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Figure 1: Examples of Event-Related Causal Knowledge in Wikidata and Wikipedia

ABSTRACT
In this short paper, we present our preliminary results on build-
ing a Knowledge Graph (KG) of events and consequences with
application to event forecasting and analysis. A base KG is first con-
structed using existing concepts and relations in Wikidata. Using
an automated unsupervised knowledge extraction pipeline, causal
knowledge is extracted fromWikipedia articles to augment the base
KG. We show examples from the base and the augmented KG, and
discuss a few challenges in building a high-quality KG. We also dis-
cuss a few potential directions that the Wikimedia community can
work on to improve the representation of event-related knowledge
in Wikipedia and Wikidata.1
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1This paper has been presented at the Wikidata workshop at ISWC 2021.
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1 INTRODUCTION
While prior work has considered knowledge-driven forecasting
of future events [9, 10], curating large collections of causes and
effects [4, 8], and event-based knowledge graphs (e.g., GDELT
GKG [7]), there are no rich structured sources of knowledge around
major societal events that can be queried directly to reason about
the potential consequences of ongoing events. In this paper, we
report on our initial results on curating such a source of knowledge
from Wikidata and Wikipedia.

Wikipedia is a rich source of knowledge about major events
and their consequences. Major newsworthy events often result
in many additions and new pages describing various aspects of
the events in detail. In particular, there are often descriptions of
causes and effects of events, either explicitly in text, or implicitly
in statements, sections, or descriptions of timelines of events. An
effective representation of this knowledge in the form of a rich
knowledge graph can enable a deep analysis of past events and their
consequences. This can in turn be used as amechanism of predicting
the potential consequences of ongoing events by mapping them to
past similar events in the knowledge graph.

Wikidata [12] aims at representing the rich knowledge avail-
able in Wikipedia in structured form. As shown in Figure 1, there
are existing causal relations such as has_cause and has_effect
between many event-related concepts. However, there are many
explicit and implicit causal relations described in Wikipedia articles
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that are missing from Wikidata. In what follows, we first show
how we can turn the existing event-related concepts and causal
relations in Wikidata into a base knowledge graph of events and
consequences geared towards future event prediction and analysis.
We then describe an unsupervised knowledge extraction pipeline
that uses the textual descriptions of events in Wikipedia articles
to augment the base knowledge graph. Using a few examples, we
discuss the strengths and weaknesses of the approach. Finally, we
discuss a few directions for future work.

2 KNOWLEDGE GRAPH OF EVENTS AND
CONSEQUENCES

We first construct a base knowledge graph of events and conse-
quences from existing concepts and links in Wikidata. Since our
goal is analyzing major newsworthy events and their consequences,
we only include in the base knowledge graph those event types that
at least one of their instances have an existing link to a Wikinews
article. This way, we ensure that out of the thousands of subclasses
of type occurrence (Q1190554) and their instances, we only in-
clude events that are likely to receive news coverage. We then
query for all the existing causal relations in Wikidata using prop-
erties such as has effect (P1542), contributing factor of
(P1537), immediate cause of (P1536) and their inverse prop-
erties. We then group the event types that are linked directly or
through their instances. The result is a collection of event objects
that are event types (classes in Wikidata), each associated with a
list of consequenceswhich are also event types. Each consequence
for an event has a list of examples with each example having a
cause event instance and an effect event instance. Events and
consequences are also annotated with a set of base scores derived
from simple frequency analysis, e.g. the number of example pairs of
instances, the number of triples for the event type and its instances,
and the number of Wikipedia pages linked to instances of the type.
The result is a collection of event types and their consequences,
along with examples for each consequence, and scores that can be
used for ranking of potential consequences for a given event.

Our current version of the base KG contains 50 source events
(classes), 427 consequences, and 563 examples (instances). This
output is a result of running 2,762 SPARQL queries to retrieve all
the concepts and relations as well as their included properties and
statistics. Figure 2 shows a few event types linked to coup d’état
(Q45382), instances (examples) for one of the consequences, and
their JSON representations. This Wikidata-based representation
of events and consequences not only enables retrieval of potential
consequences for a given type of event, it also enables a deeper
analysis of potential consequences using the rich structured knowl-
edge around the Wikidata concepts. As a simple example, one can
group potential consequences by geographic locations associated
with the cause and effect events.

3 CAUSAL KNOWLEDGE EXTRACTION
As mentioned earlier, there are many causal relations expressed
explicitly or implicitly in Wikipedia articles that cannot be found
on Wikidata. We use an automated unsupervised causal knowl-
edge extraction pipeline to augment the base KG using natural
language understanding. The pipeline, shown in Figure 3, relies on

pre-trained neural Question Answering (QA) and Entity Linking
(EL) models. It consists of the following steps: a) A collection of
causal questions are generated using a set of templates, such as
“What could X cause?" or “What was a major consequence of X?"
where X is a label of an event type or instance, b) a pre-trained
neural QA model is used to find the answer fromWikipedia articles
associated with the target event, and c) the answers are linked to
Wikidata using pre-trained neural entity linking models based on
BLINK [13].

At the time of this writing, we have applied the causal knowledge
extraction pipeline only to the opening paragraphs of a collection
of Wikipedia articles that describe instances of events that can be
found in the base KG. Figure 4 shows examples of the extracted
causes and consequences for the same coup d’état (Q45382)
event used in the base KG example in Figure 2. Out of the six
extracted consequences, one was also in the base KG (conflict
(Q180684)), one is a superclass of of an event in the base KG
murder (Q132821) which is a superclass of political murder
(Q1139665) and the other four extractions were not in the base KG.
The figure also shows an example for the discovered consequence
bomb attack (Q891854). The examples in the output KG from
this pipeline also include a list of mentions that are answers from
the QA model and come with a confidence score answer_score,
and a linking_score that is the confidence score of linking the
mention text to the Wikidata entity.

As the examples show, the pipeline is capable of extracting some
very interesting causal relations that could not be found on Wiki-
data. We have found the overall quality of the output to be high
even without any effort on tuning the models and parameters. One
major quality issue in the current output is the wrong direction of
the edges which is also evident in Figure 4. This is mainly a result
of the question answering model returning cause instead of effect
and vice versa. A potential solution is applying a custom classifier
on top of the output, possibly by applying the outcome of our prior
work on binary causal question answering [3] and using Natural
Language Inference (NLI) for causal relation classification [1].

4 LESSONS LEARNED & FUTUREWORK
Our current results show a number of challenges, some of which
could be addressed by the Wikidata community:

• One simple but classic problem we are facing in using event-
related Wikidata entities is the inconsistency in instance
of (P31) statements. One example as shown in Fig-
ure 4 is the event death of Eduardo Frei Montalva
(Q5247432), which at the time of this writing, is an in-
stance of murder (Q132821), death (Q4) and certain
aspects of a person’s life (Q20127274), whereas the
right class consistent with the base KG would be political
murder (Q1139665) (which is a subclass of class murder
(Q132821)).

• Some causal relations expressed in text cannot be repre-
sented using the existing entities and relations on Wikidata.
For example, the Wikipedia article in the example in Figure 1
states that the pandemic has caused “temporary decreases
in emissions of pollutants and greenhouse gases". There are
currently no events or event types representing a decrease or
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Figure 2: Example Events and Consequences from the Base KG
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Figure 4: Example Augmentations by the Causal Knowledge Extraction Pipeline
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a change in pollutants and greenhouse gases. One potential
solution could be a “has effect on" relation that could link
the pandemic concept to e.g. carbon dioxide emissions
(Q3588927) along with attributes that could state whether
the effect is temporary and whether it is a decrease or in-
crease.

• Another direction that could have a significant effect on
the community would be a tighter integration between
Wikinews and Wikidata. For example, the authors of
Wikinews articles can be encouraged to create related Wiki-
data items and specify causes of the events being described.
On the Wikidata side, better representation of event classes
and event-related concepts along with better alignment with
Wikinews categories and sitelinks can provide the commu-
nity with improved retrieval and news analysis capabilities.

We are currently working on improving our causal knowledge
extraction pipeline in several ways, and performing a thorough eval-
uation of the quality of the extracted knowledge. A major challenge
in using state-of-the-art causal relation extraction solutions [14]
and benchmarks [5] is their focus on commonsense reasoning as the
end application. One direction we are pursuing is publicly releasing
our base KG along with a linked corpus of text from Wikipedia,
that can be used as a benchmark for causal relation extraction and
generic knowledge base completion solutions (e.g., IntKB [6]). We
also plan to investigate the application of the knowledge graph in
event forecasting [2] and enterprise risk management [11].
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