed kF . To minimize the surface/volume ratio a large
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nucleus will (other things being equal) adjust to a spherical configuration: V = 4
3
πR3,

S = 4πR2, so

A ≡ nV R3 − nSR2 + O(R) (3.25)

U = uV R3 − uSR2 + O(R) (3.26)

with

nV =
2g

9π
k3

F uV =
g

15π

h̄2k5
F

m
(3.27)

nS =
g

4
k2

F uS =
g

16

h̄2k4
F

m
(3.28)

We solve in the approximation kF R >> 1, i.e. large nuclei, A >> 1. From (3.25)

R ∼= R0 + δR =
(

A

nV

)1/3

+
1

3

(
nS

nV

)
+ O

(
1

A1/3

)
(3.29)

which can be substituted into (3.26),

U =
(

uV

nV

)
A +

(
uV nS − uSnV

n
5/3
V

)
A2/3 + O(A1/3) . (3.30)

The second term is a surface correction to the energy which vanishes in comparison

with the leading term at large A. Upon substituting from (3.27) and (3.28) we obtain

U =
h̄2k2

F

2m

(
3

5
A +

9π

80

(
2g

9π

)1/3

A2/3

)
+ O(A1/3) .

For the case of a nucleus: As determined in Section 1, pF ≈ 270 MeV/c, g = 4 (p, n ↑
& ↓), mc2 ∼= 940 MeV. So we find Esurf ≈ 9.74 A2/3 MeV. This should be compared

to the surface area

S ≈ 4πR2
0 = 4π

(
A

nV

)2/3

= 4π

(
9π

2g

)2/3
1

k2
F

A2/3 = 16A2/3 fm2 ,

So we find a “surface tension” (at constant kF or bulk density) of

Esurf

S
=

9.74

16

MeV

fm2
∼= 0.61

MeV

fm2 .

The masses of nuclei are fairly well described by a Fermi gas model with corrections

for Coulomb interactions and a “pairing force” which distinguishes between nuclei

with even and odd numbers of protons and neutrons. This is all summarized by a

semi-empirical mass formula first proposed by Weizsäcker:

M(Z,N,A) = ZMp + NMn − a1A + a2A
2/3 + a3

Z2

A2/3
+ a4

(Z − N)2

A
+ δ(A). (3.31)
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The first two terms count the masses of the Z protons and N neutrons. The third

term includes both the kinetic energy of the “gas” of protons and neutrons and their

attractive interactions energy, which also grows like A. The fifth term is the Coulomb

interaction energy. The sixth is the “symmetry” energy (see the problem sets) and

the last is the pairing energy which is different for nuclei with Z and N even or odd.

A nice discussion of the Weizsäcker mass formula can be found in A. de Shalit and

H. Feshbach Theoretical Nuclear Physics in Section II.3, where the current values of

the coefficients aj are also given. The coefficient a2 is the “surface energy” to be

compared with our calculation Esurf ≈ 9.74 A2/3 MeV. The value quoted by Feshbach

is a2 = 18.56 MeV, so the surface dependence of the density of states accounts for

about half of the surface energy of nuclei. The other half presumably comes from

the effect of the surface on the internucleon interaction. [By the way, De Shalit

and Feshbach and others calculate the surface energy of a Fermi gas incorrectly and

obtain a result too large by a factor of two, thereby giving a surface energy in excellent

agreement with the data.]

The surface energy of a quark gas

The same method which we have just applied to nuclei can also be applied to a Fermi

gas of up, down and strange quarks. The most important difference is a surprising

dependence on the quark mass. The coefficient of S in (3.22) actually depends on

the ratio of k to the fermion mass. Equation (3.22) was derived for non-relativistic

fermions for which k << m (actually h̄k << mc2). If the quarks are relativistic, the

boundary condition they obey at the surface of the bag in which they are confined is

no longer the Schrödinger condition, ψ = 0. The resulting modification of (3.22) is

ρ(k) =
1

2π2

(
k2V − π

4
kS

{
1 − 2

π
tan−1 k

m

}
+ . . .

)
(3.32)

Note that in the extreme relativistic limit, k/m >> 1, the density of states becomes

independent of the surface, so the surface tension of the quark gas vanishes. Up and

down quarks are so light that they are ultra-relativistic in all cases of interest, so

they do not contribute to the surface tension of quark matter at all. The mass of the

strange quark is large enough so that strange quarks, if present, do contribute to the

surface tension. The surface tension of quark matter in equilibrium with the weak

interactions (as described in §2f) therefore varies rapidly as a function of density.

At low density, kF << ms, so there are essentially no strange quarks present, and

the surface tension vanishes. As the density increases, the kF becomes comparable

to ms and strange quarks appear in the quark gas, so the surface tension increases.

Eventually, when kF >> ms, even the strange quark mass is negligible and the surface

tension again becomes small. This effect is illustrated in Fig. 3.4, where the surface

tension of quark matter is plotted versus the mass of the strange quark for a fixed

value of the energy per unit of baryon number in the V → ∞ limit.
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Figure 3.4: The surface tension of quark matter as a function of the strange quark
mass.



Chapter 4

THE THOMAS–FERMI MODEL
OF ATOMS

It is an experimental fact that atoms do not grow appreciably in size as we go through

the periodic table. The physical reason for this is the increasing nuclear charge, Z,

which pulls the innermost electrons inward. [The radius of the first Bohr orbital in

an atom with nuclear charge Ze is aZ
0 = h̄2/mZe2.] These inner electrons shield the

outer electrons from the full nuclear charge. The outermost electron (we’ll define this

more carefully in the course of this section) sees a “nuclear” charge of order e and

has an orbit with radius of order aZ=1
0 (≡ a0).

Thus the electron cloud in an atom becomes dense at high Z and it might make

sense to apply degenerate fermion system methods to atomic electrons. To see if

this is so let us estimate kF R. As we saw in § 2, we expect to be okay if kF R >> 1.

Assuming the electrons are non-relativistic and ignoring interactions we approximate,

n ∼= k3
F

3π2

from (1.7) (g = 2). From the geometry, n ∼= 3Z/4πR3, so

kF R ∼=
(

9π

4
Z

)1/3

.

For Z = 20, kF R ∼= 5.2; for Z = 50, kF R ∼= 7.1; for Z = 90, kF R ∼= 8.6, so the

approximation looks okay even for moderately small atoms.

The goal of the Thomas–Fermi (TF) approach is to characterize an atom and its

properties in terms of the electron density, ρ(�r), which can be estimated using degen-

erate fermion methods. The advantage of this method is its simplicity and physical

origins. The disadvantage is that a certain amount of the quantum mechanical in-

formation contained in the phase of the wavefunction is lost. It is relatively easy to

77
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include the electrons’ kinetic energy and their interaction with the nuclear charge.

Likewise, the electrostatic repulsion between electrons can be expressed as a function

of ρ(�r). Dirac showed how to include exchange forces between electrons, but other,

more subtle effects like spin-orbit coupling are lost. The result is an approximate,

generic description of an atom, lacking many subtleties such as shell closures, but

very useful for first estimates of atomic properties.

4.1 ATOMIC ENERGY AS A FUNCTION OF

THE ELECTRON DENSITY

Our aim here is to obtain an expression for the energy of an atom, E[ρ], as it depends

on the function ρ(�r). E, a number, depends on the function, ρ(�r). Such a relation is

known mathematically as a “functional.” Functionals figure in Lagrangian mechanics

and the calculus of variations. Once we have E[ρ], we will find the function ρ(�r) which

minimizes it subject to the constraint that
∫

d3r ρ(r) = N , where N is the number of

electrons in the atom.

Consider a small volume element, Ω, at a distance r from a nucleus. We treat the

electrons in this volume element as a degenerate Fermi gas, characterized by a Fermi

momentum, kF (r) (≡ pF (r)/h̄) and density, ρ(r), which can vary with r. Notice that

we take ρ and kF to be functions of r ≡ |�r| alone. Although the electrons interact, we

know from § 3 that to a good approximation we may use the free density of states, so

ρ(r) =
k3

F (r)

3π2
(4.1)

where we’ve remembered the degeneracy factor of 2 (for spin up and down). The

electrons’ kinetic energy density, t(r) can be expressed in terms of kF (r) and from

(4.1), in terms of ρ(r):

t(r) =
h̄2k5

F (r)

10mπ2
=

h̄2

10mπ2

(
3π2ρ(r)

)5/3
. (4.2)

The total electron kinetic energy, the integral of t(r), is a functional of ρ:

T [ρ] ≡
∫

d3x t(r) =
∫

d3x
h̄2 (3π2ρ)

5/3

10mπ2
(4.3)

The electron’s potential energy consists of two terms,

V [ρ] = −
∫

d3x
Ze2ρ(r)

r
+

e2

2

∫
d3x1 d3x1

ρ(r1)ρ(r2)

|�x1 −�x2|
(4.4)
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the first due to the interaction with the nucleus, the second from interelectron repul-

sion. So we can express the Hamiltonian (energy) as a functional of ρ:

H[ρ] = T [ρ] + V [ρ] . (4.5)

Notice that to this order the only quantum mechanics which has entered this calcu-

lation is the Exclusion Principle.

4.2 THE THOMAS–FERMI EQUATION

We assume that the ground state of an atom is obtained by minimizing H[ρ] subject

to the constraint that N electrons are present. We enforce the constraint by means

of a Lagrange multiplier, H[ρ] → H[ρ, λ]

H[ρ, λ] = T [ρ] + V [ρ] − λ (N [ρ] − N) (4.6)

where

N [ρ] ≡
∫

d3x ρ(r) . (4.7)

We look for extrema, δH/δρ(r) = 01 and ∂H/∂λ = 0, which will turn out to be

minima. From δH/δρ = 0,

h̄2

2m

(
3π2ρ

)2/3 − Ze2

r
+ e2

∫
d3x2

ρ(r2)

|�x −�x2|
= λ (4.8)

and from ∂H/∂λ = 0, ∫
d3x ρ(r) = N . (4.9)

Equation (4.8) can be viewed from another, quite enlightening point of view. The

first term is k2
F /2m, the kinetic energy of an electron at the top of the Fermi sea in the

volume Ω. The next two terms are the potential energy of that electron. Thus, the

left-hand side is the Fermi energy, the energy of an electron at the top of the Fermi

sea in Ω. (4.8) requires the Fermi energy to be independent of r. This is a reasonable

equilibrium constraint since if EF were not independent of r, electrons would move

from regions of high Fermi energy to low, thereby reducing the energy of the atom.

Although these equations look difficult to solve, they may be converted to a simple

differential equation for the electrostatic potential, V (r), defined by

V (r) = −Ze2

r
+ e2

∫
d3x2

ρ(r2)

|�x −�x2|
. (4.10)

1δ/δρ denotes a functional derivative. It is a shorthand for the sort of manipulations familiar
from the calculus of variations (described in texts on classical mechanics such as Goldstein).
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V (r) obeys Poisson’s equation,

∇2V (r) = −4πe2 ρ(r) (for r �= 0) . (4.11)

It’s convenient to work with U(r) defined by

U(r) ≡ V (r) − λ (4.12)

which also obeys (4.11) — since λ is a constant.

Notice, now, that (4.8) relates ρ(r) to U(r)

U(r) = − h̄2

2m

(
3π2ρ

)2/3
. (4.13)

So, combining (4.11) – (4.13), and using ∇2U = 1/r d2/dr2 rU (for a function of r

alone),

1

r

d2

dr2
rU = −4π e2

3π2

(
−2mU

h̄2

)3/2

. (4.14)

To simply this equation we introduce a new dependent variable,

Φ(r) = − r

Z e2
U(r) (4.15)

and a new scale for distance,

r ≡ bx (4.16)

with the constant b to be determined. Substituting into (4.14) we find

Φ′′ =
1√
x

Φ3/2 (4.17)

where ′ denotes d/dx, provided we choose

b ≡ (3π)2/3

27/3

(
h̄2

m e3

)
Z−1/3 = 0.885 a0Z

−1/3 . (4.18)

Equation (4.17) is the “Thomas–Fermi Equation.” It is a remarkable, and at

first sight, puzzling result, for it suggests that the electron distribution in atoms is

universal except for a scale factor, b, which varies slowly with Z. This is not quite

correct, for we have not yet found the boundary conditions necessary to obtain specific

solutions to (4.17). Nevertheless, some of this universality will be preserved.
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4.3 BOUNDARY CONDITIONS AND SOLU-

TIONS TO THE THOMAS–FERMI EQUA-

TION

From its definition, (4.12), and the equilibrium condition, (4.8), it is clear that U(r)

is negative, and Φ(x) must be positive:

Φ(x) ≥ 0 . (4.19)

Further, as r → 0, inside the electron cloud, the second term in (4.10) becomes

negligible compared to the first, so rV (r) → −Z e2 as r → 0, which means

Φ(0) = 1 (4.20)

The Thomas–Fermi equation is a non-linear, second order ordinary differential

equation. A second boundary condition, beyond Φ(0) = 1, is required to uniquely

specify a solution. To understand the origins of this condition consider integrating

the TF equation outward from x = 0 with Φ(0) = 1 and with various choices of

Φ′(0) ≡ −µ, which we use to parameterize solutions. Since Φ > 0, the solutions

to the Thomas–Fermi equation are convex, i.e. Φ′′ ≥ 0. For large values of µ,

Φ(x) decreases rapidly to zero at a finite value of x, x0(µ). We call solutions which

vanish at some x0(µ) Class I Solutions. As µ is decreased, x0(µ) grows until at

µ = µ0 = 1.5880710 . . . a special solution is obtained for which Φ(x) tends to zero

only as x → ∞. This special solution, labelled II in the figure will be denoted Φ0(x).

For µ < µ0 the solutions grow without bound (Class III).

To characterize these solutions let us integrate ρ(r) out to some finite radius

R ≡ bX ∫
r<R

d3x ρ(r) = N(R) = 4π
∫ R

0
dr r2

(
− 1

4πe2

1

r

d2

dr2
rU(r)

)
. (4.21)

After substituting Φ and scaling to X we find

N(X) = Z [xΦ′ − Φ]
X
0 (4.22)

or

N(X) = Z (XΦ′(X) − Φ(X) + 1) . (4.23)

The quantity XΦ′(X) − Φ(X) has a simple physical interpretation: it is related to

the radial electric field Er = −edV
dr

,

Er ∝
1

x2
(Φ − xΦ′(x)) . (4.24)
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Figure 4.1: Solutions to the Thomas-Fermi Equation

Electrons should not bind to an atom in this approximation unless Er is positive

(attractive to an electron) at the surface, so we add the restriction

Φ(x) − xΦ′(x) ≥ 0 (4.25)

to our list of conditions on the Thomas–Fermi equation. This constraint is trivially

satisfied by solutions of Class I and II (Φ > 0 and Φ′ < 0 everywhere), but it is

significant for Class Eqs. III solutions, where it determines the maximum x (≡ x1),

obeying

Φ(x1) = x1Φ
′(x1) (4.26)

to which the equation can be integrated. x1 can be determined graphically by the

construction shown in Fig. (4.2), as the point where the tangent to Φ(x) passes

through the origin. Armed with this information let’s explore the properties of the

three classes of solutions, beginning with Class II.
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Figure 4.2: Graphical construction for finding a specific solution to the TF equation
of Class III

Class II Solution: Neutral Atoms

Here limx→∞ Φ(x) = Φ′(x) = 0 so from Eq. (4.23) we find N = Z, a neutral

atom. The electronic properties of this neutral Thomas–Fermi atom are entirely

specified by Φ0(x) (together with the definitions which relate Φ and x back to physical

observables). The asymptotic form of Φ0(x) at large x is given by

Φ0(x) ∼ 144

x3
. (4.27)

In fact (as can be checked by direct substitution) 144/x3 is an exact solution to the

TF equation but is not physically interesting because it fails to satisfy Φ(0) = 1. The

approximation (4.27) is of limit practical usefulness since it deviates from Φ0(x) by

as much as 40% for x-values as large as 100. For small x, Φ0(x) is well-approximated

by the power series expansion,

Φ0(x) ∼= 1 − µ0x +
4

3
x3/2 + O

(
x5/2

)
.

Φ0(x) can be obtained numerically directly by integrating the Thomas–Fermi equation

with µ = µ0. Values of Φ0(x) are listed in Table 4.1 and shown in Fig. (4.3):2

The electron density ρ(r) falls very slowly in the TF approximation to a neutral

atom,

ρ ∼ (−U)3/2 ∼
(

Φ

r

)3/2

∼ 1

r6

2From Landau and Lifshitz.
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Figure 4.3: The Thomas–Fermi function Φ0(x).

whereas experiment and direct solutions to the Schrödinger equation tell us ρ(r) falls

exponentially at large r. [An electron bound by an energy B has an exp−
√

2mB r

tail to its wavefunction at large r.] One should not expect the TF model to work well

at large r where ρ(r) is small since the TF approximation is, by its very nature, a

high density one. It does better with aggregate descriptions of atomic properties. For

example, the fact that all neutral atoms are described by the same scaled equation

predicts that properties of neutral atoms scale with powers of b. Thus the root mean

square charge radius should scale like b

√
〈r2〉 ∼ b ∼ Z−1/3 .

Atoms should get smaller with increasing Z, and they do. Similarly, the total binding

energy of a Thomas–Fermi atom should scale like Z7/3,3

E = −20.93 Z7/3 eV

which interpolates fairly well the energies of high Z atoms.

Of course the Thomas–Fermi model is not sensitive to the shell structure which is

evident in so many atomic properties. If, for example, one plots the electron density

for a heavy element calculated in some model which incorporates shell structure, one

sees that the Thomas–Fermi model smoothly interpolates the density coming from

the more detailed model. The curves shown in Fig. (4.4)4 show the comparison for

Mercury.

3For this application of the Thomas–Fermi model, see S. Flügge, Practical Quantum Mechanics,
§ 174.

4From A. S. Davydov, Quantum Mechanics.
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x Φ0 x Φ0 x Φ0

0.00 1.000 1.4 0.333 6 0.0594
0.02 0.972 1.6 0.298 7 0.0461
0.04 0.947 1.8 0.268 8 0.0366
0.06 0.924 2.0 0.243 9 0.0296
0.08 0.902 2.2 0.221 10 0.0243
0.10 0.882 2.4 0.202 11 0.0202
0.2 0.793 2.6 0.185 12 0.0171
0.3 0.721 2.8 0.170 13 0.0145
0.4 0.660 3.0 0.157 14 0.0125
0.5 0.607 3.2 0.145 15 0.0108
0.6 0.561 3.4 0.134 20 0.0058
0.7 0.521 3.6 0.125 25 0.0035
0.8 0.485 3.8 0.116 30 0.0023
0.9 0.453 4.0 0.108 40 0.0011
1.0 0.424 4.5 0.0919 50 0.00063
1.2 0.374 5.0 0.0788 60 0.00039

Table 4.1: Values of the Function Φ0(x)
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Figure 4.4: The electron density in Mercury. The solid curve is the TF approximation.
The dashed curve is a self-consistent field approximation. r is measured in units where
a0 = h̄2 me2 = 1. [From A. S. Davydov, Quantum Mechanics.]

Class I Solutions: Positive Ions

Here Φ0(x) = 0 at some finite x0 where Φ′(x0) < 0. According to (4.23),

N ≡ N(x0) = Z (1 + x0Φ
′(x0)) < Z . (4.28)

Apparently these solutions correspond to positive ions (N < Z). The degree of

ionization then is specified by

x0Φ
′(x0) =

N − Z

Z
≡ − z

Z
.

Note that, in contrast to neutral atoms, positive ions are finite in size in the TF

approximation. Their properties are determined by the parameter z/Z as well as the

scale parameter b.

Class III Solutions: Neutral Atoms Under Pressure

For these solutions one integrates Φ(x) out until Er = 0, i.e. out to x1 determined

by (4.26). Then from (4.23)

N ≡ N(x1) = Z

we see that these solutions, like those of Class II, correspond to neutral atoms. How-

ever ρ(r) does not vanish at R = bx1, so these “atoms” differ qualitatively from the
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ones studied earlier. The difference can be understood by calculating the pressure

exerted by the electrons at r = R: From § 1

P =
h̄2k5

F

15mπ2
=

(
Φ(x1)

x1

)5/2

. (4.29)

This non-zero electron pressure can be sustained in static equilibrium if it is countered

by some external pressure whose origins might for example be gravitational.

Notice that there are no solutions to the TF model corresponding to negative ions.

4.4 APPLICATIONS OF THE

THOMAS–FERMI MODEL

The Thomas–Fermi model provides a reasonable description of both the electron

density, ρ(r), and the electrostatic potential, V (r), in regions where the electron

density is large. Near the boundaries of atoms the electron density is low and TF

does not work so well (as we have just seen in the case of neutral atoms). It works

best to describe average properties of atoms, such as the total binding energy and

the charge distribution which can be measured by electron scattering from atoms. A

TF calculation of the total binding energy is given by Flügge (problem 174). The

TF treatment of electron scattering is described below in the section on scattering

theory.

One interesting application of the TF picture of atoms makes use of the expression

for the electrostatic potential, V (r), which emerges from the model. V (r) can be

regarded as an approximation to the potential in which the individual electrons in

the atom move. With this in mind one can, for example, estimate the value of the

nuclear charge (Z) at which electronic bound states with a given value of orbital

angular momentum � first appear. An electron moving in the TF potential V (r)

obeys the radial Schrödinger equation

− h̄2

2m

d2

dr2
u(r) +

(
V (r) +

�(� + 1)h̄2

2mr2

)
u(r) = Eu(r) . (4.30)

Since a bound state corresponds to E < 0 and since the kinetic term, − h̄2

2m
u′′, will

contribute positively to the energy, a bound state is not possible unless the “effective

potential” is negative,

Veff(r) ≡ V (r) +
�(� + 1)h̄2

2mr2
< 0 , (4.31)
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for some range of r. Equation (4.31) is a necessary condition for a bound state.

It is also close to sufficient. [The argument mimics the proof that attractive one-

dimensional potentials always have bound states.] Converting to the scaled TF vari-

ables, (4.31) becomes

0.885 Z2/32xΦ(x) > �(� + 1) . (4.32)

A numerical study of the function 2xΦ0(x) shows that it has a rather broad maximum

near x ∼= 2 [see figure] with max[2xΦ0] ∼= 0.973, so we have the condition

Z > 1.26 [�(� + 1)]3/2 (4.33)

so we get for � = 1, 2, 3, 4, Z > 2.8, 18.5, 62.4, and 112.7, respectively. These can

be compared with the observed Z values at which the p, d and f shells begin to fill,

namely Z(p) = 5, Z(d) = 21 and Z(f) = 58. Not bad for such a simple model.

The Thomas–Fermi potential is a good starting place for another, more sophisti-

cated treatment of atomic structure: the “self-consistent field method” known also

as the “Hartree–Fock” method. This method is described in some detail in a later

section of the course. The basic idea is that the wavefunctions of atomic electrons give

rise to an effective single electron potential in which the solutions to the Schrödinger

equation are the wavefunctions themselves. Self-consistency is achieved by iteration.

It is very useful to begin with a set of simple electron wavefunctions motivated by

the problem (as opposed to some generic set like harmonic oscillator eigenstates).

Just such a set is provided by the solutions to the Schrödinger equation for the TF

potential V (r). In fact, even without iteration, the TF single particle wavefunctions

and energies provide a rather good approximation to atomic energy levels (especially

when some of the improvements described in the next section are included).

4.5 IMPROVEMENTS OF THE

THOMAS–FERMI MODEL

The Thomas–Fermi model just described may appear quite crude, however, it has a

better pedigree than our discussion would seem to imply. In fact it can be shown that

the TF model yields the exact solution to the non-relativistic N -electron problem in

the field of a charge Ze nucleus as Z → ∞. [This is only a formal limit, however,

since the non-relativistic approximation breaks down as Z → h̄c/e2 ≈ 137.]

The model can be improved by the inclusion of various corrections. The subject

has been reviewed (in a rather formal context) by E. Lieb (Rev. Mod. Phys. 53

(1981) 603). Here we mention two of the more important corrections.
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The first, suggested by Amaldi and Fermi, is to remember that the N th electron

does not act on itself. Thus the potential V (r), which determines the motion of one

electron, should obey a Poisson equation with that electron excluded, so Eq. (4.11)

is modified to read

∇2V (r) = −4πe2
(

N − 1

N

)
ρ(r) .

This change can be absorbed into a redefinition of parameters so the TF equation

remains unchanged. However the boundary condition changes: the outer limit of

a neutral atom is defined by the condition V (R) = −e2/R, dV/dR = e2/R2, since

there remains one unit of nuclear charge not screened by the Z − 1 electrons which

contribute to V (r). This correction has the effect of making atoms finite in size. For

details see Flügge, § 173.

A second significant correction was suggested and calculated by Dirac. The re-

sulting approximation is known as the Thomas–Fermi–Dirac (TFD) approximation.

The Hamiltonian H[ρ] (see (4.3) – (4.5) on which the TF method is based ignores

one important Coulomb effect: the exchange energy between identical electrons. The

exchange energy is given by

∆E ≡ −1

2
e2

∑
i,j

δmsi, msj

∫
d3x1 d3x2

ψ∗
i (�x1)ψj(�x1)ψ

∗
j (�x2)ψi(�x2)

|�x1 −�x2|
. (4.34)

The sum on i and j ranges over all electrons. The Kronecker δ-symbol is 1 if the two

electrons are in the same spin state, zero otherwise. ∆E can be expressed in terms

of the “density matrix”

ρ(�x1,�x2) =
∑
j

ψj(�x1)ψ
∗
j (�x2) (4.35)

but not, in general, in terms of the electron density ρ(�x).

Dirac’s simplifying assumption was to treat the electrons as plane waves in the

spirit of the Thomas–Fermi approximation. Then ∆E can be evaluated (see, for

example, Bethe and Jackiw, pp. 92 – 98) in terms of kF , the local r-dependent Fermi

momentum. kF in turn can be replaced by ρ by means of Eq. (4.1). The result is

∆E → ∆E[ρ] = − e2

4π2

∫
d3x k4

F (r) = −3

4

(
3

π

)1/3 ∫
d3x ρ4/3(r) . (4.36)

If this term is added to H[ρ], the analysis proceeds much as before with the result:

Φ′′ = x

⎛
⎝

√
Φ

x
+ β

⎞
⎠

3

(4.37)
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where b is defined by (4.18) and

β ≡ 1

π

√
b

2a0 Z
∼ 1

Z2/3
. (4.38)

So the effect of exchange interactions is the appearance of the additive constant β in

(4.37). Note: β → 0 as Z → ∞ so the exchange interaction is negligible at large Z.

Once again, the edge of an atom requires redefinition because of this modification

(see Bethe and Jackiw). The resulting TFD model gives a very good approximation

to the bulk properties of heavy atoms. The single particle states calculated in the

resulting TFD potential give an excellent description of the energy levels of heavy

atoms.



Chapter 5

ELECTRONS IN PERIODIC
POTENTIALS

Soon after the discovery of the electron by Thompson in 1987, P. Drude developed

an explanation of electric conductivity in metals based on the idea that electrons

within a metal form a classical gas. By applying the kinetic theory of gases to the

electron gas, Drude was able to obtain a fairly good description of the electric and

thermal conductivity of metals as well as other properties. Nevertheless, his theory

had conspicuous failures. Some of the most glaring failures of the classical theory

were eliminated by Sommerfeld (1928) merely by taking into account the degeneracy

of the quantum electron gas. The resulting Fermi gas model does a surprisingly good

job of describing many properties of metals. It too, however, has notable failures

(see the end of § 5a for a short list). Late in the 1920’s the Swiss physicist Felix

Bloch studied the propagation of electrons in periodic potentials such as are found in

crystalline solids. He would that the free Fermi gas model is modified in conceptually

simple but profound ways. The modifications resolve many features of the behavior

of regular solids left unexplained by Sommerfeld’s theory. Bloch’s work was one of

the earliest triumphs of the quantum theory and forms the foundation for modern

solid state physics.

In this short discussion we can barely scratch the surface of this rich and com-

plex subject. The interested student can find an embarrassingly (to me) complete

presentation on this subject in Ashcroft and Mermin’s book Solid State Physics . I

have chosen to concentrate on the problem of electron motion in a periodic potential.

The unusual and non-classical aspects of this motion are important in determining

the basic ground rules of solid state physics and also illustrate nice features of the

quantum theory of symmetry. Before getting into this technical problem, I will briefly

describe some aspects of the Drude–Sommerfeld theory, illustrating both its successes

and the shortcomings which were resolved by Felix Bloch’s study of motion in periodic

91
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potentials. After studying “Bloch-waves” I will briefly return to the failures of the

Drude–Sommerfeld theory and see how Bloch’s work resolves them. This will leave

you ready to explore semiconductors, devices and a host of applications, but we will

move on in other directions.

5.1 A FERMI GAS MODEL OF ELECTRONS IN

METALS

We will concentrate on two easily measured and conceptually simple characteristics

of metals: the electric and thermal conductivities. The electric conductivity, σ, is

defined by Ohm’s law
�J = σ�E (5.1)

where �J is the current density and �E, the electric field. The thermal conductivity, κ,

is defined by →
J = −κ�∇T (5.2)

where
→
J is the flux of heat (energy/(time·area)) directly analogous to �J , and T is the

temperature. Of course, T is constant in equilibrium and
→
J is zero. κ is measured

under non-equilibrium conditions.

We assume that a metal consists of a regular array of fixed ions which are not

efficient at transporting either heat or charge. These are immersed in a Fermi gas of

electrons which are in thermal equilibrium at temperature T and which move freely

except for collisions characterized by a mean time between collisions, τ .

Elementary kinetic theory relates σ and κ to the properties of the underlying

carriers of charge and heat. For σ the relation is obtained as follows. If the medium

consists of charges of density n (number/volume), charge e, and a mean velocity �vd,

then
�J = ne�vd . (5.3)

Random, thermal velocities do not contribute to the flow of current, only the system-

atic drift induced by �E does, hence the subscript d, for “drift,” on v. To estimate this

contribution we assume that the electrons drift in �E between collisions in which their

velocities are randomized. The drift velocity is obtained by integrating Newton’s law

m�̇vd = e�E, so

�vd =
e

m
�Eτ (5.4)
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where τ is the mean time between collisions. Combining all this we find

σ =
ne2τ

m
. (5.5)

This is not a very convincing derivation: we should have averaged over an ensemble

distribution function f(�v) and been more careful about the definition of τ . The more

careful arguments yields the same result, (5.5), with a more precise definition of τ .

A slightly more complicated argument relates κ to the mean square electron speed,

v2, τ and the heat capacity per unit volume of the electrons, cv = 1
V

∂U
∂T

:

κ =
1

3
v2τcv . (5.6)

The 1/3 is a geometrical factor. [For a derivation, see Morse, Thermal Physics or

Ashcroft and Mermin.]

Not knowing the time between collisions, τ , we can check our picture of metals

by dividing out τ between (5.5) and (5.6),

κ

σ
=

1

3

mv2cv

ne2
. (5.7)

Let’s compare the behavior of this quantity for two cases: (1) a classical gas of

electrons, (2) a Fermi gas of electrons. For classical electrons

cv

n
=

3

2
k (5.8)

is the heat capacity per electron, while

1

2
mv2 =

3

2
kT (5.9)

by equipartition (remember v2 is the (thermal average) mean square speed of the

electrons), so (
κ

σ

)
classical

=
3

2

(
k2

e2

)
T . (5.10)

for quantum electrons, the heat capacity is given by (1.83)

cv

n
=

Cv

N̄
=

π2kT

2TF

(5.11)

and only those electrons near the top of the Fermi sea participate, so

1

2
mv2 ≈ EF = kTF , (5.12)

which gives (
κ

σ

)
Fermi gas

=
π2

3

(
k2

e2

)
T . (5.13)

Both the classical and quantum theory predict (κ/σ) to vary proportional to T .

The coefficient of proportionality, κ/σT , is known as the “Lorentz number.” The

predictions are
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Table 5.1: Experimental Lorentz numbers K/σT in units of 10−8W · Ω/K2∗

Metal 0◦C 100◦C
Ag 2.31 2.37
Au 2.35 2.40
Cd 2.42 2.43
Cu 2.23 2.33
Ir 2.49 2.49

Mo 2.61 2.79
Pb 2.47 2.56
Pt 2.51 2.60
Sn 2.52 2.49
W 3.04 3.20
Zn 2.31 2.33

∗From C. Kittel, Introduction to Solid State Physics , 2nd edition (John Wiley & Sons,
New York, 1965).

•Classical:
κ

σT
= 1.1 × 10−8 watt − ohm

◦K2
, independent of T 1

•Fermi gas:
κ

σT
= 2.44 × 10−9 watt − ohm

◦K2
, independent of T 2

(5.14)

Data for a variety of conductors are given in Table 5.1 (from Kittel). Clearly, the

Fermi gas value agrees quite well with experiment.

Encouraged by this success, let’s look at the electrical or thermal conductivity

individually. First define a “mean free path,”

� =
τ

vF

, (5.15)

where, in keeping with the Fermi gas picture, we’ve used a Fermi velocity vF =√
2kTF /m to set the scale of velocities. Then, from (5.5),

ρ ≡ 1

σ
=

m

ne2vF �
. (5.16)

1Originally, Drude made an error and obtained 2.2 × 10−8. His fortuitous agreement with data
stimulated much of the subsequent work on electron gas theories of metals.

2The result we obtained for the Fermi gas survives a more rigorous derivation.
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Remember, as discussed in § 1, the Fermi energy of electrons in metals are quite high

(EF ≈ 7 eV in copper at room temperature), so the system is highly degenerate for

temperatures below, say, 500◦K. Thus we expect vF and n to be essentially indepen-

dent of temperature over a wide range of T up to at least ∼ 500◦K. Because of this we

can use experimental data on resistivity to obtain the electron mean free path from

(5.16). Data on copper are shown in Fig. 5.1 (from Serway, Moses and Moyer).

1

2

3

T(K)

4

5

100 200 300 400 500 600 700

ρ( 10 8 Ω m (

Figure 5.1: The resistivity of pure copper as a function of temperature.

Except at very low temperature, ρ varies linearly with T , so we conclude

� ∼ 1

T
. (5.17)

Furthermore, since the constants in (5.16) are known, we can extract a quantitative

estimate of the mean free path. For copper at room temperature (EF = 7.05 eV,

n = 8.49 × 1022cm−3) we obtain

� ≈ 390 Å . (5.18)

This is a remarkable result, roughly 150 times greater than the spacing between atoms.

Furthermore, at lower temperature � becomes as much as an order of magnitude

larger before leveling off at some very large value as T → 0 (except for the case of
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Figure 5.2: (a) Resistivity of silver at low temperature. The upper curve is for a
silver sample with a higher concentration of impurity atoms. (From W. J. de Haas,
G. J. van den Berg and J. de Boer, Physica 2 (1935) 453).) (b) Resistance of sodium
as a function of temperature. The upper curve is for a sodium sample with a higher
concentration of imperfections/. (From D. K.C. MacDonald and K. Mendelssohn,
Proc. Roy. Soc. (London) A202 (1950) 103.

superconductors, for which ρ drops abruptly to zero at some critical temperature).

Some data on Ag and Na are shown in Fig. 5.2 (from Serway, Moses and Moyer).

Looking back at (5.16), we see that the small resistivity of metals has two sources

unexpected on the basis of classical physics: first, the typical velocities, vF , are

much larger than typical thermal velocities; second, the electron mean free path

is surprisingly large, for reasons we will soon understand better. The same effects

combine to make the thermal conductivity, κ, anomalously large. Referring to (5.6),

the factor v2cv is roughly the same for a classical gas and a degenerate Fermi gas (at

the same density, etc.). κ is large because τ is large. [The high thermal conductivity

of metals (relative to insulators) is a familiar human experience: consider a sauna

with metal seats or the prospect of licking a car door handle on a frigid winter day!]

How can we account for the unusually long mean free path of electrons in metals?

Of course, the mean free path of particles in a free Fermi gas is infinite. But the

electrons in metals are not free, they are moving in nearly periodic array of atomic

potentials. If electrons behaved as classical particles they would scatter frequently

and violently from the atomic lattice. It is easy to imagine that the phenomenon of

“Pauli blocking,” mentioned in § 1 in connection with the calculation of Cv, suppresses

scattering: many states are not available to be scattered into because they are already

occupied. This isn’t enough, however, since the electrons near the top of the Fermi

sea are not affected.

The true cause of the electron’s long mean free path is the rigorous quantum

mechanical result that a particle doesn’t scatter at all from a perfectly regular array
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of potentials. Its mean free path is infinite. The observed finite mean free path of

electron’s in metals has two sources: scattering from thermal fluctuations of the lattice

(responsible for the 1/T dependence of �) and from lattice imperfections (responsible

for the irreducible resistivity as T → 0, see Fig. 5.2).

In the next few subsections we’ll derive and discuss the basic result. The more

sophisticated analysis necessary to find the effects of impurities, imperfections and

thermal fluctuations as the electron gas is more appropriately the subject of a course

on many-body or condensed matter physics.

Before turning to the quantum mechanics of electrons in periodic potentials, let

me summarize a few of the problems with the Drude–Sommerfeld free electron theory:

1. It fails to explain the astronomical differences in the electrical resistivity of

different simple (crystalline) substances at (say) room temperature. Insula-

tors such as quartz and sulphur have huge resistivity, frequently in excess of

1015 ohm-cm. Metals have resistivity measured in microhm-cm. Some notable

examples are listed in Table 5.2.

2. It doesn’t account for the temperature dependence of resistivity. Metals typ-

ically become better conductors at lower temperature. Certain poor metals

such as silicon and germanium (semiconductors) become better conductors as

the temperature is raised.

3. The Hall effect enables one to measure the sign of the mobile charges in con-

ductors. While most substances contain negative mobile charges in agreement

with Drude–Sommerfeld, some have positive mobile charges.

4. As already discussed, there is no explanation of the very long mean free path

of electrons in good conductors.

(a)Purcell, Electricity and Magnetism.
(b)CRC Handbook of Chemistry and Physics
(c)‖ and ⊥ denote directions with respect to symmetry axis.
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Table 5.2: Resistivities

Material Temperature Resistivity (ohm-cm)

Sulphur 27◦C 1 × 1017(a)

Quartz (‖)(c) 17◦C 2 × 1014(a)

Quartz (⊥)(c) 17◦C 2 × 1016(a)

Germanium 0◦C 200(b)

Germanium 227◦C 0.12(b)

Copper 0◦ 1.56 × 10−6(b)

Aluminum 20◦ 2.828 × 10−6(a)

Magnesium 20◦ 4.6 × 10−6(a)

5.2 ELECTRONS IN PERIODIC

POTENTIALS

— QUALITATIVE ARGUMENTS

Consider assembling a one-dimensional “crystal” by bringing together a collection

of neutral atoms by decreasing the interatomic separation a. We know that the

electrons move in orbitals within the separate atomic systems. If the system were

classical, nothing much would happen until the classical turning points of electrons

in adjacent atoms became interlaced at a separation acl. Quantum mechanics allows

richer possibilities — electrons may tunnel from atom to atom at separations consid-

erably larger than acl — and this makes a major difference. To get an idea of the

scale of the energies and separations involved, consider Fig. 5.3 where the potential

seen by electrons in metallic sodium is shown. It would appear that tunneling is a

significant effect for 3s-electrons but much less important for 2s-electrons.

2s

3s

Figure 5.3: Schematic diagram of the potential energy curve seen by an electron in
metallic sodium. Also shown are the atomic 2s and 3s levels of the sodium atom.
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The energy levels of a widely separated collection of atoms are nearly the same

as a single isolated atom. The degeneracy of each energy level, however, is vast. For

simplicity, consider an “atomic” potential, shown in Fig. 5.4 with a single bound state

of energy E0. An electron moving in a string of such atoms separated by a >> d has

a spectrum with a single energy level, E0, but N -fold degeneracy. The N distinct

wavefunctions of these N degenerate states are obtained by superposing the single

“atom” wave functions with appropriate phases so the states are all orthogonal. The

simplest case, N = 2, is drawn in Fig. 5.4b.

(a)

d

ψ x( (0

x( (V

E 0

(b)

ψ1

ψ2

a

Figure 5.4: (a) A potential with a single bound state; (b) The ground state “bound”
in the case of a double potential of the term of V (x) separated by a.

When a decreases and tunneling between adjacent potentials can no longer be ig-

nored, the degeneracy of the energy level, E0, is lifted. To get an idea what happens

consider N = 2. The splitting of levels in two well-separated potentials is a clas-

sic problem in elementary quantum mechanics: The wavefunctions within the wells

change little in the presence of tunneling, so we may regard the states of the system

as superpositions of the unperturbed single well “ground states.” The symmetric

superposition of the individual ground states (ψ1) shifts slightly down in energy and

becomes the true ground state (no nodes). The antisymmetric superposition (ψ2)

shifts slightly up and is an excited state. The generalization to N > 2 is more com-

plex. Still the symmetric superposition (with no nodes) is the ground state and the

most antisymmetric superposition (with alternating signs and a node in every forbid-

den region in between wells) is the most energetic state. All the other states (N = 2

of them) lie in a band between these two. Thus the effect of tunneling is to spread

out an energy eigenvalue into a band of energy levels. The band is narrow when

tunneling is weak, but it broadens when potential wells overlap more significantly or

when one considers excited states within the wells. A schematic diagram of energy vs

a/d is given in Fig. 5.5 (from Ashcroft and Mermin). The intervals between bands —

energies at which no states are available — are known a gaps . As shown in Fig. 5.5

the higher-lying states spread into bands first (as a/d decreases) and bands developed

out of different single well states can overlap.
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Figure 5.5: (a) Schematic representation of non-degenerate electroc levels in an atomic
potential. (From Ashcroft and Mermin.) (b) The energy levels for N such atoms in
a periodic array, plotted as a function of mean inverse interatomic spacing. When
the atoms are far apart (small overlap integrals) the levels are nearly degenerate, but
when the atoms are closer together (larger overlap integrals), the levels broaden into
bands. (From Ashcroft and Mermin)

5.3 PERIODIC POTENTIALS IN

ONE-DIMENSION I: BLOCH WAVES

Of course true crystals are three-dimensional and have unique properties because of

their three-dimensionality. The problem of characterizing the motion of electrons

in a periodic three-dimensional potential is not trivial and solving the appropriate

Schrödinger equation is beyond analytic methods. Many (but by no means all) of

the important features of the problem are preserved by limiting ourselves to motion

in one-dimension where the characterization of the motion (Bloch’s theorem and

Brioullin–Zones) is quite straightforward and the analysis of the Schrödinger equation

can be carried quite far analytically.

As a model for a one-dimensional crystal consider a periodic potential V (x) with

period a,

V (x + a) = V (x) (5.19)

So the Hamiltonian for an electron moving in this potential,

H =
p2

2m
+ V (x) (5.20)

is unchanged by the finite translation, p → p, x → x + a,

H(x) = H(x + a) (5.21)
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so this is a symmetry of the problem. This is similar to the situation in the absence

of any potential. Then H is invariant under any translation. One consequence of this

is that the momentum operator, p, is conserved and commutes with H

ih̄ṗ = [p, H] = 0 . (5.22)

According to the usual rules of quantum theory, H and P can be simultaneously

diagonalized and a basis of their eigenstates, labeled by their eigenvalues, E and p,

can be used to describe the system.

We wish to mimic this procedure in the case where H is invariant only under finite

translations. We define an operator, T (a), which translates x by an amount a:

T (a)ψ(x) = ψ(x + a) (5.23)

in coordinate representation (ψ(x) ≡ 〈x|ψ〉).1 We can use the existence of the inner

product

〈ϕ|ψ〉 ≡
∫ ∞

−∞
dx ϕ∗(x)ψ(x) (5.24)

to prove T (a) must be a unitary operator,

T (a)†T (a) = 1 . (5.25)

To prove this, write

〈ϕ|ψ〉 =
∫ ∞

−∞
dy ϕ∗(y)ψ(y) (5.26)

substitute y = x + a, use (5.23) and its Hermitian conjugate and change integration

variable to x,

〈ϕ|ψ〉 =
∫ ∞

−∞
dx ϕ∗(x)T †(a)T (a)ψ(x) . (5.27)

Since |ϕ〉 and |ψ〉 are arbitrary we are left with the operator equation (5.24).

If we now apply the same argument to arbitrary matrix elements of H, we shall

prove

T †(a)HT (a) = H . (5.28)

First write

〈ϕ|H|ψ〉 =
∫

dy ϕ∗(y)H(y)ψ(y) (5.29)

Follow the same procedure outlined after (5.8) to obtain

〈ϕ|H|ψ〉 =
∫

dx ϕ∗(x) T †(a)H(x + a)T (a)ψ(x) , (5.30)

1The precise form of T (a) need not concern us here. In fact T (a) = eiPa/h̄ where P ↔ 1
ih̄d/dx in

coordinate representation.
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which, combined with (5.21) yields the desired result. An immediate consequence of

(5.25) and (5.28) is that T (a) and H commute and therefore can be simultaneously

diagonalized.

Let us try to characterize the eigenstates of T (a):

T (a)ψλ(x) = λ(a)ψλ(x) . (5.31)

Since T is unitary we expect the eigenvalue λ(a) to be a pure phase

λ(a) = eiϕ(a) . (5.32)

It’s instructive to see how one proves this. Consider the inner product of eigenstates

of T (a):

〈λ(a)|λ′(a)〉 =
∫

dx ψ∗
λ(x)ψλ′(x) (5.33)

We can use the translation properties of ψλ ((5.27) and (5.31)) to obtain

〈λ(a)|λ′(a)〉 =
∞∑

n=−∞
(λ∗λ′)n

∫ a

0
dx ψ∗

λ(x)ψλ′(x) . (5.34)

Define λ ≡ eiα, λ′ = eiα′
where α and α′ might, in principle, be complex; then

∞∑
n=−∞

(λ∗λ′)n =
∞∑

n=−∞
ein(α′−α∗) . (5.35)

If α or α′ has an imaginary part then this sum is strictly divergent and the state

|λ(a)〉 is not normalizable even in the continuum sense. So we conclude α and α′

must be real, which is what we set out to prove.

Furthermore, when α and α′ are real the sum in (5.35) can be expressed in terms

of δ-functions ∞∑
n=−∞

einx = 2π
∞∑

N=−∞
δ(x + 2πN) (5.36)

Let ∞∑
n=−∞

einx ≡ f(x) .

Clearly f(x) is periodic with period 2π,

f(x) = f(x + 2π) .

So its enough to consider the interval −π ≤ x ≤ π. Consider

f [g] ≡
∫ π

−π
dx f(x)g(x)

=
∞∑

n=−∞

∫ π

−π
dx einxg(x) .
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But if we write a Fourier series representation for g(x) in the interval −π ≤ x ≤ π,

g(x) =
∞∑

n=−∞
e−inxgn

then the Fourier inverse theorem,

gn =
1

2π

∫ π

−π
dx einxg(x)

gives

f [g] = 2πg(0)

so

f(x) = 2πδ(x)

for −π < x < π. Requiring f(x) to have period 2π yields (5.36).

For a proof see the box. Since α and α′ appear only as phases; they are only defined

modulo 2π, so (5.34) – (5.36) combine to give

〈λ(a)|λ′(a)〉 = 2πδ(α − α′)
∫ a

0
dx ψ∗

λ(x)ψλ′(x) (5.37)

If we now set

α ≡ ka ,

change the wavefunction labels from λ to k and normalize ψk(x) by

∫ a

0

dx

a
|ψk(x)|2 =

1

2π
, (5.38)

then

〈k|k′〉 =
∫ ∞

−∞
dx ψ∗

k(x)ψk′(x) = δ(k − k′) (5.39)

which you will recognize as standard continuum normalization.

To summarize: we have learned that the eigenfunctions of the finite translation

operator T (a), which are also energy eigenstates, are labeled by a real quantum

number, k, with

T (a)ψk(x) = ψk(x + a) = eikaψk(x) , (5.40)

and

−π

a
≤ k ≤ π

a
.

The states {ψk(x)} may be thought of as modulated plane waves with the periodic

potential doing the modulating. In particular, the {ψk(x)} obey the continuum nor-

malization condition, (5.39). Equation (5.40) is known as Bloch’s theorem and these
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states are known as Bloch waves . Note that although H is strictly periodic with pe-

riod a, the energy eigenstates are periodic only up to a plase. To make this explicit,

define

ψk(x) ≡ eikxϕk(x) (5.41)

Then from (5.40), ϕk is strictly periodic,

ϕk(x + a) = ϕk(x) . (5.42)

Notice that the wave number, k, is only defined modulo 2π. This leads to a certain

ambiguity in the kinematics of motion in a periodic potential, which we’ll touch upon

later. For now, remember that the state labeled by k + 2πN/a (for any integer N) is

the same state as labeled by k. Note also that k is not a momentum. Indeed, the state

ψk(x) is not an eigenstate of momentum but only an eigenstate of the finite translation

T (a). Nevertheless, k often appears in formulas in a fashion which resembles the free

space momentum and is often referred to as the Bloch momentum.

5.4 PERIODIC POTENTIAL IN

ONE–DIMENSION II: ELEMENTARY

FLOQUET THEORY

Let’s examine the Schrödinger equation for a periodic potential

− h̄2

2m
ψ′′(x) + V (x)ψ(x) = Eψ(x) (5.43)

Our aim is to construct the eigenstates of T (a) and H. Because V (x) is periodic,

ψ(x + a) is also a solution to (5.43). Of course, ψ(x + a) obeys

− h̄2

2m
ψ′′(x + a) + V (x + a)ψ(x + a) = Eψ(x + a) (5.44)

But only if V (x + a) = V (x) can we also write

− h̄2

2m
ψ′′(x + a) + V (x)ψ(x + a) = Eψ(x + a) . (5.45)

Comparing (5.45) and (5.43) we see that ψ(x+a) obeys the same differential equation

as ψ(x). Now (5.43) is a second order differential equation and therefore has two

linearly independent solutions. Let ψ1(x) and ψ2(x) be some (arbitrary) choice of
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those solutions. Since ψ1(x + a) obeys the same differential equation (5.45) it must

be a linear combination of ψ1(x) and ψ2(x):

ψ1(x + a) = A11ψ1(x) + A21ψ2(x) (5.46)

and likewise for ψ2(x + a),

ψ2(x + a) = A12ψ1(x) + A22ψ2(x) (5.47)

The four coefficients Aij can be grouped into a matrix, the transfer matrix A.2 If the

basis states ψj(x) are real then A is real.

To find the eigenstates of T (a), we seek linear combinations of ψ1 and ψ2 which

render the transfer matrix diagonal. Let

φ(x) =
2∑

j=1

cjψj(x) j = 1, 2 (5.48)

with the coefficients cj chosen so that

φ(x + a) = λφ(x) (5.49)

We expect two eigenfunctions {φj} and associated eigenvalues {λj}, with j = 1, 2. In

a familiar language: the {φj} and the {λj} are eigenfunctions and eigenvalues of the

transfer matrix. We know it is possible to find the {φj} because we proved T (a) and

H commute, which assures that we can diagonalize T (a) among the eigenstates of H.

If we combine (5.46) – (5.49) we obtain an eigenvalue equation

A11c1 + A12c2 = λc1

A21c1 + A22c2 = λc2 (5.50)

or, in matrix notation,

A�c = λ�c . (5.51)

The condition for a solution,

det |A − λI| = 0 (5.52)

is particularly simple for a 2 × 2 matrix,

λ2 − λ TrA + detA = 0 (5.53)

where TrA = A11 + A22 and detA = A11A22 − A12A21. TrA and detA are related

to λ1 and λ2 by TrA = λ1 + λ2 and detA = λ1λ2.

2A is just the (2× 2) matrix representation of the operator T (a) restricted to the subspace of H
with eigenvalue E.
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Since A is real (in a basis where ψ1 and ψ2 are real), (5.53) is a quadratic equation

with real coefficients, hence the two roots (λ1 and λ2) are either

1. Both real:

2. Complex conjugate:

λ1 = λ∗
1 , λ2 = λ∗

2

λ1 = λ∗
2 .

(5.54)

Furthermore, we can show

λ1λ2 = 1 (5.55)

as follows: Consider any two linearly independent functions φ1 and φ2 obeying (5.43),

then
d

dx
(φ1φ

′
2 − φ2φ

′
1) = 0 (5.56)

so

ω(x) ≡ φ1φ
′
2 − φ2φ

′
1 = c �= 0 (5.57)

the first result, (5.56), follows directly from the Schrödinger equation. The second,

(5.57), follows upon integration and the fact that φ1 and φ2 are linearly independent

(which requires c �= 0). Since w(x) is a constant

ω(x + a) = ω(x) (5.58)

but if we take φ1 and φ2 to be eigenfunctions of T (a) with eigenvalues λ1 and λ2,

respectively, then

w(x + a) = λ1λ2w(x) (5.59)

Comparing these two equations,

λ1λ2 = detA = 1

follows. Equation (5.53) now reads

λ2 − λ TrA + 1 = 0 (5.60)

Now the alternatives of (5.54) are clearer

1. Both real and reciprocal:

2. Complex conjugate and unitary:

λ2 = 1/λ1 ,

λ1 = λ∗
2 = eiα .

As we established in §5.b, only case 2 corresponds to possible (normalizable) physical

states. Consider the modulus of the sum of the eigenvalues in the two cases. In both

cases λ1 + λ2 is real (a theorem on the solutions to the quadratic equation (5.53))

1. Case 1:

2. Case 2:

|λ1 + λ2| = |λ1 + 1/λ1| ≥ 2

|λ1 + λ2| = 2 |cos α| ≤ 2
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and referring back to (5.53) and using λ1+λ2 = TrA, the condition for a normalizable

state becomes

|TrA| = |A11 + A22| ≤ 2 (5.61)

This is our fundamental result and it deserves some discussion.

First, note that Eq. (5.61) is independent of the original choice of states, ψ1 and

ψ2, way back to (5.46). The reason is that a change of basis, ψ → ψ̃ = Sψ with

S†S = 1 changes A by a similarity transform, A → SAS†, and

TrSAS† = TrS†SA = TrA

For some fixed potential, V (x), the transfer matrix A and its eigenvalues λ1 and

λ2 depend parametrically on the energy. Thus, as a function of E, λ1 and λ2 execute

trajectories in the complex plane. When they lie on the real axis (at reciprocal points)

no normalizable energy eigenstates exist. These are the “gaps” mentioned in § 5.b.

When they lie on the unit circle, continuum normalized energy eigenstates exist.

These are the “bands” mentioned in § 5.b. Notice that the edge of a band occurs

when λ1 = λ2 = ±1, where according to (5.49), the wave function is exactly periodic

(λ = 1) or antiperiodic (λ = −1).

x( (
x( (V

x

x( (
x( (V

x

Figure 5.6: The lowest (exactly periodic) and highest (exactly antiperiodic) members
of the lowest band in a periodic potential V (x).

Let’s combine the analytic analysis we’ve just completed with the pictorial analysis

from the first part of this section to assemble a description of the spectrum. Imagine,
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for the sake of illustration, a periodic potential consisting of well-separated wells

separated by high barriers (Fig. 5.6). For infinite barrier height the ground state

consists of the ground state in each well (φ0) superposed with arbitrary phases. The

degeneracy parameterized by these phases is broken by tunneling between wells. A

famous theorem of quantum mechanics in one dimension tells us that the ground

state has no nodes, so the lowest energy eigenstate denoted ψ< with energy E< and

shown in Fig. 5.6 is constructed by superposing separate-well ground states all with

the same relative phase. This solution is strictly periodic so we have learned that

λ(E) = +1 for the lowest allowed energy. The other states in this “ground state

band” are obtained by superposing separate-well ground states with various phases

until a band edge is reached where we expect a periodic or antiperiodic solution. In

this (narrow) band, no wavefunction can have a node in a classically allowed region

— corresponding to an excited separate-well state ψ1 — because this would cost far

more energy than placing the node in the forbidden region. A little thought leads

to the conclusion that it is not possible to construct another periodic wavefunction

in this band, but an anti-periodic state is easy to construct — by putting a node

in each forbidden region. This state, denoted ψ> with energy E> is also shown in

Fig. 5.6. From this argument it is clear that the eigenvalue λ(E) reaches λ(E<) = 1

at the bottom of the ground state band, moves along half the unit circle and reaches

λ(E>) = −1 at the top of the ground state band. This trajectory is shown in Fig. 5.7.

[The other eigenvalue traces the reciprocal trajectory.] If we parameterize λ by the

“Bloch momentum,” k

λ ≡ eika

we see that ka ranges from 0 to ±π for the two eigenvalues λ and λ∗ as E moves

through the ground state band. This definition enables us to plot a “dispersion

relation,” E(k), for the ground state, as in Fig. 5.8.

Notice that we have drawn E(k) as though it varies quadratically with k near

the edge of a band. This can be proved by expanding (5.60) about the bound edge:

First consider E = E< + ∆E and expand TrA about its value (2) at E = E<,

TrA ∼= 2(1 − σ∆E) with σ > 0 for 0 < ∆E << (E> − E<). Then the roots of (5.60)

are

λ± = 1 ± i
√

2σ∆E ∼= 1 ± ika

so

E ∼= E< +
k2a2

2σ
(5.62)
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Figure 5.7: The trajectory in the complex plane of one of the eigenvalues, λ, of the
transfer matrix as a function of energy. When λ is real, E lies in a gap. When λ is
complex, with |λ| = 1, E lies in a band.

The quantity

m∗ =
h̄2σ

a2

where

σ = −1

2

d

dE
TrA

∣∣∣∣
E=E<

> 0

plays the role of an “effective mass” for electrons near the bottom of a band. As k

ranges through the band, the relationship of E to k changes until, as k approaches

±π/a, it is once again quadratic but with the opposite sign!

E = E> − (|ka| − π)2

2τ

where

τ =
1

2

d

dE
TrA

∣∣∣∣
E=E>

> 0

so electrons have negative effective mass near the top of the band. This is only one

aspect of the unusual behavior of electrons in a nearly filled band which we will discuss

in some detail in §5.f.

Before leaving this semiquantitative discussion we will extend it to the case of

the second band. We left off having found ψ> at the top of the lowest band. In the

approximation of high barriers between attractive wells we expect the next allowed

state to be constructed by piecing together wavefunctions corresponding to the first

excited state in each well. Since these wavefunctions, ψ1, have a node within the well,

the lowest energy state we can make (least nodes) is anti-symmetric (see Figure 5.9).
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Figure 5.8: Energy as a function of wave number in a series of bands. Adding factors
of π/a we see this function approximates the continuum relation E = h̄2k2/2m.
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Figure 5.9: The lowest (exactly antisymmetric) and highest (exactly symmetric)
states in the second band.

So the band begins with λ1 = λ2 = −1. Higher energy states are obtained by

superposing ψ1 in each well with various phases until we reach the upper band edge

where the wavefunction has a node in the forbidden region between each well and is

once again periodic, so λ1 = λ2 = 1. The eigenvalues execute the trajectory shown

in Fig. 5.7 in the opposite direction. We’d like to associate a Bloch momentum, k,

with the states in this second band. Here we are faced with an ambiguity mentioned

earlier. We can always choose k to lie in the interval −π/a < k < π/a, known as the

first Brillouin Zone. The resulting dispersion relation, E(k), is shown in Fig. 5.8a.

On the other hand, we can add appropariate factors of 2π/a and make the curve E(k)

look single valued, with a jump at k = ±π/a, between bands (see Fig. 5.8b). The

former is known as the reduced zone scheme, the latter is the extended zone scheme.

Both are useful. Needless to say, the situation is considerable more complex in three

dimensions.

This analysis continues in the same spirit for higher bands. The primary mod-

ification is that the effects of the barriers between wells become less important at

higher energy: the bands become broader in E(k) and the gaps become narrower.

Eventually, at high energy, the gaps become negligible and the function E(k) is well-

approximated by k2/2m within the bands. This behavior is sketched in Fig. 5.8.

To make this discussion more concrete we next turn to the analysis of a specific

example.
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Figure 5.10: Graphical construction for the bands in the Kronig-Penney Model.

5.5 AN EXAMPLE: THE KRONIG–PENNEY

MODEL

To illustrate the general method developed in the previous two sections we now turn

to an explicit model first devised by Kronig and Penney. We let V (x) be a periodic

δ-function:

V (x) = V0

∑
n

δ(x − na) (5.63)

We calculate the transfer matrix A directly. For x �= na the solutions to the

Schrödinger equation are sin qx or cos qx with q =
√

2mE/h̄2. At x = na the δ-

function interaction requires a discontinuity in ψ′:

∆ψ′ ≡ ψ′
∣∣∣∣
x=na+ε

− ψ′
∣∣∣∣
x=na−ε

=
2mV0

h̄2 ψ ≡ 1

d
ψ (5.64)

For convenience we choose independent solutions

ψ1(x) = sin qx

ψ2(x) = cos qx (5.65)

in the interval −a < x < 0. To calculate A, we make use of the defining relation

(5.47)

ψi(x + a) = Ajiψj(x)

Since −a < x < 0, 0 < x + a < a, thus we must determine ψi(x + a) with the aid of

the jump condition (5.64)

∆ψ′
1(0) =

1

d
ψ1(0) = 0

∆ψ′
2(0) =

1

d
ψ2(0) =

1

d
(5.66)
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so

ψ1(x) = sin qx 0 < x < a

ψ2(x) = cos qx + 1
qd

sin qx 0 < x < a
(5.67)

Now for 0 < x + a < a,

ψ1(x + a) = sin q(x + a) = ψ1(x) cos qa + ψ2(x) sin qa

ψ2(x + a) = cos q(x + a) +
1

qa
sin q(x + a)

=

(
1

qd
cos qa − sin qa

)
ψ1(x) +

(
cos qa +

1

qd
sin qa

)
ψ2(x)

(5.68)

from which we read off

A =

⎛
⎝ cos qa sin qa

cos qa
qd

− sin qa cos qa + sin qa
qd

⎞
⎠ (5.69)

We confirm detA = 1 and identify

trA = 2 cos qa +
sin qa

qd
(5.70)

so the condition for bands of allowed states is

−1 ≤ cos qa +
sin qa

2qd
≤ 1 (5.71)

This relation is graphed in Fig. 5.10 for the case of d > 0 (repulsive δ-function

interaction). Note that the gaps quickly become small as qa increases (relative to

qd). The further exploration of this model (determining energies of band edges,

effective masses, etc. is left to the problems.

5.6 METALS, INSULATORS AND SEMICON-

DUCTORS

With Bloch’s apparatus at our disposal we can return to the qualitative description

of crystalline materials and resolve some of the problems of the Drude–Sommerfeld

theory summarized in § 5.a.

First consider the problem of mean free path. Bloch waves are stationary states

with non-zero average velocity. The velocity operator, defined by ih̄ẋ = [x, H], is not
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other than p/m with p represented by −ih̄ d/dx in coordinate space. It’s expectation

value in a Bloch wave state, ψk(x), is

〈ẋ〉 =
∫

dx ψ∗
k(x)

(
−ih̄

m

d

dx

)
ψk(x)

/ ∫
dx ψ∗

k(x)ψk(x) . (5.72)

Using (5.37) and (5.39)

〈ẋ〉 =
h̄k

m
+

∫ a

0
dx ϕ∗

k(x)

(
−ih̄

m

d

dx
ϕk(x)

) / ∫ a

0
dx ϕ∗

k(x)ϕk(x) (5.73)

But ϕk(x) can be chosen to be real (it’s a solution to a real differential equation

subject to a real boundary condition), and periodic (5.40)), so the second term in

(5.73) vanishes. Thus Bloch waves can be characterized by a constant velocity, h̄k/m,

which does not dissipate as the electron propagates through the crystal. Though this

may at first see surprising, it is the same effect which allows light to propagate without

“resistance” through a refractive medium: the coherent superposition of scattered

waves from a regular array of scatters results in unattenuated propagation in the

forward direction.

From this point of view, the puzzle becomes why conductors have any resistance

at all! The answer is two-fold (justification lies beyond this course): first, the lattice

ions in a crystal are not fixed. They vibrate. The vibrations can be viewed as sound

waves and quantized as phonons , in direct analogy to photons. A crystal lattice gen-

erates a (Bose–Einstein) gas of phonons whose density increases with temperature.

Electron-photon collisions give rise to a temperature-dependent resistivity in other-

wise excellent conductors. Second, no lattice is perfect. Irregularities and impurities

— defects in general — scatter electrons and generate a resistivity which fails to

vanish even at T = 0.

Next, consider how the properties of a material depend on where the Fermi energy

falls in relation to the band structure. A given band will have a capacity to hold

a certain number of electrons depending on the multiplicity of the original single

potential level and the symmetry of the crystal. It is never less than 2N whose N is

the number of atoms in the crystal and the factor 2 is the electron spin degeneracy.

For the sake of simplicity let’s consider a band originating in the 3s atomic orbital.

In metallic sodium this band is half-full: the Fermi energy (defined in the usual way,

as the energy of the last filled level) lies in the middle of the band (see Fig. 5.11).

The dynamics of electrons near the Fermi surface resembles electrons in a free Fermi

gas. In particular, there are plenty of states available just above the Fermi surface.

An applied electric field shifts electrons from (say) negative k to positive k (in one

dimensions) and generates an electromagnetic current. This is a metal and it is
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Figure 5.11: Filling of bands by electrons. A solid with one electron per atom has a
half-filled band as indicated by the cross-hatching in (a). This material is a metal. If
there are two electrons per atom the band is full, as shown in (b), and the substance
is an insulator. (From Brehm and Mullin)

well-approximated by the Drude–Sommerfeld theory. From this argument one can

generalize that any element with an odd number of electrons (and, consequently, EF

falling within a band) will be a conductor.

In contrast suppose we place 2N electrons in the 3s band. [One might think this

applies to magnesium, however that case is more complex and is discussed immedi-

ately below.] Now and band is filled (see Fig. 5.11) and insert. There are no nearby

levels to populate when an external electric field is turned on so no current develops.

The material is an insulator. In fact, this point isn’t quite as obvious as it’s often

portrayed. In the presence of an external field the exact periodicity of the potential

is lost so the analysis becomes more complex. A more rigorous argument based on

the Liouville theorem is given by Ashcroft and Mermin.

The actual case of magnesium is an interesting one. There are indeed two 3s

electrons per atom, but a higher band overlaps the 3s band in magnesium, so both

are partially filled as shown in Fig. 12. So magnesium is a conductor. [Fig. 5.12

is much oversimplified since the three-dimensional momentum space of the periodic

magnesium crystal is quite complex and certainly not one-dimensional.]

Next consider what happens if an insulator happens to have an empty band lying

only a short interval above the Fermi surface. Say the gap between the bands is ∆.

At T = 0, the upper band (call it the “conduction” band) is empty and the lower one

(“valence” band) is filled. At T = 0 the material is an insulator. As the temperature

is increased thermal effects diffuse the top of the Fermi sea, according to the Fermi

distribution function (1.28). There is a non-vanishing probability to find electrons

in the conduction band and “holes” (i.e. unoccupied levels) in the lower band (see

Fig. 5.13). The electrons give the material a small but significant conductivity (which
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Figure 5.12: Example of overlapping bands in which a substance with two electrons
per atom turns out to be a metal instead of an insulator. Generally, ka and kb are
two distinct directions in three-dimensional k space rather than just +k and −k.

increases with temperature). So, in fact, do the holes. An empty state in an otherwise

filled band behaves kinematically and electromagnetically like an electron of positive

charge. It has positive inertia because, if you remember, we showed that levels near

the top of a band have negative effective mass. It has positive charge because the

absence of an electron moves left when an electric field pulls the electrons to the right.

Such a material is known as an intrinsic semiconductor — silicon and germanium are

good examples.

ε

cε

kn(ε (

vεFε

Figure 5.13: Valence and conduction bands in an intrinsic semiconductor. A few
electrons are thermally excited out of the valence band. Also shown in the distribution
function n(ε). Note that the Fermi energy falls in the band gap.

Another way to obtain a material with semiconducting properties is through “dop-

ing” — adding small amounts of impurities to a pure material, typically an intrinsic
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semiconductor. The classic example is a crystal of silicon with a small contamination

of phosphorus. Phosphorus has an additional valence electron compared to silicon.

At zero temperature those valence electrons stay bound to the phosphorus impurities

— filling discrete levels in the gap between the filled and empty bands of silicon. The

extra electron lies just below the conduction band (in phosphorus, 0.05 eV) so rela-

tively weak fields are sufficient to promote it into the conduction band and produce

a current. For obvious reasons phosphorus is called a donor and phosphorus doped

silicon is an “n-type” (n for negative) semiconductor. The situation is reversed for

aluminum which lacks an electron relative to silicon: electrons in the lower silicon

band easily become trapped on aluminum impurities producing holes and electric

conduction. Aluminum is an “acceptor” and aluminum (or gallium) doped silicon is

a “p-type” semiconductor (p for positive).

Note that the mobile charge carriers in semiconductors may have either sign of

electric charge and account for the unusual Hall effect measurements mentioned in

§ 5.b.

Having now “explained” the four defects of the Drude–Sommerfeld model, it is

time to end this lightning survey of solid state physics.


