X-RAY FLUORESCENCE CHARACTERIZATION OF THE OBSIDIAN FLOWS FROM THE MOUNT EDZIZA VOLCANIC COMPLEX OF BRITISH COLUMBIA, CANADA

by

Dorothy I. Godfrey-Smith B.A., University of Calgary, 1980

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS OF

THE DEGREE OF MASTER OF ARTS

in the Department of Archaeology

 \bigcirc

Dorothy I. Godfrey-Smith 1985

SIMON FRASER UNIVERSITY

October 1985

All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.

ABSTRACT

The purpose of this work was to determine how many chemically distinct obsidian flows exist in the Mount Edziza Volcanic Complex; to characterize these obsidian flows chemically; and to apply this information towards the understanding of prehistoric obsidian exploitation within the Complex. The Complex, located in northwestern British Columbia, constitutes the largest obsidian source area in Canada; by virtue of its size, accessibility, and location, it is also the most significant prehistorically exploited obsidian quarry in the Northwest. This is attested to by the wide distribution of artifacts made from Mount Edziza obsidian, extending hundreds of kilometres away from the Complex. This thesis reports the results of x-ray fluorescence analyses of both native obsidian rocks and of artifacts collected within the study area.

A set of 174 obsidian rocks from outcrop and gravel deposits was analyzed semi-quantitatively by energy-dispersive x-ray fluorescence, and the relative concentrations of a number of elements were determined. On the basis of these relative elemental concentrations, ten chemically distinct types of obsidian were identified. Each chemical type of obsidian was then correlated to a unique obsidian flow within the Complex.

The absolute concentrations of 28 major and minor elements in each of the ten obsidian flows were determined using wavelength-dispersive x-ray fluorescence. On the basis of these quantitative data, eight of the Edziza obsidians \cdot were found to have a peralkaline chemical composition; five of these fall within the class of rocks known as pantellerites, while three were classified as comendites. The other two flows were interpreted as subalkaline. The semi-quantitative energy-dispersive x-ray fluorescence method was also applied to determine the sources of 169 obsidian artifacts from three archaeological sites situated within the Mount Edziza Volcanic Complex. The results indicate preferred exploitation of the high-elevation obsidian sources from one central location. The results also suggest that the people who exploited the Complex ignored all the poorer-quality low-elevation obsidian scatters, and that they may not have exploited the nigh plateau region north of Raspberry Pass. This raises the possibility that the obsidian sources north of Kaspberry Pass were not accessible at that time, perhaps due to harsher environmental conditions than at present.

I

1

ACKNOWLEDGEMENTS

I would like to thank Erle Nelson, John D'Auria and Knut Fladmark for the support and advice they have given me as members of my supervisory committee. I also thank Jack Nance, Mark Skinner, and Jon Driver, of the Department of Archaeology, for their assistance.

I am particularly indebted to Dr. J.G. Souther of the Geological Survey of Canada, Vancouver, for the use of his geological obsidian rock collection, and his generous help with other aspects of this research. I am also grateful to Dr. D.J. Huntley of the Physics Department for his encouragement and interest in this project, and for his critical comments on the draft of this thesis. Thanks, too, to Dr. G.W. Berger, whose comments were very useful in clarifying some of my thinking.

My warm thanks to Dr. S.E. Calvert, Brian Cousens, and Maureen Soon who provided the facilities and friendly technical support at the XRF laboratory in the Department of Oceanography, University of British Columbia, and to Mike Cackette and C.J. Jones who provided technical assistance in the XRF lab in the Chemistry Department at SFU. I also thank C. Bollong for his assistance.

Dr. L.A. Utracki of the NRC Industrial Materials Research Institute in Montreal was very helpful with CISTI library searches. I thank him and Dr. J. Masounave, also of IMRI, for making available the Institute's scanning electron microscope/ESCA research facilities, for the ESCA analyses presented here.

This research was partially supported by Simon Fraser University and the National Sciences and Engineering Research Council of Canada.

TABLE OF CONTENTS

-

1

Ţ

ľ

ľ

ľ

ľ

Ĩ

ľ

I

I

Ī

	TADEL	. OI CONTENTS	DACE
Ad s Ac k	tract nowleagements		iii v
Tab	ole of Contents		vi
Lis	t of Tables		viii
Lis	t of Figures		ix
INT	RODUCTION		1
RES	EARCH GOALS		3
STU	DY AREA		5
	a. Archaeological significanc b. Geology	e	5 8
PRE	VIOUS RESEARCH IN OBSIDIAN CHAR	ACTERIZATION	9
	Review of obsidian-sourcing m	nethods	10
SEC	TIUN 1: OBSIDIAN CHEMICAL CHAR AND GEOLOGICAL FLOW ID	ACTERIZATION ENTIFICATION	14
	Sample selection Sample treatment Research design Analytical conditions Data reduction Reproducibility Other methods Data normalization Scatterplots Mount Edziza obsidian type sp Statistical treatment Correlation of chemical types Obsidian flow identification	ectra with geological obsidian flows summary.	14 17 17 18 19 20 24 25 26 33 37 43 52
SEC	TION 2: QUANTITATIVE CHEMICAL A MOUNT EDZIZA OBSIDIAN F	WALYSIS OF TEN LOWS.	56
	Sample selection and preparat Preparation of pressed pellet Preparation of glass disks	cion S	56 57 58
	a) natural surface leach b) laboratory procedures c) experimental precisio	ning of constituent elements on and accuracy	59 60 61

Result	S	PAGE 66
a)	A comparison of the obsidian flows with the basalt comendite series of the Mount Edziza Volcanic Complex A comparison of the chemical compositions of the Mount Edziza obsidian flows with other obsidian sources of the	69
c) d)	world Geochemical interpretations on the basis of absolute element concentrations Relative <u>vs</u> absolute element concentrations	74 78 84
SECTION 3:	A LOOK AT LOCAL OBSIDIAN EXPLOITATION PATTERNS THROUGH A STUDY OF FIVE ARCHAEOLOGICAL LITHIC ASSEMBLAGES.	90
Introd Descri Hypoth H H H The ch Artifa Discus Cultur	uction ption of the sites and assemblages chosen for study eses on possible local obsidian procurement strategies: iTp-1 House 1 iTp-1 Area 2 iTp-63 Component 1 iTp-63 Component 2 hTq-1 emical analysis of five artifact assemblages ct analysis results sion al interpretations summary.	90 91 98 99 99 100 101 103 106 111
CONCLUSION		113
APPENDIX A:	Study material provenience.	117
APPENDIX D.	Mount Edziza obsidian flows.	118
APPENDIX C:	Edziza source obsidians: uncorrected raw peak counts obtained from the GAMANAL spectrum-stripping program.	127
APPENDIX D:	Edziza obsidian source data normalized to the Compton peak.	131
APPENDIX E:	Edziza obsidian source data normalized to the Zr peak.	135
APPENDIX F:	Results of the ED-XRF Analysis of 58 Formed Artifacts from HiTp-1, HiTp-63, and HhTq-1.	139
REFERENCES		141

Ī

I

I

ľ

I

I

ľ

Ī

ľ

I

ľ

ľ

Ĩ

I

Ī

I

vii

LIST OF TABLES

c

ľ

ľ

ľ

ľ

Ī

Ĩ

Ī

ľ

ľ

1

I

I

I

i

	e e e e e e e e e e e e e e e e e e e	PAGE
ì.	Chemical and physical methods used in obsidian source studies.	11
2.	Instrumental reproducibility - 15 nonconsecutive analyses of JSTU.	23
3.	Relative element concentrations in ten Mount Euziza obsidian flows.	32
4.	A-coefficients for the ten chemical groups of Mount Eaziza obsidian.	39-40
5.	a) Effect of surface weathering on element concentrations in two Euziza obsidian flows.	63
	b) Effect of sample preparation on element values.	64
	c) Analytical precision and accuracy for all major and minor element analyses.	65
6.	Absolute chemical concentrations of ten Mt. Edziza obsidian flows.	67
7.	The chemical compositions of several different types of obsidian from around the world.	75
8.	Obsidian artifact source analysis summary.	104

LIST OF FIGURES

ſ

ľ

ľ

ľ

1

ľ

1

I

1

I

ľ

[

ľ

[

		PAGE
1.	The Hount Edziza study area.	6
2.	Obsidian sample locations. a) samples collected north of Raspberry Pass. b) samples collected south of Raspberry Pass.	15 16
3.	Time-test results: element peak areas as a function of the measurement period for nine consecutive analyses of an obsidian rock sample JSTD.	21
4.	Normalized scatterplots showing the separation of all obsidian samples into ten chemically distinct clusters. a) Zr/Compton vs Rb/Compton b) Y/Zr vs Fe/Zr c) Rb/Compton vs Fe/Compton d) kb/Zr vs Fe/Zr e) Zr/Compton vs Fe/Compton f) Rayleign/Zr vs Fe/Zr g) Nb/Zr vs Fe/Zr h) Nb/Zr vs Rb/Zr	28 28 29 30 30 31 31
5.	Typical ED-XRF spectra of ten chemical types of Hount Edziza obsidian. a) chemical types 1 to 4. b) chemical types 5 to 8. c) chemical types 9 and 10.	34 35 36
6.	Natural geographic distributions of the ten Mount Edziza obsidian flows identified. a) areas north of Raspberry Pass. b) areas south of Raspberry Pass.	45 46
7.	Harker variation diagrams for ten Mount Edziza obsidian flows characterized chemically. a) major elements. b) trace and rare earth elements.	71 72
8.	The relationships between several of the minor and trace elements in ten Nount Edziza obsidian flows. a) RD vs Ce, Nd, ND, and Y. b) Nb and Y vs Zr and Zn.	82 83

ix

	PAGE
 Comparison of the two analytical methods used in the chemical characterization study of the Nount Edziza obsidian flows. a) ED-XRF relative concentrations vs WD-XRF absolute 	
concentrations for 11, Mn, Fe, and Zn.	63
b) ED-XRF relative concentrations vs WD-XRF absolute	86
concentrations for KD, 1, 2r, and ND.	00
10. Location of the archaeological sites discussed in the text.	92
11. Results of the obsidian artifact source analysis.	105

1

1

ľ

ľ

1

1

Ī

ľ

I

ľ

Ĩ

Į

INTRODUCTION

It is known that many natural substances which were used by prehistoric peoples for the manufacture of goods, can be treated as tracers of longdistance contact. This idea has been applied successfully in the investigations of trade and exchange of materials such as obsidian and flint, the gem-quality stones carnelian and jade, the marine shells conch and dentalium, metal ores, and several types of rock used in ancient architecture (Jones 1983; Washington 1921; Pires-Ferreira 1976; Shotton and Hendry 1979). Some of these studies are summarized by Kempe and Harvey (1983).

Obsidian, a natural volcanic glass, was used throughout man's prehistory to make tools, ceremonial objects and ornaments. It continues to have certain minor uses even today. Because it is a glass, it forms an extremely sharp edge when freshly broken. It is amorphous and isotropic, and is relatively easy to work, either through flaking or cutting and polishing. It occurs naturally only in areas which have experienced some volcanic activity in the recent (late Tertiary or later) geologic past (Jack 1976). These areas may be young mountain ranges such as the Cordillera of North and South America, or volcanic islands formed at sub-oceanic hot spots and the junctions of converging or diverging tectonic plates.

Obsidian devitrifies relatively quickly, and so it no longer exists in the very old mountain ranges of the world. For this reason, obsidian sources throughout the world are few and highly localized compared to other raw materials used to manufacture prehistoric goods, such as flint or clay deposits. The success of the methods which correlate obsidian artifacts with geological sources is due to the fact that a particular flow of obsidian is a geologically instantaneous event, and a high degree of chemical homogeneity is frozen into its composition. Obsidian artifacts are therefore chemically

identical to the parent flow from which the raw material was collected. Since the formation of obsidian is a relatively rare geologic occurrence, and is confined to localized areas (either as flows or as clasts in nearby secondary deposits), correlation of the chemical type of obsidian in artifacts with a single geological source provides a good base for the study of human travel, material exchange and cultural contact in prehistory.

RESEARCH GOALS

The principles outlined above form the basis of the study undertaken here, which was to identify and chemically characterize obsidian from the Mount Edziza Volcanic Complex in northwestern British Columbia, and to apply these results to an archaeological problem. This volcanic complex is known to contain the largest source of obsidian in Canada. It is also known to have been heavily exploited in prehistoric times, and the obsidian quarried there was widely traded to the north, east, and south (E. Nelson, pers. comm.).

This project was designed in three parts, each of which addressed a aifferent goal. These are presented and discussed in three separate sections below.

Section 1.

The primary purpose of this research was to establish:

a. the number of chemically distinct obsidian flows within the Mount Edziza Volcanic Complex.

b. the geographic distributions of primary outcrops and reworked erosional deposits of each flow.

c. which outcrops and reworked deposits possess obsidian of the quantity and high quality suitable for artifact manufacture.

a. which deposits were most likely to have been easily accessible and most extensively exploited by prehistoric people.

The technique chosen to distinguish the obsidian sources was energydispersive x-ray fluorescence (ED-XRF). This method was used nondestructively, and it yielded semi-quantitative results. The results obtained here and the ED-XRF method were also used in Section 3 (see below) in the correlation of obsidian artifacts to specific sources.

Section 2.

This section was designed to provide a quantitative determination of the chemical composition of each obsidian flow identified. These obsidian data would then serve as a reference library for other researchers using other analytical methods, and would form part of the worldwide database of obsidian chemical compositions. Wavelength-dispersive x-ray fluorescence (WD-XRF) was employed here to determine the absolute major, minor, trace, and some rare earth element concentrations of each obsidian flow.

Section 3.

The purpose of the final part of this work was to apply the semiquantitative ED-XRF technique to a study of prehistoric obsidian exploitation patterns within the Mount Edziza Volcanic Complex. A large number of obsidian artifacts from three archaeological sites within the Complex was examined to determine how the diversity of chemical types in the artifacts correlates with the natural distributions of the chemical types of obsidian nearest to the locations of the sites. A total of five distinct lithic assemblages was analysed in this manner. One of the sites was a single-component, multifunction campsite. The other two sites were made up of two components: a primary reduction lithic workshop component, and a multi-function campsite component.

The ED-XRF analyses of Sections 1 and 3 were carried out in the Chemistry Department at Simon Fraser University. The WD-XRF analysis used in Section 2 was carried out in the Oceanography Department at the University of British Columbia.

STUDY AREA

The Mount Edziza Volcanic Complex, also known as the Mt. Edziza -Spectrum Plateau Complex, is located in northwestern British Columbia (Fig. 1). It covers an area of approximately 1,000 square kilometres in a Provincial Park and is situated within the Stikine river drainage, near the Iskut and the Klastline Rivers. It forms a rolling upland plateau, bounded by high, steep escarpments and is cross-cut by deep glacially eroded valleys. Its topography reflects a complex history of recent volcanic and glacial events.

a. Archaeological significance

The Edziza Complex is significant in Northwest prehistory as the largest obsidian source in Canada. This obsidian was readily available in the form of clasts both on top of the plateau and on valley floors for sustained aboriginal lithic procurement purposes (Fladmark 1984). It was thus heavily exploited in prehistoric times and widely traded east, north, and south. Artifacts made from this obsidian have a distribution wider than artifacts made from any other western Canadian obsidian types. To the north, artifacts made from Mt. Edziza obsidian overlap in archaeological occurrence with obsidian artifacts that correspond to the Alaskan and Yukon obsidian sources. They also occur in archaeological sites located further south than the Anahim-Ilgachuz-Mackenzie sources of central British Columbia, and overlap with obsidian artifacts from sources located in southern Oregon (ibid.).

Even in very early times, certainly by 6000-7000 BP if not earlier, Edziza obsidian occurs in archaeological contexts remote from the source. Its presence has been confirmed in the Yukon at the Moosehide Site (LaVk-2) by 6500 BP (J. Hunston, pers. comm.), and in British Columbia at Charlie Lake Cave (HbRf-39) by 7000-6000 BP. So far, it has also been found in two sites on the Peace and Athabasca Rivers in Alberta (Carlson 1984). By late prehistoric times its southern distribution in archaeological contexts has extended to Alexis Creek, near the confluence of the Chilcotin and Fraser rivers (Godfrey-Smitn and D'Auria 1984).

The Edziza Complex is also significant for the important overland route which leads through it. This trail runs north to Atlin and southeast across Raspberry Pass to Terrace and further south. It provides a relatively easy and low-elevation route through the Edziza-Spectrum Ranges, and also gives the easiest land access into these mountains. In historic times the Telegraph Trail was erected along this trail in order to link Dawson with the world to the south. The Stikine River, whose tributaries Iskut and Mess Creek drain the Edziza Plateau, used to be a major route of travel to and from the Pacific coast. Thanks to this, and to the easy access offered by other major rivers which drain northward into different seas, the Edziza Complex lies at a convenient communications cross-road of the Northwest. Its strategic natural location was a significant factor in the widespread popularity it enjoyed in the past as a source of good quality raw obsidian (Fladmark 1982).

In modern times, areas of the Complex other than the Raspberry and Bourgeaux Creek valleys have remained largely undisturbed. A 1981 archaeological survey of the Spectrum Plateau, the main Edziza plateau, and the Raspberry and Bourgeaux valleys established that people have been using

these valleys intensively for at least the last 5000 years (Fladmark 1982).

b. Geology

The Complex is near the centre of the Stikine Volcanic Belt, about 300 km east of the transcurrent boundary between the North American and Pacific tectonic plates. It is associated with northerly trending Cenozoic normal faults, indicative of an extensional tectonic environment (Souther and Dating of the Edziza Complex (Souther, Armstrong and Harakal Hickson 1984). 1984) indicates that it is a set of late Cenozoic to Quaternary composite volcanoes that erupted in several cycles between 10 million and 2 thousand years ago. On the basis of an alternating stratigraphy of salic (highsilica), intermediate, and basic (low-silica) rock units, the Complex is interpreted as the product of five major magmatic cycles. It is further subdivided into 15 formations, each of which originated from a different centre or group of centres. The plateau is made up of large volumes of alkali olivine basalt interbedded with the salic rocks trachyte and comendite. Thin beds of unaltered obsidian are present as a quenched basal layer under these trachyte and comendite flows (Souther and Hickson 1984).

PREVIOUS RESEARCH IN OBSIDIAN CHARACTERIZATION

Because obsidian sources are so highly localized and the material was traded over large distances, it is obvious that a means of distinguishing the obsidian which comes from different sources can be of great value to archaeologists. Early attempts to do so concentrated on physical properties such as colour, density, or refractive index, and on the concentrations of the major elements in the glass (Reeves and Ward 1976). However, since obsidian can form only from specific types of magma which vary little in chemical composition, most of the above criteria exhibit a narrow range of variation, and are not adequate for the purposes of reliable source characterization. The problem was first solved by Cann and Renfrew (1964) who used the variation of the concentrations in trace elements, principally Ba and Zr, to distinguish obsidians from several sources in the Near East. They then applied these methods to the study of obsidian sources and artifact distributions in the central Mediterranean and Aegean regions (Dixon, Cann and Renfrew 1968), and in the Near East (Renfrew, Dixon and Cann 1968).

At about the same time and following the success of Cann and Renfrew, researchers around the world began to apply a variety of methods of trace element analysis to obsidian sourcing. In North America these early investigations were concentrated at Berkeley (Weaver and Stross 1965; Heizer, Williams and Graham 1965) and at the University of Michigan (Griffin 1965; Griffin and Gordus 1966). Early and active interest in reliable obsidian sourcing was also pursued in New Zealand (Green 1962; Green, Brooks and Reeves 1967); it continues today. A good historical summary of obsidian studies in New Zealand is provided by Reeves and Ward (1976).

Obsidian sourcing in Canada was initiated by Roscoe Wilmeth (Evans and Wilmeth 1971; Wilmeth 1973). It was carried out with the use of neutron

activation analysis. An energy-dispersive x-ray fluorescence technique was successfully developed and applied by Nelson, D'Auria and Bennett (1975).

The past 20 years have seen a massive accumulation of research data on the subject of obsidian source characterization. Regional summaries on sourcing and its archaeological applications in California, Mesoamerica, New Zealand, and the Mediterranean and Near East are presented in Part II of the <u>Advances in Obsidian Glass Studies</u> (Taylor 1976:183-333). Hester (1979) has compiled a detailed summary on the Mesoamerican work. Leach and Davidson (1981) have done so for the southern Pacific regions, and Thorpe et al (1984) for central and eastern Europe. Cann (1983) also provides an updated world overview of the subject.

Review of Obsidian-Sourcing Methods

To date, a great variety of analytical methods has been applied to obsidian studies (Table 1). As mentioned above, the early attempts at obsidian characterization, based on petrographic thin section, refractive index, and density, met with very limited success.

Characterization on the basis of bulk element composition through wet chemical methods, major element x-ray fluorescence, and electron microprobe, have been partially successful (Michels 1982, Merrick and Brown 1984), but they are limited by the small range of major element variations in obsidianforming magmas. The electron microprobe is the most efficient of the major element characterization methods. It has similar desirable characteristics for quantitative and qualitative work as the trace element methods discussed below, but it is insensitive to trace elements (Smith 1975:21D; Bizouard 1982; Appendix B, this work).

TABLE 1

Chemical and physical methods used in obsidian source studies

HETHOD

REFERENCE

Physical Characteristics:

Refractive Index Uensity Thin-section Petrography Transmitted Light

Green 1962 Marshall 1936 Shotton & Hendry 1979 Schirmeisen 1936

Major Element Composition:

Electron Microprobe Analysis ESCA - XPS

Bizouard 1982 Michels 1982

Trace Element Composition (Non-destructive):

Instrumental Neutron Activation Analysis Evans & Wilmeth 1971 Wavelength-Dispersive X-Ray Fluorescence Stevenson et al 1971 Energy-Dispersive X-Ray Fluorescence Nelson et al 1975 PIGME, Proton-Induced Gamma Ray Emission Coote et al 1972 PIXE, Proton-Induced X-Ray Emission Coote et al 1972.

hielson et al 1970

Trace Element Composition (Destructive):

Optical Emission Spectography Cann & Renfrew 1964 Atomic Absorption Spectrophotometry Wheeler & Clark 1977 Atomic Absorption & Flame Emission Armitage et al 1972 Radiochemical NAA Bird, Duerden & Wilson 1981

Other Methods (not in common use):

U - Th Natural Beta Emmission Leach et al 1978 Mossbauer Spectroscopy Chavez-Rivas et al 1980 Magnetic Properties McDougall et al 1983 Thermoluminescence Huntley & Bailey 1978 Strontium Isotope Analysis Gale 1981 Fission Track Age Analysis Durrani et al 1971. Miller & Wagner 1981

Characterization by minor and trace element concentrations is now accepted as the most powerful technique available. Fully quantitative neutron activation, x-ray fluorescence, and the new ion beam techniques (protoninduced x-ray emission PIXE, and proton-induced gamma-ray emission PIGME) all require that the samples be uniform, ie. ground or dissolved, but do not destroy them during analysis, so that a repetition of any analysis is theoretically possible. The ion beam techniques PIXE and PIGME offer the added advantage of increased sensitivity and thus smaller sample sizes, but require an accelerator. NAA, widely used, necessitates access to a source of neutrons, and it leaves the samples moderately radioactive for several years. All four of these tecnniques also permit semi-quantitative analysis which can be carried out on archaeological material without altering its physical shape (see Bird, Duerden and Wilson 1983:440-451; Shotton and Hendry 1979:77-82), although the necessity for complex instrumentation and the problems associated with NAA-induced residual radioactivity of the artifacts remain.

The use of some trace-element detection methods for archaeological obsidian characterization is no longer justifiable because they are completely destructive. For example, optical emission spectrography and atomic absorption spectrometry consume the sample during analysis, and any repetitions require further destruction of the artifact.

The feasibility of distinguishing obsidian sources on the basis of Mossbauer spectroscopy (Chavez-Rivas, Regnard and Chappert 1980, T.Tominaga and Y.Minai 1984), thermoluminescence (Huntley and Bailey 1978), and magnetic properties (McDougall, Tarling and Warren 1983), among others, has been demonstrated. These seldom-used methods indicate that if necessary, ousidian may be source-typed with a measure of success even in the absence of multitrace-element detecting instruments, but they are not likely to replace the

more powerful techniques.

T

and the second se

In view of the above, certain criteria had to be met when choosing the technique to be used in this study. The criterion of non-destructiveness was judged most important. Since the analysis of artifacts was to be included, a method permitting completely non-destructive analysis, yielding semiquantitative results, was judged preferable. Secondary criteria of costeffectiveness, minimum of pre-treatment, speed and simplicity of analysis, and availability of the analytical equipment, were also considered. Among the non-destructive methods of trace element analysis in Table 1, energydispersive x-ray fluorescence is by far the cheapest, simplest, and fastest in use.

Such an energy-dispersive x-ray fluorescence spectrometer is readily available at Simon Fraser University. This spectrometer uses a high-energy x-ray tube plus a secondary target as its excitation source. At present, a choice of six secondary targets (S, T², Zn, Mo, Ag, and Sm) is available, making it possible to detect with a high degree of efficiency the K emission lines of elements in the range of the periodic table from Al to I, as well as the L emission lines of the heavier elements. This system offers far more flexibility and is potentially more powerful than energy-dispersive x-ray fluorescence instruments that use radioactive isotopes (for example, Am-241) as their excitation sources. Thus the spectrometer most easily available is not only based on the optimum method for non-destructive artifact analysis, but also offers the potential for efficient detection of a very wide range of elements. It was therefore chosen for this work.

SECTION 1

OBSIDIAN CHEMICAL CHARACTERIZATION AND GEOLOGICAL FLOW IDENTIFICATION

Sample Selection

The key objectives of this section were to identify how many chemically distinct types of obsidian are present in the Mount Edziza Volcanic Complex, and to determine the geographic distributions of each of these chemical types. Where possible, the attempt was also made to correlate each chemical type with a specific geological obsidian flow, several of which are found within certain geological formations of the Complex.

The material for the sourcing study consisted of 174 obsidian rock samples. Over half of the rocks were unworked naturally-occurring obsidian pebbles collected from erosional contexts such as talus slopes, river gravels, or high altitude surface scatters that had eroded out of the underlying obsidian bedrock. These were collected by Fladmark and Nelson in 1977, and by Fladmark in 1982 as part of archaeological surveys in the area (Fladmark and Nelson 1977, Fladmark 1982). The number of samples collected at each locality varied between 3 and 24. Also included in the data base were obsidian rocks collected over a span of several field seasons between 1965 and 1981 by J.G. Souther of the Geological Survey of Canada and loaned by him for this study. These pieces were collected from distinct bedrock outcrops during well-documented geological survey transects, and are associated with specific geological formations within the Edziza Volcanic Complex (for example, the Spectrum Formation, and the Armadillo Formation). These bedrock samples are extremely valuable in a sourcing study, since they can be used to pinpoint the geological origins of obsidian samples from erosional contexts. Sample locations for all the pieces used in this study are shown in Figure 2. and their provenience is detailed in Appendix A.

FIGURE 2a: Obsidian sample locations: samples collected north of Raspberry Pass.

LEGEND:

- Outcrop samples
- Gravel samples

----- Limits of existing glaciers

Elevations in feet
 Contour interval 500'

10

Ī

100

.....

FIGURE 2b: Obsidian sample locations: samples collected south of Raspberry Pass.

LEGEND:

- Outcrop samples
- Gravel samples

----- Limits of existing glaciers

Sample treatment

Consider and the state of the s

To ensure uncontaminated surfaces, all rocks were scrubbed with a stiffbristled brush under running de-ionized water. A fresh flake was then detached for analysis. Those few that were too small to make flaking practical, were analyzed on their weathered outer surfaces, providing these were not so irregular that the rock could not be placed correctly over the active detection area. This decision was based on the previous work of Nelson, D'Auria and Bennett (1975), who indicated that no significant amount of chemical alteration of the relevant trace elements takes place in the cortex of an obsidian rock.

Research Design

A blind experiment was conducted, in which the number and the locations of the obsidian flows under study were unknown. The locations of the rock samples submitted by J.G. Souther (samples 1.01 to 1.38) were completely unknown. The locations of the obsidian samples collected by the archaeologists were known. However, since they were sampled from very large erosional contexts such as coarse river gravels and moraines, and past erosive action made "mixtures" commonplace, these were judged unlikely to represent pure obsidian flows.

Duplicate analyses of some samples were occasionally performed. An analysis was repeated if the original result gave a low total number of counts, indicating that the sample missed the active detection area in the instrument. In all, 32 of the original 174 rock samples were analysed twice, and the complete data set used for chemical type characterization consisted of 206 obsidian spectra.

Analytical Conditions

Chemical type differentiation of the obsidian samples was accomplished through the use of energy-dispersive x-ray fluorescence (ED-XRF).

The apparatus and method used here were developed by Nelson, D'Auria and Bennett (1975). The equipment used consisted of an Au-anode x-ray tube, a liquid-nitrogen cooled Si(Li) detector, and a pulse amplifier, all supplied by Kevex Corp. (California), plus a Nuclear Data (ND66) multichannel pulseheight analyzer. A Ag secondary target and filter were chosen for this application. The sample chamber held up to 16 samples for automatic sequential analysis. Sample changing and data collection were done automatically under the control of an IBM PC-XT microcomputer. The samples were placed into aluminium sample cups (3.5 cm diameter) with 0.00015" mylar spectrofilm screens and analyzed in air for 10 minutes.

The use of a Ag secondary target, under operating conditions of 40 keV and 20 mA, permitted the detection of x-rays in the energy range of 2.8 keV to 22.2 keV. This corresponds to the range of K-alpha x-rays from the elements in the portion of the periodic table between Ar and Mo (Z=18 to 42). Typical spectra observed for the Edziza obsidians are shown in Figure 5 (p. 34-36).

A narrow-beam collimator (2.6 mm diameter) was placed in front of the detector, so that the active detection area was an irregular ellipsoid of 2 approx. 0.5 cm. The characteristic x-rays emitted by the elements in an obsidian sample were detected by the Si(Li) detector and these data were stored in 512-channel groups in the pulse-height analyzer. From there the spectra were automatically written onto a magnetic tape and transferred to the SFU mainframe computer for further analysis.

Data Reduction

of N. Malerto

-

The spectra were analysed for peak energies and intensities using a curve-fitting computer program GAMANAL (Gunnick and Niday 1972). This program fits a polynomial function to each peak it recognizes, calculates the peak area by integration, and calculates and subtracts from the total peak the background continuum. It also compares the mathematically derived function with the experimental data. This allows for fine-tuning of the calibration parameters for a best fit. The difference between an ideal-shaped peak and the peak actually detected can also be used as a measure of the instrument's efficiency in detecting the element in question.

GAMANAL holds two advantages over more primitive peak extraction routines. One is that it recognizes weak peaks more easily. More importantly, it resolves overlapping peaks (for example, Nb K-alpha + Y Kbeta) and separates them with a resolution of 0.02 keV. It was not able to separate the Rb K-beta from the Y K-alpha peak since these occur within 2.9 eV of each other. This separation was accomplished mathematically during later stages of the analysis. The disadvantages of GAMANAL are that it is more time-consuming than the simple peak-extraction routine of the ND66 pulse-height analyzer, and that it fails when it encounters a steeply-rising continuum such as that under the Compton and Rayleigh scatter peaks. For this reason, these scatter peaks were characterized by the sum of the five highest channels over each peak.

Peaks corresponding to the K-alpha and some K-beta x-ray emissions of the following elements were detected: K, Ca, Ti, Mn, Fe, Zn, Ga, Rb, Sr, Y, Zr, and Nb. A peak which corresponds to the L emission line of Pb was also detected.

Reproducibility

and the second second

To determine which of the thirteen elements detected would be most useful for flow discrimination given a reasonable measurement duration, a time-test was performed. A single specimen was analysed nine consecutive times for durations of 120 seconds to 6 hours. Its position was not changed between the analyses. Peak areas were then plotted against time on a log-log graph (Fig. 3). It was found that peak area was strongly linearly correlated with duration of analysis for the K-alpha emission lines of Fe, Rb, Y, Zr, and Nb. These correspond to the strongest five peaks in the obsidian spectrum. However, the peak areas corresponding to the elements K, Ca, Ti, Mn, Zn, Ga, Pb, and Sr, showed considerable scatter from linearity in all analyses of less than one hour's duration. This scatter is due to very low detection efficiencies of the instrumental setup for the elements at the lowenergy end of the spectrum (the elements K to Mn), and to poor counting statistics and low computer peak-extraction efficiencies associated with weak. peaks (Ga, Pb, and Sr). Reliable detection and extraction of these weak peaks would have required an analysis period of 1 to 1.5 hours per sample with this instrumental setup. This was judged impractical.

It was decided, therefore, to attempt to differentiate the full set of obsidian samples into distinct chemical types on the basis of the five strongest peaks detected in each spectrum (which correspond to the K-alpha emission lines of Fe, Rb, Y, Zr, and Nb), and to use a 10-minute measurement period per sample. Should these five elements have proved inadequate for successful flow discrimination, measurements of the lighter elements K, Ca, Ti, and Mn could have been performed using a Zn secondary target. This target would have detected them with a higher efficiency (see Cormie 1981:61-62,101-102). However, this was later found to be unnecessary.

Figure 3: Time-test results: element peak areas as a function of the measurement period for nine consecutive analyses of an obsidian rock sample JSTD.

Instrumental reproducibility was empirically determined for this study by 15 non-consecutive analyses of a single specimen (Table 2). The results indicate that regardless of the normalization used (for a discussion of normalization procedures, see below), only the elements Fe, Rb, Y, Zr, and Nb, and the Rayleigh scatter peak, had a standard deviation of less than or equal to 5% from the mean. Except for Zn (which had a 7% standard deviation), all other elements deviated by ten or more percent from the mean. For many elements (Ca, Ti, Ga, Sr) this deviation approached or exceeded 40%. This reproducibility test confirmed that the five elements chosen on the basis of the time-test for chemical characterization purposes had the lowest standard deviations among the thirteen elements detected. It also suggested that these deviations were sufficiently low that a 10-minute measurement period per sample was reasonable.

Clement/	1		5
Compton	-	Standard	×
Ratio	Mean	Deviation	Deviation
K	6.74	10.75	11
Ca	0.68	0.26	38
Ti	1.71	0.89	52
Min	3.34	U.67	20
Fe	264.35	13.78	5
Zn	13.77	0.99	7
Ga	2.49	1.06	43
Рb	3.24	0.59	18
Rb	80.13	2.69	3
Sr	0.57	0.22	39
Y	87.62	3.90	4
Zr	843.14	30.45	4
ND	123.34	6.59	5
Rayleign	704.31	8.15	. 1
Flewent/7	r		.76
Ratio	mean	Std. Dev.	Deviation
K	7.99	0.82	10
Ca	0.19	0.31	163
Ti	2.02	1.04	51
in	3.97	0.87	22
Fe	313.46	9.89	3
Zn	16.34	1.12	7
Ga	2.93	1.25	43
Pb	3.85	U.75	19
Rb	95.05	1.40	1
Sr	0.46	0.25	54
Y	103.90	1.99	2
ND	146.26	4.99	3

TABLE 2

[

1

I

I

I

Other Methods

X-ray electron spectroscopy (XES, or ESCA) was also investigated during the early stages of this study. This method detected elements (for example, Na and Si) which could not be detected with the ED-XRF setup above. The ESCA method was applied to flow discrimination on the basis of bulk elements. It was partly successful in distinguishing the two flows tested. Thus, it may be used to distinguish between some of the flows which are not very closely related. However, it was not sufficiently sensitive to distinguish reliably between flows which are very similar in their bulk element compositions. These results are summarized and compared with the results of ED-XRF analysis and WD-XRF analysis in Appendix B.

Data Normalization

The grouping of the 204 obsidian spectra into several discrete chemical types was based on the variation in the relative intensities of the elemental peaks in the EU-XRF spectra. Once the GAMANAL peak extraction was completed, all 204 obsidian spectra were analysed on an IBM 4341 mainframe computer at Simon Fraser University using MIDAS, a computer program for data manipulation and statistical analysis (Fox and Guire 1976).

All element peaks were normalized to the Compton scatter peak. The Compton scatter peak was chosen for normalization because it is proportional to the average atomic number of the sample being analyzed. A normalization to the Compton peak thus provides a semi-quantitative measure of the absolute concentrations of the elements identified.

In the original work of Melson, D'Auria and Bennett (1975), normalization to the Zr peak rather than the Compton peak was used. The Zr peak was chosen for normalization by Nelson, D'Auria and Bennett as "it is relatively intense in all the source types studied and is unlikely to be subject to weathering or surface contamination effects" (ibid:89). During the course of this work, however, it became apparent that the intensity of the Zr peak varied a great deal between the chemical types observed (compare types 7 and 10 in Figure 5), and so the decision was made to use the Compton peak instead.

The Zr normalization was done as well, for two reasons. First, methodological consistency with previously reported work on Mt. Edziza obsidian (ibid.) was judged important. Secondly, this procedure permitted a comparison of the discrimination success achieved with the two different methods of normalization. This comparison showed whether both methods gave
the same result, and which method was more successful in separating the full data set into discrete chemical types.

Scatterplots

Cartesian scatterplots of the data (Figure 4) were examined for the elements Fe, Rb, Y, Zr, and Nb, expressed as ratios with respect to the Compton peak. Scatterplots for the elements Fe, Rb, Y, Nb, expressed as ratios with respect to the Zr peak, were also examined. Scatterplots are a method of graphical data representation in which two variables can be examined at a time, and which allows clusters of points to be recognized by inspection.

This simple graphical procedure separated the data set into ten distinct chemical groups. The four chemical types corresponding to those already reported by Nelson, D'Auria and Bennett (1975) were numbered 1 to 4, accordingly. The remaining six types were arbitrarily assigned numbers 5 to 10.

Examination of the scatterplots presented in Figure 4 confirms that the spectra are clustered into ten distinct groups. Figure 4a separates the data points into six subsets. Two of these subsets represent mixtures of more than one type: types 4 and 5 form a single cluster, and types 1, 2, 6, and 8 form a single large cluster. Figure 4b shows the same data points, but the elements are normalized to the Zr peak. This scatterplot shows that the cluster formed by types 4 and 5 has split into two widely separated groups. Type 6 has also split from types 1, 2, and 8. Figures 4c and 4d are included to show that types 6 and 3 are both distinct from the cluster which represents types 1, 2, and 8, regardless of the normalization used to distinguish them. Figures 4e and 4f are presented to show the separation of type 1 from types 2 and 8. Finally, figures 4g and

4h show that types 2 and 8 may be separated on the basis of their Nb/Zr ratios. However, these two types overlap in both their Fe/Zr ratios and their Rb/Zr ratios. Also, they cannot be distinguished on the basis of their element/Compton ratios.

On the basis of the above results, all relative element ratios of each cluster representing a single chemical type were described statistically: the means and the standard deviations for each element ratio of each type were calculated. The mean and standard deviation values of these element ratios in all ten Hount Edziza chemical obsidian types are presented in Table 3.

Figure 4: Normalized scatterplots showing the separation of all obsidian samples into ten chemically distinct clusters. a) Zr/Compton vs Rb/Compton b) Y/Zr vs Fe/Zr

The above two scatterplots demonstrate the individual clustering of types 3, 4, 5, 6, 7, 9, and 10. Closed circles represent a single data point; crosses represent two or more overlapping data points.

u) RD/LI VS FE/LI

The above two scatterplots demonstrate the individual clustering of types 3 and 6 from the cluster consisting of types 1, 2, and 8. This separation is apparent under both methods of data normalization. Closed circles represent a single data point; crosses represent two or more overlapping data points.

e) Zr/Compton vs Fe/Compton

f) Rayleigh/Zr vs Fe/Zr

The above two scatterplots demonstrate the individual clustering of type 1 from the cluster consisting of types 2 and 3. This separation is apparent under both methods of data normalization.

Figure 4: Hormalized scatterplots showing the separation of all obsidian samples into ten chemically distinct clusters. g) Nb/Zr vs Fe/Zr h) Nb/Zr vs Rb/Zr

The above two scatterplots demonstrate the separation of type 2 from type δ . This separation is possible only on the basis of the hb/Zr ratio; the Fe/Zr and the Rb/Zr ratios of these two types overlap.

AB	LĿ	3	
		-	

Relative element concentrations in ten Mount Edziza obsidian flows

Flow n	ow # 1 26		2 34		3 80		4		5 3		6 11			5	8 24		-	9	10 4		
	x	s	x	s	x	s	x	\$	X	s	x	s	x	s	x	ş	x	\$	x	s	
A: el	ement/C	ompton	ratios					· · .													
K Ca Ti Hn Fe Zn Ga Pb Rb Sr Y Zr Hb Ray.	9.2 1.0 5.7 7.9 628.2 18.1 3.3 1.8 51.9 0.0 73.4 818.2 104.3 819.4	2.0 1.3 1.1 59.9 2.3 1.0 0.7 4.4 0.0 4.8 44.6 4.9 13.8	8.4 0.7 4.6 6.9 562.4 19.5 3.3 61.3 0.1 85.5 999.3 123.1 822.4	1.4 1.1 0.5 1.0 62.5 2.8 1.0 1.0 5.7 0.4 8.6 92.6 11.5 14.0	7.4 (.2 2.0 3.4 273.0 14.3 2.9 3.1 81.8 0.0 75.0 852.4 124.5 766.0	1.2 0.5 0.8 0.9 26.4 1.8 0.9 0.5 5.0 0.0 3.7 38.0 4.8 12.1	7.9 0.9 1.8 2.5 239.8 11.5 3.1 2.0 87.4 3.5 83.8 560.7 140.4 760.8	1.9 1.1 0.8 0.6 26.6 1.2 0.7 0.6 6.4 0.5 5.3 32.0 7.9 8.3	7.1 0.0 1.0 2.8 250.5 13.9 2.5 4.3 119.6 0.0 83.2 737.5 143.5 751.5	1.8 0.0 0.9 1.1 55.7 2.8 2.2 0.7 20.4 0.0 8.8 77.1 12.5 13.9	13.6 5.5 11.4 27.5 1349.6 24.2 4.0 3.2 75.5 0.0 110.1 1292.8 211.2 941.3	2.0 0.9 2.5 96.9 2.3 0.7 0.6 3.8 0.0 3.3 28.6 4.2 14.6	9.8 0.0 4.5 955.2 43.2 3.3 7.5 119.1 2.3 213.6 2469.5 324.7 894.8	$\begin{array}{c} 1.6\\ 0.0\\ 0.8\\ 1.5\\ 86.1\\ 1.8\\ 0.8\\ 10.8\\ \cdot 1.9\\ 16.5\\ 155.6\\ 18.8\\ 28.0\\ \end{array}$	9.6 0.8 5.9 9.2 746.6 24.9 3.7 3.3 64.6 0.0 102.5 1131.0 154.9 843.5	1.5 1.4 0.7 1.3 69.5 3.0 1.1 0.4 4.9 0.0 6.7 70.1 7.8 12.3	6.8 U.2 O.3 1.6 170.9 12.7 2.9 5.3 139.7 0.0 87.5 384.4 148.3 739.8	1.0 0.4 0.6 0.3 22.0 1.1 0.5 12.6 0.0 6.4 27.7 9.1 6.0	5.7 0.6 0.3 94.7 10.2 2.7 6.4 186.1 0.0 86.5 161.8 147.8 721.7	1.0 1.2 0.6 0.7 5.2 0.9 0.6 0.8 11.4 0.0 3.4 7.1 6.3 6.8	
B: el	ement/Z	r ratio	s																		
K Ca Ti Mn Fe Zn Ga Pb Rb Sr Y Nb Ray.	11.2 1.2 7.0 9.7 765.8 22.1 4.0 2.1 63.3 0.1 89.7 127.6 1004.6	2.0 1.6 1.3 1.0 45.0 1.7 1.1 0.9 2.3 0.4 1.8 2.6 43.2	8.4 0.7 4.6 6.9 564.3 19.5 3.3 2.3 61.4 0.1 85.6 123.2 829.3	1.4 1.1 0.6 1.1 54.1 1.8 1.0 0.9 1.7 0.4 2.1 2.7 72.5	8.7 0.2 2.4 3.9 319.8 16.8 3.4 3.6 96.0 0.0 88.0 0.0 88.0 146.1 900.6	1.2 0.6 0.9 1.0 19.0 1.5 1.0 0.6 3.1 0.0 2.3 3.5 45.7	14.0 1.6 3.1 4.5 426.6 20.4 5.5 3.5 155.7 6.2 149.4 250.4 1360.7	2.8 2.0 1.3 1.0 25.0 1.2 1.1 1.0 3.9 0.8 1.6 3.4	9.6 0.0 1.3 3.7 337.0 18.7 3.3 5.8 161.5 0.0 112.7 194.8	1.4 0.0 1.1 1.2 38.9 1.8 2.9 0.3 10.7 0.0 0.5 4.5	10.5 4.2 8.8 21.3 1043.3 18.7 3.1 2.4 58.4 0.0 85.1 163.4 228.6	1.5 0.7 1.5 1.7 60.9 1.7 0.5 0.4 1.8 0.0 1.9 1.6	3.9 0.0 1.8 5.0 385.5 17.4 1.3 3.0 48.2 0.9 86.5 131.6	0.5 0.0 0.3 28.0 1.4 0.6 0.2 1.6 0.7 3.0 4.4	8.5 0.7 5.2 8.1 659.8 21.9 3.3 3.0 57.1 0.0 90.6 137.0	1.4 1.2 0.6 0.9 42.1 1.9 1.0 0.3 1.6 0.0 1.6 2.8	17.5 0.5 0.8 4.1 443.4 33.1 7.5 13.7 363.1 0.0 227.7 385.9	1.4 0.9 1.6 0.5 30.9 1.3 3.1 0.8 10.1 0.0 5.9 5.0	35.0 3.9 1.8 1.9 585.1 62.8 16.8 39.5 1149.4 0.0 534.4 913.1	6.1 7.8 3.6 3.8 11.1 2.8 3.2 4.0 22.7 0.0 5.4 7.3	

Mount Edziza Obsidian Type Spectra

Figure 5 shows ten ED-XRF spectra characteristic of the ten chemical types distinguished above. It is observed from the graphs that several spectra are very similar to each other, while others are graphically distinct. Because obsidian is made up primarily of SiO, , a very low-Z substance, obsidian spectra in general show scatter peaks (Compton and Rayleigh) which are higher than the elemental peaks. The five chemical types #1, 2, 6, 7, and 8, are all characterized by extremely high Fe and Zr K-alpha peaks; in type 7 the Zr peak is even higher than the Compton scatter peak. Types 3, 4, and 5 also show high Fe and Zr peaks; however, Fe is considerably lower than Zr, and both are much lower than the Compton and Rayleigh scatter peaks. Spectra of types 9 and 10 are quite unlike the other eight; the elemental peaks are all much lower than the Compton, and the high Fe/high Zr configuration so typical of the other types is difficult or impossible to observe. Relative increases in Rb and Pb are observed instead.

KEY TO NUMBERED PEAKS IN THE OBSIDIAN SPECTRA SHOWN IN FIGURE 5:

1. K K-alpha

- 2. Ca K-alpha (and K K-beta)
- 3. Ti K-alpha
- 4. Mn K-alpha
- 5. Fe K-alpha
- 6. Zn K-alpha
- 7. Ga K-alpha
- 8. Pb L-line
- 9. Rb K-alpha
- 10. Sr K-alpha

34a

- 11. Y K-alpha (and Rb K-beta)
- 12. Zr K-alpha
- Nb K-alpha (and Y K-beta)
 Ag target Compton scatter
 Ag target Rayleigh scatter

The prominent unnumbered peaks are from the K-beta emission lines of Fe, Zn, Zr, and Nb.

12.14.15年,月季用于由中华和中国合同工作中国家省省合

KEY TO NUMBERED PEAKS IN THE OBSIDIAN SPECTRA SHOWN IN FIGURE 5:

K K-alpha
 Ca K-alpha (and K K-beta)
 Ti K-alpha
 Mn K-alpha
 Fe K-alpha
 Zn K-alpha
 Qa K-alpha
 Pb L-line
 Rb K-alpha
 Sr K-alpha
 Sr K-alpha (and Rb K-beta)
 Zr K-alpha
 Nb K-alpha (and Y K-beta)
 Ag target Compton scatter

15. Ag target Rayleigh scatter

35a

The prominent unnumbered peaks are from the K-beta emission lines of Fe, Zn, Zr, and Nb.

KEY TO NUMBERED PEAKS IN THE OBSIDIAN SPECTRA SHOWN IN FIGURE 5:

1. K K-alpha 2. Ca K-alpha (and K K-beta) 3. Ti K-alpha . 4. Mn K-alpha 5. Fe K-alpha 6. Zn K-alpha 7. Ga K-alpha 8. Pb L-line 9. Rb K-alpha 10. Sr K-alpha 11. Y K-alpha (and Rb K-beta) 12. Zr K-alpha 13. Nb K-alpha (and Y K-beta) 14. Ag target Compton scatter 15. Ag target Rayleigh scatter

The prominent unnumbered peaks are from the K-beta emission lines of Fe, Zn, Zr, and Nb.

(1)年前國議論

and all a

36b

Statistical Treatment

As mentioned above, the average element/Compton and element/Zr ratios for each chemical type were calculated, and the statistical mean (x) and the standard deviation (s) of these element ratios are presented in Table 3 for all ten chemical types. The standard deviation refers to the distribution of the data points within each group, and is thus a measure of their scatter.

To verify that the ten chemical types identified on the basis of scatterplots are distinct on a quantitative statistical basis as well as a qualitative graphical basis, the element ratios were compared between the types.

The natural grouping of the points into ten discrete chemical types was confirmed to be non-overlapping at two standard deviations through the use of the A-coefficient statistic. The success of the A-coefficient is measured by its ability to distinguish two multivariate populations on the basis of the distance between the means of a given variable in both populations. Mathematically, the A-coefficient is expressed as follows:

					-	X	=	statistic	cal mean
		Xik - Xik				S	=	standard	deviation
A	=		;	i≠j		i,j	=	obsidian	groups
		2sik + 2sjk				k	=	element	

Multivariate data sets are considered distinct if the distance between the group means of at least one of the variables is greater than an arbitrary rejection criterion. This rejection criterion was set here at two standard deviations from the mean of each element ratio. Separation between the two populations is thus achieved when the A-coefficient value for any one variable present in both populations is greater than 1 (Cormie 1981). A separation of two obsidian chemical types confirmed by this method indicates that for at least one element ratio, the distributions of the element ratio in the two types do not overlap at two standard deviations.

The A-coefficient was calculated comparing the mean element value in each chemical type with the mean values for the same element in the remaining nine types. The A-coefficient was calculated for all 13 relative element concentrations (element/Compton ratios). A similar set of A-coefficients was also calculated for the element/Zr ratios of all ten chemical types, for comparative purposes. All results are presented in Table 4.

The A-coefficient calculations confirm that all ten chemical types are statistically distinct according to the criterion defined above. In two cases, the distinction is based on a single A-coefficient. Types 1 and 2 are barely separable (the A-coefficient for their Fe/Zr ratios equals 1.02), although the scatterplots (see p. 30) show the type 1 cluster is clearly separated from the cluster composed of types 2 and 8. Since the Acoefficient is a univariate statistic, it can fail to confirm that clusters are distinct if their distributions are not normal, as is the case here. Types 2 and 8 are separable solely on the basis of their Nb/Zr ratios. The relative chemical similarities of these three types (1, 2, and 8) suggest that they may represent three obsidian flows which are closely related geologically. This possibility is investigated and confirmed in the section below.

TABLE 4

A-Coefficients for the ten chemical groups of Mount Edziza obsidian

Groups:	142	183	1 64	1 85	146	187	146	149	1410	243	244	245	2 & 6	287	248	249	2&10	384	385	346	387	348	349	3&10
A: A-coef	A: <u>A-coefficients</u> for element/Compton ratios																							
K Ca Ti Hn Fe Zn Ga Pb Rb Sr Y Zr Nb	.12 .06 .33 .27 .25 .13 .01 .16 .47 .10 .45 .66	.28 .90 1.15 1.84 .47 .10 .55 1.60 .31 .09 .21	.17 .01 .97 1.66 2.01 .97 .07 .09 1.64 1.97 .51 1.68 1.38	.28 1.09 1.21 1.50 .42 .12 .89 1.37 .36 .33	.54 1.03 .87 2.72 2.16 .66 .19 .54 1.45 - 2.24 3.24 5.77	.07 -30 .90 .83 1.49 .01 1.92 2.22 .51 3.29 4.12	.06 .04 .26 .42 .64 .10 .72 .69 .09 1.26 1.36	.42 .23 1.46 2.38 2.49 .85 .11 1.40 2.60 	.59 .07 1.43 2.22 3.56 1.27 .20 1.53 4.26 76 6.35	.19 .15 .96 .92 1.63 .56 .09 .27 .96 .42 .43 .56	.07 .06 1.08 1.41 1.81 1.00 .06 .10 1.08 1.89 .06 1.76	.20 1.25 1.00 1.32 .50 .12 .58 1.12 .07 .77	.75 1.21 1.37 2.96 2.47 .46 .21 .27 .75 - 1.03 1.21	.22 .02 1.16 1.04 1.33 .00 1.45 1.76 .48 2.55 2.96	.21 .02 .54 .52 .70 .46 .11 .38 .16 .19 .55 .40	.34 .17 1.93 2.12 2.32 .90 .99 .96 2.15 .07 2.56	.56 .02 1.87 2.01 3.45 1.26 .18 1.14 3.66 04 4.20	.08 .23 .09 .28 .31 .49 .04 .52 .24 2.41 .49 2.08	.05 -32 .15 .14 .05 .07 .48 .74 - .33 .50	.97 1.91 1.70 3.49 4.37 1.22 .31 .02 .36 - 2.50 3.31	.42 .80 1.91 2.23 1.83 .06 1.70 1.18 .62 3.44 4.18	.40 .15 1.29 1.31 2.47 1.11 .19 .13 .87 .23 1.32 1.29	.15 .00 .64 .74 1.06 .30 .02 1.03 1.65 .62 3.56	.40 .12 .62 .96 2.83 .79 .08 1.26 3.18 .77 7.66
Rayleigh	.05	1.03	1.32	1.23	2.14	.90	.46	2.01	2.37	1.08	1.38	1.28	2.08	.86	.81	2.08	.69 2.43	.61	.54	4.74 3.27	4.21	1.16	.83	1.03
B. A-coef	ficien	ts for	eleme	ent/Zr	ratios																			
K Ca Ti Hn Fe Zn Ga Ga Sr Y Hb Rayleign	.42 .09 .62 .68 1.02 .38 .18 .04 .25 .00 .54 .42 .65	.40 .22 1.05 1.46 3.49 .82 .14 .52 3.03 .28 .20 1.54 .42	.29 .07 .75 1.34 2.42 .29 .32 .38 7.44 2.50 8.97 10.18 1.28	.25 1.17 1.41 2.56 .49 .09 1.49 3.79 5.05 4.75 .06	.11 .69 .33 2.14 1.31 .50 .30 .11 .62 .61 4.25 1.57	1.49 - 1.67 1.84 2.60 .75 .79 .41 1.94 .32 .33 .27 3.39	.40 .09 .45 .42 .02 .18 .33 .81 .33 .14 .89 1.19	.93 .14 1.08 1.97 2.12 1.82 .42 3.47 12.14 - 9.05 17.04 2.32	1.47 .15 .53 .81 1.61 4.47 1.48 3.85 21.72 31.20 39.81 6.33	.05 .14 .72 .71 1.67 .41 .04 .46 3.60 .31 .28 1.68 .30	.67 .16 .38 .59 .87 .16 .53 .34 8.38 2.70 8.79 10.40 1.76	.21 .93 .71 1.22 .11 .00 1.39 4.05 5.25 5.00 .51	.36 1.00 2.54 2.08 .11 .07 .06 .43 05 4.67 .52	1.21 1.57 .57 1.09 .32 .62 .33 1.97 .55 .09 .56 2.24	.02 .00 .25 .31 .50 .34 .00 .27 .64 .37 .66 1.28 .35	1.64 .06 .92 .71 2.23 .52 3.34 12.82 - 8.96 17.14 2.63	1.78 .18 .33 .51 1.6 4.71 1.62 3.80 22.27 30.20 39.69 6.43	.66 .27 .17 .14 1.21 .66 .48 .04 4.24 2.98 8.01 7.55 1.88	.17 .27 .05 .15 .29 .02 1.17 2.37 4.44 3.06 .38	.33 1.56 1.35 3.16 4.53 .30 .13 .62 3.87 34 1.70 1.23	1.38 .25 .43 .70 .11 .65 .41 .503 .56 .14 .88 3.48	.03 .12 .92 1.10 2.78 .76 .04 .37 4.12 .03 .33 .73 .85	1.67 .08 .33 .04 1.24 2.92 .50 3.71 10.13 - 8.59 14.19 2.82	1.79 .22 .07 .21 4.41 5.30 1.59 3.94 20.38 - 29.26 35.72 6.97

(continued)

39

and the state of the s

TABLE 4 (continued)

A-Coefficients for the ten chemical groups of Mount Edziza obsidian

Groups:	4 & 5	446	4&7	488	4 & 9	4410	5&6	587	548	589	5410	687	688	689	6410	748	7 & 9	7&10	849	8410	9&10
A. A-coef	A. A-coefficients for element/Compton ratios																				
ĸ	.11	.73	.26	.25	.20	.39	.86	.39	.38	.07	.26	.54	.56	1.15	1.32	.02	.58	.79	.57	.78	.27
Ca	-	1.13	-	.03	.25	.07	-	-	-	-	-	-	1.04	2.12	1.17	-	-	-	.16	.03	.13
TÍ	.23	1.76	.90	1.39	.54	.53	1.81	1.06	1.51	.23	.22	1.26	1.02	2.16	2.14	.47	1.57	1.52	2.16	2.10	.01
Hn .	.08	4.02	2.45	1.79	.55	.89	3.43	1.92	1.35	.45	.71	1.88	2.40	4.61	4.26	.60	3.14	2.88	2.42	2.27	.66
Fe	.07	4.49	2.33	2.64	.71	2.29	3.60	1.93	1.98	.51	1.28	.88	1.81	4.96	6.15	.53	2.64	3.26	3.15	4.36	1.40
Zn	.30	1.83	2.17	1.60	.29	.31	1.01	1.64	.95	.15	.50	1.13	.06	1.78	2.22	1.01	2.16	2.36	1.55	1.90	.69
Ga	.09	.30	.04	.17	.05	.14	.24	.09	.18	.05	.03	.14	.06	.29	.49	.08	.06	.11	.19	.30	.05
Pb	.91	.51	2.06	.72	1.50	1.62	.44	1.11	.43	.41	.72	1.60	.10	.95	1.18	1.79	.86	. 34	1.05	1.30	.44
Rb	.60	.58	.92	1.00	1.38	2.77	.91	.01	1.08	.30	1.04	1.50	.63	1.97	3.64	1.74	.44	1.51	2.15	3.72	.97
Sr	-	-	.26	2.10	-	-	-	-	-		-	-	-	-	-	.55	-	-	-	-	-
Y	.02	1.52	2.98	.78	.16	.15	1.11	2.58	.62	.14	.13	2.62	.38	1.16	1.66	2.40	2.76	3.14	.57	.76	.05
Zr	.81	6.04	5.09	2.79	1.48	5.10	2.63	3.72	1.34	1.68	3.42	3.19	.82	8.07	15.85	2.96	5.69	7.09	3.82	6.28	3.20
hb	.08	2.91	3.44	.45	.23	.26	2.04	2.90	.28	.11	.11	2.47	2.28	2.32	3.03	3.15	3.13	3.53	.19	.25	.02
Rayleigh	.21	3.93	1.85	2.00	.74	1.30	3.33	1.71	1.76	.29	.72	.55	1.82	4.89	5.12	.64	2.28	2.49	2.84	3.19	.71
								,													
B. A-coef	ficien	ts for	eleme	nt/Zr	ratio	5															, .
K	.53	.41	1.52	.65	.41	1.17	.16	1.52	.19	1.43	1.70	1.62	.34	1.19	1.61	1.23	3.56	2.35	1.61	1.77	1.16
Ca	-	.49	-	.15	.20	.12	-	-	-	-	-	-	.92	1.18	.02	-	-	-	.05	.18	.20
Ti	.38	1.03	.42	.54	.41	.14	1.44	.20	1.10	.09	.05	2.02	.84	1.31	.69	1.90	.28	.00	1.00	.41	.10
l·ln	.18	3.09	.23	.97	.14	.27	3.03	.46	1.08	.11	.18	3.98	2.50	3.91	1.74	1.29	.66	.38	1.50	.66	.25
Fe	.70	3.59	.39	1.74	.15	2.19	3.54	.36	1.99	.76	2.48	3.70	1.86	3.27	3.18	1.96	.49	2.55	1.48	.70	1.69
Zn	.29	.29	.57	.25	2.56	5.27	.00	.20	.45	2.35	4.78	.21	.46	2.45	4.92	.70	2.95	5.40	1.77	4.36	3.64
Ga	.27	.73	1.19	.52	.25	1.31	.04	.29	.00	. 36	1.11	.75	.08	.62	1.84	.62	.84	2.02	.52	1.62	.74
Pb	.86	.40	.22	.22	2.91	3.64	2.21	2.56	2.05	3.53	3.91	.48	.35	4.68	4.21	.05	5.42	4.37	4.73	4.22	2.71
Rb	.20	8.55	9.63	8,90	7.40	18.63	4.15	4.60	4.25	4.86	14.78	1.50	.19	12.89	22.28	1.37	13.44	22.59	13.10	22.44	11,98
Sr	-	-	1.75	3.22	-	-	-	-	-	-	-	-	-		-	.62	-	-	-	-	-
Y	8.83	9.23	6.89	9.17	5.28	27.84	5.66	3.73	5.12	9.01	35.69	.14	.77	9.16	30.86	.44	7.96	26.78	9.13	31.69	13.67
ilb	3.50	8.55	7.21	9.14	8.02	30.88	2.55	3.40	3.98	10.06	30.49	2.48	3.01	16.76	42.01	.36	13.00	32.37	16.06	38.67	21.47
Rayleigh	.85	3.13	4.62	2.53	1.34	5.42	1.03	2.19	.85	1.70	5.20	3.26	.14	3.73	7.96	2.53	4.66	8.49	3.26	7.30	3.65

40

All other chemical types are distinguished on the basis of two or more element ratios. However, in two additional cases, involving the separation of types 3 and 5, and the separation of types 4 and 5, this discrimination was successful on the basis of element/Zr ratios only. None of the element/Compton ratios were able to successfully discriminate between these two group pairs. Inspection of the scatterplots (Fig. 4a, Rb/Compton versus Zr/Compton) shows that in at least one case (types 3 and 5) the two chemical groups in question are actually clustered into two tight, distinct, and nonoverlapping clusters. As in the case of the A-coefficient based on the Fe/Zr ratios in types 1 and 2, the failure of the A-coefficient to discriminate between types 3 and 5 is due to the shapes of the two distributions. Also, although groups 4 and 5 (Fig. 4a, same scatterplot) form a single elongated cluster, they also do not overlap. Type 5 makes up the top three points in the distribution (triangles), while type 4 makes up the remaining points below. The failure of the Compton A-coefficient to discriminate between them is likely due to the very small data set associated with type 5 and the ensuing large statistical errors in its distribution. Figure 4b shows that types 4 and 5 cluster into widely separated groups. Their spectra (Fig. 5) are also dissimilar.

In sum, the discrimination of the obsidian samples into ten chemical groups was successful in 44 out of 45 group pairs, or with 98% success, at two standard deviations, on the basis of their element/Zr ratios. The success rate of the element/Compton ratios in discriminating the ten chemical groups from each other was 91%. While these ratios could not discriminate between the four pairs of groups noted above (1&2, 2&8, 3&5, and 4&5), all ten groups in 41 other paired combinations were discriminated successfully.

Different element ratios separated the chemical types with varying rates of success. The Compton-normalized element ratios Fe/Compton and Zr/Compton, and the Zr-normalized element ratios Rb/Zr and Nb/Zr were the most successful. Each of them confirmed the separation of more than 75% of all type pairs. Other element ratios which had a greater than 50% rate of success in group discriminations were the element/Compton ratios for Ti, Mn, Rb, Nb, and the Rayleigh scatter peak, and the element/Zr ratios for Fe, Pb, Y, and the Rayleigh peak. The poorest rate of success was achieved with the elements Ca, Ga, and Sr, regardless of the normalization used.

Correlation of Chemical Types with Geological Obsidian Flows

ľ

[

Once the chemical analysis established the existence of ten distinct chemical types of obsidian within the Edziza Volcanic Complex, it became necessary, to correlate these with specific obsidian flows, many of which are known to exist within the Mount Edziza Volcanic Complex. As stated previously, the Complex consists of 15 geological formations, formed during five major magmatic cycles over the last 10 million years (Souther and Hickson 1984). The rocks which make up each formation have originated from one or several different volcanic vents, and consist of thick strata of olivine basalts interbedded with trachyte and comendite. It is not uncommon to find several obsidian flows within a single formation, as the obsidian forms in a thin quenched basal layer underneath these trachyte and comendite flows (ibid.).

Since a high degree of chemical homogeneity of a single obsidian flow is usual (Cann, Dixon and Renfrew 1964; for an exception, see Bowman, Asaro and Perlman 1973), the chemical analysis of noncontiguous obsidian outcrops within a limited geographic region can also help to establish whether they belong to the same or two distinct obsidian flows. This is especially true when their stratigraphic position places them within a single formation, but when there is little in the way of physical characteristics to distinguish them.

For these reasons, two advantages will accrue from the correlation of the ten chemical types of Mt. Edziza obsidian identified above with the geologically known obsidian flows within the Complex. First, each chemical type will be associated with a specific geological formation. Since the limits of the geological formations are known, this yields data on the maximum possible limits for the natural distributions of each flow.

Second, the number of chemically distinct flows present in each formation will be determined. Where possible, correlation of chemical types with each stratified layer of obsidian may help to establish the order in which the chemical types have erupted.

The original locations of all samples within each of the ten chemical groups was examined carefully. This was done in order to check whether the samples in each group were geographically clustered, and whether they were correlated with distinct geological formations (and therefore with distinct obsidian flows) of the Complex. Such a clustering of samples from specific locations into specific chemical types was found. It indicated that the ten chemical types reflected realistically the actual groupings of obsidian rock samples in their natural environment. The horizontal and vertical data for the samples collected from the geological sections were made available at this point; in several instances the relative positions of several obsidian samples collected over a single transect were found useful. The geographical information from these and the samples from secondary deposits confirmed that the data separation into ten chemical types was successful and geologically justified.

The geographic locations of each chemical type identified in this study are presented in Figure 6. These locations are discussed below in more detail. Associations with geological formations are based on a generalized geological map of the Mount Edziza Volcanic Complex (Souther and Hickson 1984), and on a yet-unpublished detailed geological map of the Complex made available for inspection through the courtesy of J.G. Souther. Except as indicated, the geographic names in use here have been accepted by the Canadian Board of Stratigraphic Nomenclature for formal use (J. Souther, pers. comm.). Informal names conferred on certain landmarks by archaeologists are indicated in quotation marks.

FIGURE 6a: Natural geographic distributions of the ten Mount Edziza obsidian flows identified: areas north of Raspberry Pass.

LEGEND:

Outcrop occurrence

• Occurrence in a gravel sample

---- Limits of existing glaciers

Elevations in feet Contour interval 500'

and and

and a

1000

FIGURE 6b: Natural geographic distributions of the ten Mount Edziza obsidian flows identified: areas south of Raspberry Pass.

LEGEND:

-

- Outcrop occurrence
- Occurrence in a gravel sample

---- Limits of existing glaciers

 Elevations in feet Contour interval 500'

Edziza #1 - Armadillo Formation (n=26) Samples: 1.02,1.11,1.12, 16.01-16.13, 17.01-17.09

This type is limited to the immediate vicinity of Coffee Crater, a prominent Holocene cinder cone on the Big Raven Plateau, and just south of Tencho Glacier. The gravel samples were collected from a large surface scatter located 2.5 km southeast of the Crater, and from a scatter west of the Crater. Other obsidian samples collected further northwest, northeast, and southeast of Coffee Crater, were of different chemical types.

Edziza #2 - Armadillo Formation

15

(n=34)
Samples: 1.01,1.15(2x), 1.26(2x), 1.27(2x), 1.33(2x), 2.02, 6.06, 9.01-9.11,
12.02-12.03, 19.01-19.05, 20.01-20.05.

This type is the most widely distributed of all the obsidian flows examined. Its northernmost occurrence is at Cartoona Peak. The most easily accessible quantities of this obsidian are found in the gravel slides in Raspberry Pass, and in the talus gravel at the base of "Fan Creek", a small northern tributary of Artifact Creek. Both of these are pure unmixed deposits. The "Fan Creek" locality is significant because it contains large clasts of good quality obsidian which are useable in artifact production, and it is readily accessible at the bottom of Artifact Valley. This contrasts with most other valley-bottom sources, which contain only poorquality small pebbles, and probably were not exploited for tool materials, for example the above-mentioned gravels in Raspberry Pass.

Type 2 obsidian also occurs mixed with type 3 obsidian in gravel deposits at two locations: on a ridge east of "Goat Mountain" (2 out of 3 pebbles), and at locality 6 (1 out of 6 pebbles). A very minor quantity of this type (1 pebble), mixed with types 7 and 8, is also found in the pebblesized gravels in Destall Pass (of poor quality, and therefore of no archaeological significance). These almost negligible amounts suggest that

type 2 is scarcer in the regions immediately west of Destall Pass. It was not found in Artifact Creek or anywhere south of it.

Stratigraphically, type 2 is found underlying type 3 obsidian on the slopes of Kitsu Plateau (west of "Goat Mountain"), and on the ridge north of Artifact Creek. East of "Goat Mountain", clasts of this type are found on a ridge above outcrops of types 7 and 8, and so this flow probably overlies them (although direct stratigraphic confirmation of this in the form of a bedrock sample from above types 7 and 8 is not available). Outcrop samples of this chemical type are found at elevations of 5900-6200' (Fig. 6b), except at Cartoona Peak, where it is found at 7100' (Fig. 6a).

Edziza #3 - Spectrum Formation

(n=80)

Samples: 1.03-4,6,10,17,17,25,28,29,34,37,-1.38, 3.01-3,6,9-12,17,18, 3-20,23,-3.24, 6.01-6.05, 7.01-7.07, 12.01, 18.01-18.08, 21.01-21.04, 22.01-22.15, 23.01-23.05.

This is the most common of all the Edziza obsidian types identified in prehistoric tools. Its outcrops are confined to high elevations of 6300 -6900', and are found on "Goat Hountain", along Obsidian Ridge, and in small patchy remnants along the nighly eroded ridge just above "Fan Creek". It is also found in great quantities in the high-altitude surface scatters surrounding the "Goat Hountain" peak, on the south-facing slopes of Obsidian Ridge, and in the gravels and surface scatters of upper Artifact Creek valley. Concentrated low-elevation sources made up purely of type 3 obsidian are found at two locations: in the lower till of "Artifact Valley Moraine" at the head of that valley, and in "Point Valley Moraine". For a detailed description of these obsidian sources, see Fladmark (1982:103-128).

The obsidian in Artifact Creek gravels is of a relatively poor quality, as these pebbles are mechanically weakened through alluvial transport and

contain numerous incipient fractures. Analysis of samples collected from Artifact Creek near its confluence with "Fan Creek" indicates that type 3 obsidian is predominant (70-80%) in these gravels. It is mixed with small quantities of types 6, 7, and 8.

Type 3 obsidian is found within the Spectrum Formation, the uppermost formation in that region. It lies directly over the Armadillo Formation. Stratigraphic data show that it overlies types 2, 7, and 8. Indirect evidence indicates that it also overlies type 6 (see below).

Edziza #4 - Ice Peak Formation (n=9)

a statute

And the first of the second

Samples: 1.05,1.07,1.09, 1.14 (2x), 1.22 (2x), 1.32 (2x).

This obsidian is found at approximately 6300-6500' near Cocoa Crater, on Sorcery Riage, and east of Ice Peak. Since it is found both to the east and to the west of Tencho Glacier, it is probable that its distribution extends continuously under that glacier. It is one of the more inaccessible obsidians. The two types found nearest to it are type 1 (to the south), and type 10, but it is spectroscopically unlike either of them. In terms of horizontal coordinates, type 4 is found directly above type 10, but they are stratigraphically separated from each other by about 500' of elevation.

Edziza #5 - Pyramid Formation (n=3) Samples: 1.13, 1.21 (2x).

This type is found only very near The Pyramid, a prominent volcanic cone north of Mt. Edziza (Fig. 6a). The only bedrock sample of this type was collected at 6100' west of the cone, while a loose gravel sample was picked up to the south of the Pyramia at a slightly lower elevation. Although its natural distribution is limited, this type is archaeologically significant in that it has been identified in a number of artifacts (Goofrey-Smith and D'Auria 1984; E. Nelson, pers. comm.). This obsidian is probably more easily accessible to people approaching the Edziza Complex from the north than any of the other types.

Edziza #6 - probably Armadillo Formation (n=11) Samples: 3.02-4,5,7,8,13,14,16,21,-3.22.

This obsidian type was found only at one sampling location: the outwash gravels of Artifact Creek, collected at 4600' near its confluences with "Fan" and "Wet" creeks. Its geological association is uncertain, as no outcrop samples examined corresponded to this type. However, its XRF spectrum is generically similar to the other Armadillo types. Its absolute element compositions (see Fig. 8a [p. 82] in Section 2) confirm this similarity. Types 7 and 8 were also found in very small quantities (one pebble each) in this sample.

Since this type was not identified in any of the samples from further up the Artifact Valley or in upper "Fan Creek", it is suggested here that it comes from a low-elevation stratum which belongs within the lower Armadillo Formation. Its much greater proportion in this sample relative to types 7 and 8 suggests that these two types are stratigraphically above it. Also, the complete absence of type 2 obsidian in this low-elevation outwash gravel sample contrasts with other gravel samples collected in the upper Artifact valley, and with the sample collected from the talus slope at the base of "Fan Creek", which is composed purely of type 2 obsidian. On the basis of the outcrop samples available, and the relative proportions of each chemical type present in high-elevation and in low-elevation gravel samples, the stratigraphic relationship of the obsidian types found on the ridge north of Artifact Creek (in order of descending elevations) is inferred as follows: 3, 2, 7, 8, and 6.

Edziza #7 - Armadillo Formation (n=6) Samples: 1.23 (2x), 2.14, 2.18 (2x), 3.19.

This is a minor type. It occurs in only 2 pebbles of the Destall Pass sample and in only one pebble of the Artifact Ck./"Fan" Ck. low-elevation gravel sample. Its archaeological significance is probably minimal, as both of these samples are made up of only small, mechanically weakened pebbles, none of which appear to be of useful flakeable quality. A geological sample of this type was collected at 5700' on the ridge which forms the west wall of Destall Pass. Two other samples collected from thin glassy outcrops higher up along the same transect are of type 8. Their stratigraphic relationship is therefore clear: type 7 underlies type 8.

Edziza #8 - Armadillo Formation

(n=24)

Samples: 1.19,1.20, 2.01,2.03-2.13,2.15-2.17,2.19,2.20, 3.15.

This type was found in 17 pebbles of the Destall Pass sample and in only 1 pebble of the Artifact Ck./"Fan" Ck. sample. The same arguments made above with regard to the limited archaeological significance of type 7 apply equally well in this case. The stratigraphic position inferred for this type is that it lies above type 7 (see above) but underlies type 2, since naturally weathered scattered pebbles of type 2 obsidian were found at higher elevations than the two type 8 outcrop samples (see Fig. 6b).

Edziza #9 - Pyramid Formation (n=4) Samples: 1.18, 1.35 (each analysed twice).

This is a very small flow located at 6000-6100' directly south of the Pyramid cone. It is found at a lower elevation than type 5, the only other obsidian type in its vicinity. It is also completely unlike type 5 in its relative element concentrations (see Table 3), and has a very different characteristic spectrum (see Fig. 5).

Edziza #10 - Ice Peak Formation (n=4) Samples: 1.30, 1.31 (each analysed twice).

This is also a small and localized flow. Its outcrops are found at 5700', stratigraphically separated from type 4 by a thickness of 500' of non-glassy rock. It is possible that both these obsidian types may be found in the gravels of Tennaya Creek. However, this is very rough, deeply dissected terrain with steep ridges and narrow valleys, and it is unlikely to have been intensively exploited in the past. Since these outcrops are located near the present limits of Tencho Glacier, it is likely that they were exposed only relatively recently, and re-glaciated during any cooling trends. The archaeological significance of this flow is thus judged very low.

Obsidian Flow Identification Summary

In summary, distinct geographic and/or stratigraphic positions have been demonstrated or inferred for each of the ten chemical types studied. On the basis of these demonstrable geographic groupings, the conclusion is reached that each chemical type does in fact correspond to a single discrete obsidian flow within the Edziza Volcanic Complex. This provides a powerful and simple tool for the correlation or distinction of discontinuous obsidian outcrops whose stratigraphic positions and physical characteristics are ambiguous. Until now, isotopic age determinations provided the only reliable means of correlation for such obsidian flows within the Mount Edziza Volcanic Complex (Souther, Armstrong, and Harakal 1984). It is hoped that the results obtained here will aid in clarifying the number of distinct obsidian flows present within some formations, and their stratigraphic order.

Ten obsidian flows have been identified. It is suggested that five of these (1, 2, 6, 7, and 8) are associated with the Armadillo Formation. Flow 3 is associated with the Spectrum Formation, and the remaining four flows are associated with the Ice Peak (flows 4 and 10) and the Pyramid (flows 5 and 9) formations.

Flows 1, 4, 5, 9, and 10 are found only on the upper plateau regions north of Raspberry Pass. These regions are more inaccessible, barren and inhospitable to humans than the regions to the south, a fact which probably diminishes their significance in archaeological studies. Flows 3, 6, 7, and 8 are found only south of Raspberry Pass, while flow 2 is found both in Raspberry Pass as well as considerably further north and slightly to the south of it.

Cash a Polati

Contraction of the second

and the second se

One surprising result of this analysis is that of the fourteen localities where loose gravel samples were collected, all but four were found to be composed of only a single chemical type of obsidian. Since many of these are located at relatively low elevations, this result was unexpected. Since the low-elevation gravel scatters were probably created by erosional and glacial reworking, downslope tumbling of eroded clasts, and fluvial action, it was expected that most would be composed of a mixture of obsidian types.

The high-elevation concentrated obsidian scatters composed of a single type are as follows: localities 16 and 17 at Coffee Crater, made of type 1 obsidian; and localities 7, 21, and 23 at "Goat Mountain" and Obsidian Ridge, made up of type 3 obsidian. Also, single-type obsidian deposits were found in five low-elevation areas: at localities 9 and 20, representing the slide at the west end of Raspberry Pass and the general scattered clasts in

the Raspberry Pass, made up of type 2 obsidian; at locality 19 in the talus slope at the base of "Fan Creek", made up of type 2 obsidian; and at localities 18 and 22, in "Point" Valley Moraine and Artifact Valley Moraine, made up of type 3 obsidian.

The four sampling locations which were found to consist of more than one type of obsidian were localities 2, 3, 6, and 12 (see Figure 2b). Locality 2 is in the slide on the west side of Destall Pass. Of the 20 pebbles making up this sample, 17 are of type 8 obsidian, 2 are of type 7, and one pebble is of type 2. Locality 3 is in the outwash gravels of Artifact Creek near its confluences with "Wet" and "Fan" creeks. Of the 24 pebbles sampled here, 11 are type 3, 11 are type 6, one is type 7, and one is type 8. Again it must be noted that the absence of type 2 obsidian in this outwash gravel sample is surprising, particularly in view of its presence in the gravel sample in the nearby locality 19. Finally, locality 12 represents a very small sample (3 pebbles) collected to the north of the 1977 reconnaissance campsite, of which two pebbles were type 2 and one pebble was type 3.

Reasonably easy access to low-elevation gravel concentrations of obsidian from flows 2 and 3 is possible at the following locations: in the gravels of Raspberry Pass (not of flakeable quality, however) and in the talus slope at the base of "Fan Creek"; in "Point" Valley Moraine, Artifact Valley Moraine, and in the outwash gravels of Artifact Creek near its confluences with "Wet Creek" and with "Fan Creek". Also available at low elevations (in Destall Pass and in the gravels of Artifact Creek) are small quantities of obsidian pebbles from flows 2, 6, 7, and 8. The pebbles at these localities are not of flakeable quality, however, and the significance

54

of flows 6, 7, and 8 to archaeological studies is therefore judged to be low.

By far the most common and the most easily accessible is the obsidian from flow 3. This chemical type predominates in Artifact Creek gravels, while pure quantities of it are present within the moraines at the head of "Point" and Artifact Creeks. This is also the most coloristically varied (apart from black, its colours range from red and brown, through green, grey, and blue, to almost purplish) and the most vitreous among the ten flows.

1

SECTION 2

QUANTITATIVE CHEMICAL ANALYSIS OF TEN MOUNT EDZIZA OBSIDIAN FLOWS

The purpose of this section was to determine the chemical composition of each of the ten obsidian flows identified in Section 1. Such quantitative data are generally far more useful than the semi-quantitative result obtained above, for the following reasons: absolute element concentrations do not depend on the analytical conditions used to obtain them, and thus they are easier to reproduce; they can be compared to the element concentrations of other obsidian sources from around the world; on the basis of their chemical compositions, widely separated obsidian sources can be classified into characteristic chemical categories (for example: calc-alkaline, alkaline, peralkaline, or peraluminous) which are found all over the world.

In order to make the Edziza obsidian source a part of the worldwide database of obsidian chemical compositions, the absolute major, minor, trace, and some rare earth element concentrations of the ten flows were determined. A standard whole igneous rock analysis for major (Si, Ti, Al, Fe, Mn, Hg, Ca, Na, K, P) and minor (Ba, Co, Cr, Cu, Mn, Mo, Ni, Pb, Rb, Sr, Va, Y, Zn, Zr, Nb) elements was done with wavelength-dispersive x-ray fluorescence (WD-XRF). Approximate concentrations for three rare earth elements (Ce, La, Nd) were also determined using the WD-XRF method. This work was performed at the XRF laboratory of the Department of Uceanography, University of British Columbia, following standard procedures employed there.

Sample Selection and Preparation

Three peoples from each flow were selected for analysis. In order to
avoid random sampling errors, the pebbles chosen were those whose element ratios fell within one standard deviation of the flow mean. The three pebbles were washed in distilled water, dried, and crushed to pea-sized fragments with an agate mortar and pestle. The fragments were then combined into a single sample for each flow, and ground in a Herzog tungstencarbide ball mill for a total of 6 minutes. The obsidian powder was sieved in a 200-mesh, 20 cm diameter standard brass sieve (USA Standard testing sieve, ASTME-11 Specification, W.S. Tyler Inc.). Between each sample, the sieve was washed under a very high pressure stream of running water from both sides to remove embedded particles. The brass receiving pan was also washed under running water. Both the sieve and the pan were rinsed with distilled H_20 , the excess water was wiped off, and the sieve and pan were dried in a 90° C oven for 5 minutes. They were then cooled to room temperature before use.

The powdered samples were prepared as pressed pellets for minor, trace, and rare earth element analysis and fused into glass disks for the determination of major element concentrations. Two pellets and two glass disks were prepared for each of the ten Edziza flows, the control obsidian standard, and the procedure-testing samples. All results quoted below represent averages of these auplicate analyses.

Preparation of Pressed Pellets

14 M

4.0 g of powdered obsidian sample + 0.5 g binder (Chemplex Spectrographic X-ray Mix Powder, a commercial grinding and briquetting additive) were weighed out. The mixture was transferred to a plastic vial, and a plastic mixing ball was added. The vials were capped and sealed with Parafilm, and shaken for 10 minutes in a mechanical mixer (Spex Mixer/Mill, Cat. #8000, Spex Industries Inc.). The resultant mixture was

poured into a plastic weighing boat, 5 drops (0.25 g) of polyvinyl alcohol solution (2 g PVA + 1000 ml H_2 0) were added, and this mixture was thoroughly stirred to a sticky mud-like consistency. The PVA was added because without it the obsidian powder formed pellets too friable to stand up to the analytical conditions of vacuum and continuous rotation. The mixture was poured into a pelletizing press (Spex, with a 1 1/4 " die), tamped down, backed with boric acid (BDH Chemicals), and pressed to 10 tons.

Preparation of Glass Disks

A Busin alka

Glass disks were prepared following the method of Norrish and Hutton (1969). 3.6 g of Johnson-Matthey Spectroflux 105 + 0.4 g of obsidian powder were heated in a covered platinum-gold crucible in a furnace at 1000° C for 20 minutes. Upon removal from the oven the crucible was placed in an aluminium heat sink and cooled to room temperature. The crucible and contents were ther reweighed and the weight loss (typically about 0.025 g) was made up with Johnson-Matthey Spectroflux 100. This mixture was then heated to 500° C over a Meker burner. The melt was quickly poured out onto an aluminium mold and flattened with a flat brass plunger held at 350° C. The resultant glass disk on its mold was left to cool on the hot plate for 5 minutes, then removed to an asbestos mat where it cooled slowly to room temperature. The disk was then removed from the mold and trimmed.

Samples were analysed in a Philips PW 1400 wavelength-dispersive x-ray spectrometer using a Rh x-ray target. Analysis time for the glass disks was 15 minutes each (45 sec./peak + 45 sec./background, at each element), and for the pellets 19 minutes each (30 sec./peak + 30 sec./background, at each element).

Problems addressed

:

i

a. Natural Surface Leaching of Constituent Elements

A test for the effects of leaching due to weathering on element concentrations was performed. Since element leaching is confined to the thickness of the hydration band in obsidian, literature hydration data were reviewed (Friedman and Obradovich 1981, Michels, Tsong and Helson 1983). The estimate was made that the maximum possible hydration thickness was unlikely to exceed 40 μ m (corresponding to an age of 1.1 m.y., Friedman and Obradovich 1981). In view of the fact that the Mount Edziza Volcanic Complex experienced extensive and repeated glaciations during the past million years, and the hydration rate would have been slower during periods of extreme cold, the actual hydration thickness on any naturally occurring obsidian pebble is probably less than 20 μ m. This corresponds to a maximum age of 150,000 years (ibid.), or to a maximum age of 50,000 years (group B, Michels, Tsong and Nelson 1983).

Assuming an idealized situation in which an element is leached out completely within the hydration rind (100% leaching), and a hydration thickness of 20 microns on a rectangular pebble of the dimensions 2x3x5 cm, the resultant depletion of that element in a whole rock sample (obtained by powdering this rectangular pebble) would equal to 0.41%. However, sputter induced optical emission experiments (Tsong et al. 1978) have demonstrated that the actual hydration effects are much smaller than this extreme case of 100% leaching. The greatest effect (a 20% depletion within the hydration band) was observed in the light elements Na and K, and it became negligible for elements heavier than Al (ibid.). This indicates that natural surface leaching within the hydration rind of an obsidian pebble is not significant for the elements Fe, Kb, Y, Zr, and Nb.

The standard deviation from the mean in the semi-quantitative results for Fe, Rb, Y, Zr, and Nb is between 1% - 5%, and it is much larger than this in the lighter elements K, Ca, Ti, and Mn. Thus any element depletion due to surface leaching is well within the experimental error in the semiquantitative results, and it should not be detectable in a whole rock quantitative analysis.

To test the correctness of the above, all cortex was cut away with a low-speed geological diamond saw from visibly weathered pebbles of two abundant flows (Edziza #2 and #3). The cortex and inner portion of each pebble were then prepared separately and analysed in duplicate as above. There was no significant difference in the results (Table 5a). This confirmed that all the naturally weathered pebbles selected for quantitative analysis can be prepared without the need for cortex removal.

b. Laboratory Procedures

The sample preparation procedures (grinding, sieving, and pelletizing with polyvinyl alcohol) were tested. A standard rock specimen (NBS Obsidian Rock Standard SRM-278, an obsidian from Clear Lake, Newberry Crater, Oregon, powdered to <200 mesh) was ground and sieved, and processed into pellet and glass disk samples as above. Another sample of SRM-278 was not subjected to the grinding and sieving, but it was pelletized with PVA. The results of these preparations were compared to the results obtained from existing pressed pellet and glass disk specimens of SRM-278, previously prepared by UBC Oceanography laboratory staff. These control specimens were prepared without grinding, sieving, and without the addition of PVA to the pellets. In addition, two other standard geological specimens, G-2 and BCR-1, were prepared with PVA. All results were also

compared with the element values recommended in the literature. These results are summarized in Table 5b.

Comparison of the results from the control specimens and the glass disks prepared by the method outlined above, determined that the grinding and sieving did not affect the major element concentrations. Similarly, the addition of PVA to pressed pellets did not affect the trace element However, the pellets which were ground and sieved became results. contaminated with small amounts of cobalt. This cobalt contamination is due to the grinding process (S. Calvert, pers. comm.). To avoid this problem, grinding in an agate mill rather than a tungsten-carbide mill is suggested for samples in which the Co concentration is significant. The Co concentrations detected in the ten Edziza obsidian flows were not significantly different from the Co-contamination level in the re-ground SRM-278 sample. This indicates that the actual Co concentration (in ppm) in the Edziza obsidians is very low. Because of the contamination due to grinding, the determination of Co is excluded from the WD-XRF results reported here for the ten Mount Edziza obsidian flows.

c. Experimental precision and accuracy

「「「「「「「

The set of the

The second

Auto Carline

Precision of measurement is a measure of the reproducibility obtained by the instrument from one sample to the next. It is determined by conducting a number of non-consecutive analyses of one sample, and then checking the standard deviation of these analyses. The smaller the standard deviation, the more precise the measurement. The analytical precision for the major elements was determined through ten analyses each of two geological rock standards, G-2 and BCR-1. The analytical precision for the trace elements was determined through ten analyses each of the geological rock standards AGV-1 and NIM-S, and of Edziza #3. The experimental means

and standard deviations were calculated for all four rock standards and for Edziza #3, and are presented in Table 5c. For the major elements, the experimental precisions are 0.3% and 0.1% for SiO_2 and $Al_2 O_3$, respectively, and typically between 0.05 and 0.01 in the other oxides. For the trace elements, the experimental precisions are typically between 4 and 1 part per million. Ba and Mn, when present in very high concentrations, have analytical precisions of over 20 ppm.

The analytical accuracy is a measure of how closely do the experimental measurements reflect the true element concentrations in a sample. Accuracy of experimental results can thus be determined through a comparison of experimentally-obtained values for standard rocks with the literature values recommended for them by the U.S. National Bureau of Standards. Recommended literature values, and the difference between the recommended and the experimental element concentrations, are quoted here for all four geological standards analysed (Table 5c).

A measure of the experimental accuracy obtainable from duplicate analyses can also be derived by comparing the recommended literature values in Table 5b with the experimental values obtained for the major elements of sample SRM-278 Control, and for the trace elements in samples SRM-278 PVA, G-2 PVA, and BCR-1 PVA.

	Edzi	za #1	Edziza #3 Not				
°.	Weathered	weathered	Weathered	weathered			
Si 0_2 Ti 0_2 A $1_2 0_3$ F $e_2 0_3$ MnO MgO CaO Na ₂ O K ₂ O P ₂ 0 ₅ Total	77.1 0.38 8.59 6.04 0.07 0.01 0.28 4.27 4.06 0.02 100.33	75.6 0.39 9.59 5.95 0.07 0.01 0.28 4.23 4.41 0.02 100.53	76.1 0.18 11.51 2.99 0.03 0.02 0.26 4.22 4.71 0.02 100.09	77.4 0.18 10.70 2.98 0.03 0.01 0.245 4.04 4.33 0.01 99.95			
ppm Ba Cr Cu Mn Ni Pb Rb Sr V Y Y Zn Zr Nb	31 5 bdl 845 14 20 125 10 bdl 124 300 984 106	31 9 bdl 853 15 20 127 11 bdl 124 299 984 106	34 3 bd1 460 14 35 202 11 bd1 125 240 1020 124	34 6 bdl 453 14 32 198 11 bdl 126 239 1014 125			

Effect of surface weathering on element concentrations in two Edziza obsidian flows

i

TABLE 5a

Notes: 1. bdl = below detection limit.

8

2. for experimental precisions, see Table 5c (p. 65).

TABLE 5b

Effect of sample preparation on element values

Glass Disks:

		SRM-278	3
	Control	G+S	Literature
%	1		
SiO ₂	73.2	74.2	73.1
TiO ₂	0.245	0.25	0.24
$Al_2 \tilde{O}_3$	14.31	14.215	14.15
Fe_2O_3	2.115	2.115	2.04
MnO	0.035	0.03	0.05
MgO	0.27	0.28	?
CaO	1.00	0.98	0.98
Na ₂ 0	3.935	4.37	4.84
K ₂ Ō	4.16	4.15	4.16
P2 05	0.04	0.05	0.04
Total	99.37	100.50	

Pressed Pellets:

			SRM-278		G-	2	BCR-1		
		PVA	PVA+G+S	Lit.	PVA	Lit.	PVA	Lit.	
ppm									
Ba		860	861	1150?	1752	1900	688	680	
Co		2	47	2	9	5	33	36	
Cr		11	9	6	5	8	13	15	
Cu		4	10	6	- 11	10	22	16	
Mn		432	439	402	254	265	1357	1350	
Ni		11	9	4	3	4	15	10	
Pb		18	20	16	31	30	22	14	
Rb		130	127	128	169	170	48	47	
Sr		69	68	64	455	480	326	330	
V		10	11	?	51	36	425	420	
Y		43	42		12	11	36	40	
Zn	-	52	49	55?	81	84	122	125	
Zr		284	278		294	300	187	185	
Nb		19	19		12	13	14	19	
Ce		43	49						
La		29	26						
Nd		27	27						
110		27	L /					1	

Notes: 1. PVA = polyvinyl alcohol added to obsidian powder.

2. G+S = sample was ground in a tungsten-carbide mill and sieved in a 200-mesh brass sieve.

3. for experimental precisions, see Table 5c (p. 65).

TABLE 5c

Analytical precision and accuracy for all major and minor element analyses

% SiO ₂ TiO ₂	Lit. 54.53 2.26	Experin x 54.0	nental s	Lit-Exp	Lit	[Experim	nental	Lit-Exp
SiO ₂ TiO ₂	54.53	54.0	0.2			•	Х	S	
$Fe_{2}O_{3}$ $Fe_{2}O_{3}$ MnO MgO CaO $Na_{2}O$ $K_{2}O$ $P_{2}O_{5}$	13.72 13.44 0.18 3.48 6.97 3.30 1.70 0.36	2.24 13.52 13.61 0.15 3.35 7.00 3.25 1.72 0.36	0.3 0.02 0.11 0.05 0.01 0.04 0.04 0.04 0.05 0.02 0.006	0.5 0.02 0.2 0.17 0.03 0.13 0.03 0.05 0.02 0	69.22 0.44 15.40 2.6 0.03 0.7 1.90 4.00 4.40 0.13	2 6 3 1 7 3 5 5 5 5 3	58.8 0.50 15.48 2.70 0.034 0.77 1.97 4.04 4.51 0.125	$\begin{array}{c} 0.3 \\ 0.01 \\ 0.10 \\ 0.007 \\ 0.005 \\ 0.03 \\ 0.02 \\ 0.07 \\ 0.03 \\ 0.005 \end{array}$	0.4 0.02 0.08 0.07 0.004 0.02 0.01 0.02 0.05 0.005
Lit. ppm Ba 1200 Co 16 Cr 10 Cu 59 Mn 728 Ni 15 Pb 33 Rb 67 Sr 660 V 125 Y 19 Zn 86 Zr 230 Na(%) 4.32	AGV Expe x 1037 13 9 66 741 14 41 68 683 144 23 87 219 4.02	29 160 4 3 2 1 4 7 22 12 2 1 2 1 2 1 2 8 0.7 1 4 23 7 19 1 4 3 1 2 11 .01 .30	E Lit. 2400 4 12 80 530 62 10 310 33 0.43	NIM Expe x 2812 7 33 bd1 84 bd1 4 517 64 55 bd1 10 25 0.39	A-S erim. s L. 69 410 3 2 22 4 4 2 1 3 45 2 0 1 5 2 0 1 5 5 2 0 1 5 5 2 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-E	Edz # Expe x 42 29 11 bdl 458 10 32 199 11 bdl 124 237 1019	ziza srim. s 6 2 1 2 1 2 0.7 1 1 2 3	Detection Limit 22 30 14 17 14 16 40 7 7 12 1 12 1 12 8 0.14%

Notes: 1. no recommended literature values are available for Edziza #3.

- 2. x = experimental mean of ten analyses.
- 3. s = one standard deviation from the mean; this is a measure of the analytical precision.
- 4. Lit-Exp and L-E = literature experimental, absolute value; this is a measure of the experimental accuracy, ie. how close the experimental values are to true values.

Results

The results of the wavelength dispersive x-ray fluorescence analysis of the ten Mount Edziza obsidian flows are presented in Table 6. All values quoted represent an average of two analyses, each performed on a different glass disk or pellet sample. As stated above (see p. 57), two glass disks and two pellets were prepared for each of the ten Edziza flows.

Major element concentrations are expressed as oxides in percent by weight, on a volatile-free basis (H_2O and CO_2 are lost during the heating process in glass disk preparation). Total Fe content is expressed as Fe_2O_3 . All major element concentrations except Na_2O were determined by glass disk analysis. Since Na is particularly volatile and is easily lost during the preparation of glass disks (Norrish and Hutton 1969), the Na_2O concentration was determined by pressed pellet analysis.

All trace and rare earth element concentrations were determined by pressed pellet analysis. They are expressed in parts per million by weight. Rare earth element data were rounded to ten parts per million.

The detection limit quoted for each trace and rare earth element is defined as equal to <u>six</u> standard deviations from the background count (the count obtained when the concentration is known to be 0 ppm) at the element in question. This detection limit is a strict statistical definition; for practical purposes, any concentration value equal to or greater than half the quoted detection limit is reasonably reliable (B. Cousens, pers. comm.), with a probability of >99%.

		Absolut	te chemica	al concen	trations (of ten Mou	unt Edziza	a obsidia	n flows		
Flow #:	1	2	3	4	5	6	7	8	9	10	
%											
S102	76.3	77.0	76.8	77.2	78.7	68.3	75.6	76.3	77.0	77.9	
T102	0.39	0.32	0.18	0.15	0.12	0.64	0.16	0.35	0.09	0.06	
$AI_{2}O_{3}$	9.09	9.02	11.10	11.35	10.46	9.91	7.23	8.52	12.16	12.19	
Fe ₂ 0 ₃	6.00	5.77	2.99	2.66	2.64	10.74	8.35	6.82	1.78	1.24	
MnO	0.07	0.06	0.03	0.03	0.02	0.22	0.11	0.08	0.01	0.01	
MgO	0.01	0.02	0.02	0.12	0.02	0.01	0.02	0.04	0	0	
CaO	0.28	0.23	0.25	0.26	0.18	0.77	0.15	0.25	0.23	0.31	
Na ₂ 0	4.25	4.21	4.13	4.39	4.22	5.91	5.58	4.46	4.12	4.18	
K ₂ 0	4.24	4.25	4.52	4.26	4.02	4.18	3.88	4.19	4.41	4.07	
$P_{2} 0_{5}$	0.02	0.02	0.02	0.01	0.01	0.05	0.03	0.02	0.01	0.01	
Total	100.68	100.91	100.02	100.40	100.36	100.68	101.07	100.98	99.78	99.94	
D D M											Detection
ppiii	21	22	24	EG	26	21	16	25	20	40	
Da	050	32	34	272	221	2200	40	30	30	40	22
MI	15	10	43/	3/3	331	2280	11/0	920	223	204	16
NI	15	10	14	10	10	19	42	21	14	10	10
PD	20	23	34	20	31	28	23	161	35	43	40
KD	120	155	200	208	2/1	182	283	101	321	493	/
Sr	11	12	11	18	12	11	20	13	10	10	/
Y	124	14/	126	140	133	188	363	181	143	150	. 1
Zn	300	331	240	183	216	398	/23	404	195	190	12
Zr	984	1208	1017	662	845	1546	2879	1396	454	215	8
ND	106	125	124	139	141	211	305	158	145	155	6
Ce	220	2/0	250	180	150	360	6/0	300	100	40	60
La	110	140	130	90	80	190	340	150	50	20	60
Nd	160	180	150	120	110	230	380	210	90	60	60

TABLE 6

ALLER HERE

Notes: 1. Cr, Cu, Mo, and V: below the detection limit (14, 17, 6, and 12 ppm respectively) in all flows 2. Co concentration (in ppm) is estimated to be very low in all flows (see text) 3. For measurement uncertainties, see Table 5c (ρ. 65).

Discussion

The WD-XRF analysis of the ten Mount Edziza obsidian flows identified in Section 1 resulted in absolute element concentrations for ten major elements (expressed as oxides in percent by weight), fifteen trace elements, and three rare earth elements (expressed in parts per million by weight). Of the fifteen trace element determinations, four elements (Cr, Cu, Mo, and V) were found to be below the detection limit in all ten of the Mount Edziza obsidians. Additionally, the Co determination was rejected from the results, because of Co contamination of all samples during the grinding process in a tungsten-carbide mill. However, the Co concentrations detected in the ten Mount Edziza obsidian samples were comparable to the Co concentration level (47 ppm) in a similarly processed test sample whose true Co concentration is known to be very low (2 ppm). This suggests that the true Co concentrations in the Mount Edziza obsidian flows are also very low.

A significant feature of these element determinations is the very large range of element concentration values obtained for both the major and the trace elements in the ten obsidian flows. In many cases this range approaches or even exceeds a factor of ten. For example, among the major elements compare the Ti and the Fe concentrations in flows 6 and 10; the MnO concentration in flows 6, 7, 9, and 10; and the MgO concentration in flows 4, 9, and 10. Among the trace elements, the most striking range is exhibited by the Zr concentration, which varies by a factor of 14 between flows 7 and 10. A large range is also exhibited by the Zn values (compare flows 4 and 7), the Rb values (flows 1 and 10), and the Ce and La values (compare flow 7 with flows 9 and 10).

Apart from being viewed simply as a self-contained set of absolute

element values pertaining to a closed set of related obsidian flows, these results may also be discussed in the light of some previous research on two related topics. First, they may be compared to the chemical analyses recently reported for the basalt comendite series of the Mount Edziza Volcanic Complex by Souther and Hickson (Souther and Hickson 1984). Since the Mount Edziza obsidians form a part of this basalt comendite series, the element results obtained here should reflect the results obtained for the salic rocks (68-80% SiO2) of that series. Second, they may be compared to other significant obsidian sources from around the world, characterized chemically at different times, by various researchers, and by different Such a comparison can be useful in several ways. It can help to methods. determine the petrological class of obsidians to which the Mount Edziza flows belong; it can relate the range of variation in the chemical compositions exhibited by these ten related flows to the ranges of chemical variation observed within other major multi-flow obsidian sources, ie. intra-source variation; and finally, it will demonstrate some of the intersource variation in the chemical compositions of unrelated obsidian flows, thus placing the results obtained here into a broader perspective.

a: A comparison of the obsidian flows with the basalt comendite series of the Mount Edziza Volcanic Complex.

Comparisons of the chemical compositions of igneous rocks are usually accomplished by first relating all major and trace element concentrations in a sample to its SiO_2 content, and then by examining the element values in the two sets of rocks being compared, for all rock samples which fall within the same range of SiO_2 contents. In this case, although the rocks of the basalt comendite series from the Mount Edziza Volcanic Complex (Souther and Hickson 1984) range in their SiO₂ content from 45% to 80%, it

is relevant to compare the ten obsidian flow results with the element concentrations of the basalt comendite rocks only within the 68-80% range of SiO₂ content. The normal procedure adopted towards such comparisons is to construct plots known as "Harker variation diagrams", where all major and trace elements are plotted on the y-axis as a function of the SiO₂ concentration (plotted on the x-axis). Harker variation diagrams not only permit the comparison between two data sets to be accomplished simply on a graphical basis, they also help to recognize consistent trends in major and trace element concentration changes with increasing SiO₂ concentrations. These trends are important in confirming postulated genetic relationships for a suite of rocks from a small geographic area. In order to facilitate this comparison, Harker diagrams for the major and trace elements of the ten Mount Edziza obsidian flows have been constructed (Figure 7).

All the major element values observed in the ten Mount Edziza obsidian flows are generally consistent with the major element values of the basalt comendite series in the same range of SiO_2 concentration (Souther and Hickson 1984:88). Some minor differences are observed, however. For example, the Edziza obsidians' Al values are 7-12%, compared to 8-15% for the basalt comendite series, while the Fe values are 1-11%, as opposed to 1-7%.

The trace elements Ba, Co, Cr, Cu, Ni, Sr, and V are near or below the detection limit in the rocks of the basalt comendite series. In the obsidian data, Cr, Cu, V, and presumably Co, are also below the detection limit, while values for Ni (10-42 ppm), Sr (10-20 ppm) and Ba (21-56 ppm) are very low. Concentrations for these elements, therefore, appear to be in agreement in both works.

FIGURE 7a: Harker variation diagrams for ten Mount Edziza obsidian flows identified: major elements.

LEGEND:

Circles represent from left to right: flows 6, 7, 8, 1, 2. Diamonds represent from left to right: flows 3, 9, 4, 10, 5.

FIGURE 7b: Harker variation diagrams for ten Mount Edziza obsidian flows identified: trace and rare earth elements. LEGEND:

72a

Shirwite and Streman ...

]

I

Circles represent from left to right: flows 6, 7, 8, 1, 2. Diamonds represent from left to right: flows 3, 9, 4, 10, 5.

ł

ļ

9播

化硫酸 医胆管炎 医黄疸蛋白的

Ŧ

166 14 18 2

Π

There are also large differences in the ranges of concentrations reported for La, Rb, and Y. In Souther and Hickson (1984:99) the values for these elements are, respectively, 0-115 ppm, 100-230 ppm, and 30-70 ppm. The obsidian data shows these concentrations to have much larger ranges: 20-340 ppm in La, 126-493 ppm in Rb, and 124-363 ppm in Y. Five of the obsidian flows have La values which fall within the range reported by Souther and Hickson, and six have Rb values which fall within that range. The concentrations for the element Y, on the other hand, are clearly different in the two works.

1

As both sets of data being compared above represent absolute element concentrations, it is unlikely that these differences are due to the the analytical methods used to obtain them. They may be due to sampling error, since the high-silica rocks formed a very small part only in Souther and Hickson's much more extensive study. It is also possible that they are due to some differences in the processes responsible for the formation of highsilica crystalline rocks, and those which lead to the solidification of the natural glass obsidian. Obsidian quenches very rapidly, (usually on the order of minutes), while solidification of crystalline rocks is much slower, during which time post-eruptive chemical changes may take place (for example, see Macdonald [1974:5.14]).

b: A comparison of the chemical compositions of the Mount Edziza obsidian flows with other obsidian sources of the world.

For the purposes of relating the Mount Edziza obsidians to other significant sources of the world, the chemical compositions of several obsidians from Kenya (Bailey and Macdonald 1975, Weaver 1977), Ethiopia (Gibson 1972), Iceland (Klein, Kluger and Wieseneder 1979), Mayor Island (Ewart, Taylor and Capp 1968; Leach and Warren 1981), New Britain (Lowder and Carmichael 1970), and California (Noble et al 1972) are presented in Table 7. Average values for pantellerites, comendites, and rhyolites (Macdonald 1974) are also presented.

The Edziza obsidians represented by flows 1 to 8 are quite similar to the Kenyan and Mayor Island obsidian flows. With the exception of a high Ba content in the Fantale obsidian, the characteristics of these obsidians include very low Ba, Cu, Mo, Pb, and Sr values, and high values for Mn, Rb, Y, Zr, and Nb. Edziza 7 is most like Kenya M, while Edziza 1, 2, and 8 are similar to Kenya m, in the concentrations of the trace elements given for these two African obsidians. All the above sources are known as peralkaline, ie., rocks which, by definition, have a molecular excess of Na₂ 0 + K₂0 over Al₂O₃ (Macdonald 1974:1). Peralkaline rocks can be subdivided further, into the strongly peralkaline <u>pantellerites</u>, and the mildly peralkaline <u>comendites</u>. Pantelleritic chemistry is characterized by high total Fe, MnO, Na₂O, and TiO₂, and low Al₂O₃, CaO, and MgO; comendites are "generally transitional towards the non-peralkaline rhyolites in respect of these elements" (ibid.:13).

Among the Edziza obsidians, flows #1, 2, 7, and 8 have major-element **Values** close to the pantellerite averages, while flows 3, 4, and 5 have **major**-element values close to the comendite averages. Edziza flow 6 has a

KEY TO TABLE 7

Average values: 1. Average Pantellerite 2. Average Comendite 3. Average non-peralkaline Rhyolite

Peralkaline Obsidian Sources:

East Africa 4. Eburru, Kenya (m); 5. Eburru, Kenya (M); 6. Emuruangogolok, Kenya (S63); 7. Fantale, Ethiopia (Y346);

75a

New Zealand 8. Mayor Island, main dome (4a, P.29560);

9. Mayor Island, honey variety (16);

Calc-alkaline and Alkaline-calcic Obsidian Sources:

10. Talasea, New Britain (343); 11. Landmannalaugar, Iceland, (#5);

Sub-alkaline Obsidian Source:

12. Glass Mountain, Mono County, California (MO3B);

Reference

Macdonald 1974 Macdonald 1974 Macdonald 1974

Bailey and Macdonald 1975 Bailey and Macdonald 1975 Weaver 1977 Gibson 1972

Ewart, Taylor & Copp 1968 Leach and Warren 1981

Lowder and Carmichael 1970. Klein et al 1979

Noble et al 1972

٢,	AB		F	7	
• •		-	•		

加州社会的时候地震深深中的

Major and minor element concentrations in different obsidian sources of the world.

橋

Source:	1	2 '	3	4	5	6	7	8	9	10	11	12
		Average	S			Peralk	aline					
c,	Pan.	Com.	Rhy.									
Si02	71.2	74.0	74.06	-	-	62.61	69.56	73.40	-	75.33	70.95	76.38
T102	0.37	0.21	0.19	-	-	0.81	0.49	0.15	-	0.27	0.50	0 07
Al ₂ O ₃	9.11	11.59	13.37	-	-	11.01	9.62	9.05	-	12.58	14 81	12 65
Total Fe	6.90	3.13	1.81	-	-	11.06	7.61	6.15	3.6	2.46	3 19	1 07
MnO	0.21	0.08	0.07	-	-	0.44	0.17	0.19	-	0.07	0.14	-0.05
MgO	0.09	0.04	0.13	-	-	0.15	0.02	0.01	-	0.24	0.65	0.03
CaO	0.45	0.36	0.42	-	-	0.90	0.47	0.21	-	1 25	0.03	0.01
Na ₂ 0	6.44	5.35	4.50	-	-	7.84	6 66	6 20	4 6	1.23	5 16	4 06
K ₂ 0	4.40	4.46	4.36	-	_	4.11	4.39	4 25	4.0	3 82	2 02	4.00
P205	0.05	0.02	0.03	-	-	0.05	4.55	0.01	_	0.02	0.01	4.07
Total				-	_	99.01	99 72	0.01	_	100.02	0.01	0.01
						55.01	JJ.12	55.55	-	100.40	99.00	99.90
ppm												
Ba	-	-	-	-	· _	126	700	31	39	645	560	30
Cu	-	-	-	-	-	-	-	5.55	-	-	-	50
Mn	-	-	-	-	-	-	-	1450	-	-	-	
Мо	-	-	-	-	-	-	-	24	-	-	6 5	_
Pb	-	-	-	-	-	-	-	41	_		0.5	
Rb	-	-	-	131	417	218	120	162	139	55	16 5	102
Sr	-	-	-	-	-	13	12	4 7	100	200	10.5	192.
Y	-		-	195	410	218	130	190	_	200		C A
Zn	-	-	-	333	537	-	-	150		20	146	54
Zr	-	-	-	1038	3058	1380	1050	1520	1010	150	140	100
NÞ	-	-	-	230	542	359	155	81	1019	150	-	120
				200	046	555	155	01	-	-	-	22
Ce	-	-	-	-	-	355	270	158	162	50	212	52
La	-	-	-	-	-	205	120	130	90	20	105	
Nd	-	-	-	-	-	-	-	125	106	-	63	-
Notes: 1.	For e	ase of	compari	son wit	th Table	6, FeO	and Fe	203 valu	ues fro	om origi	nal sou	rces

are summed as Total Fe (oxides). 2. Missing values not quoted in the original sources.

75b

very high total Fe value, which places it very close to Macdonald's line dividing pantellerites and pantelleritic trachytes (ibid.:7), and thus it is probably intermediate to these two rock types.

The major element values in Edziza flows 9 and 10 suggest that these two flows are either very mildly peralkaline, or they are non-peralkaline rhyolites. Strictly speaking, both fall within the range (standard deviations from average values are not given) quoted by Macdonald for comendites (ibid.:10). However, their total Fe values are far below the comendite average Fe value, while their Al contents are higher. In fact, their total Fe values are below the average Fe content in the nonperalkaline rhyolites. They are also similar in major element concentrations to the average rhyolite lava quoted by Carmichael (subalkaline rocks, entry 10, in Irvine and Baragar 1971:546), and in the major and some trace element concentrations to the sub-alkaline obsidian source of Glass Mountain, California (Table 7, entry 12; after Noble et al 1972). Souther and Hickson also classify a highly salic rock with an Al₂O₃ content of 12.10% and total Fe content of 1.70% as a rhyolite rather than a comendite (Table III, #29, in Souther and Hickson 1984:87). In conformance with the above authors, therefore, the Edziza flows 9 and 10 are interpreted here as having a non-peralkaline chemistry.

The calc-alkaline and alkaline-calcic obsidians from New Britain and Iceland, respectively, are included in Table 7 to demonstrate the wide range of trace element values observed in obsidian rocks. Both have high Ba and/or Sr concentrations, and low Rb, Y, and Zr concentrations. None of the Edziza obsidian flows show such a pattern.

In summary, most of the Mount Edziza obsidian flows fit in the class of peralkaline obsidian composition. Flows 1, 2, 7, and 8 are interpreted as pantellerites; flows 3, 4, and 5 as comendites; and flow 6 as a

pantelleritic trachyte (transitional to pantellerite). Two Edziza flows, 9 and 10, are interpreted as sub-alkaline in composition. The presence of transitional rock types within the Mount Edziza Volcanic Complex has been observed by Souther and Hickson: "the salic suite includes (...) members which appear to grade from one to another without any obvious mineralogical or chemical gaps" (Souther and Hickson 1984:84).

a transfer

Total and the second

The chemical trend in the formation of lavas is that peralkaline lavas need longer residence times within a magmatic reservoir under the surface of the earth than do the alkaline lavas. In other words, the more strongly peralkaline the rock, the longer the residence time of its parent magma. In particular, pantelleritic (or strongly peralkaline) composition is indicative of prolonged magmatic evolution of the parent magma, and is characteristic in areas of rift tectonism (Cann 1983).

The chemical nature of Edziza flows 9 and 10 suggests that they have formed at an early stage of evolution of the Pyramid and Ice Peak formations, respectively. The other two flows within these formations (flows 5 and 4, respectively), being more strongly peralkaline, and thus requiring longer residence times, should be found stratigraphically above flows 9 and 10. In fact, this is the case. As discussed in Section 1, flow 4 is found 500' above flow 10 in the Ice Peak Formation, while flow 9 is found about 100' lower in elevation than flow 5 within the Pyramid Formation.

In addition to this, the most strongly peralkaline of the Mount Edziza obsidian flows (flows 7 and 8) are found within the Armadillo Formation. This is the oldest formation in the Mount Edziza Volcanic Complex which contains salic rocks, having a mean age of 6.3 Ma. At 159 cubic kilometres, it is also volumetrically the largest among the fifteen formations

identified within the Complex (Souther et al 1984; Souther and Hickson 1984). The lifespan for this formation is at least 1.1 Ma, and might possibly be as long as 4 Ma. A long time span for the active life of the Armadillo Formation magma chamber is consistent with the oversaturated peralkaline nature of the obsidian flows within this formation. In contrast, both the Pyramid and the Ice Peak formations are young (1.1 Ma, and approximately 1 Ma, respectively), and their lifespans have a narrow range (0.25 Ma for the Pyramid) (Souther et al 1984).

c. Geochemical Interpretations on the basis of absolute element concentrations

The element concentrations within a suite of igneous rocks can be used to discriminate between two different processes of igneous rock formation. The two processes are known as <u>partial melting</u> or <u>crustal anatexis</u>, and as crystal fractionation or fractional crystallization.

Fartial melting is a process in which existing rock (old continental crust, sediments, new basaltic crust, etc.) remelts into magma because of volcanic heating. Since different minerals melt at different temperatures and pressures, some minerals in the parent rock are liquefied faster than others. High pressure forces the resultant liquid out onto the earth's surface, where it solidifies into a new daughter rock, distinct in its chemical composition from that of the parent material.

Various partial melting equations (for example, Shaw 1970) can be used to calculate the expected concentration of an element in the daughter rocks, given the initial chemical composition of the parent material, the proportions of the parent material involved in the partial melting process, the rate of removal of the resultant melt, temperature, pressure, and other data (Berman 1981; Johnson, Smith and Taylor 1978). These equations can also be used to verify a parent-daughter relationship between different rocks

found in geographic proximity to each other (ibid.:65).

The crystal fractionation process is one which involves a completely molten lava, which changes in its chemical composition through time. In this process, known as the <u>Bowen reaction series</u> (Press and Siever 1978:347), specific minerals are formed in a known sequence of chemical compositions within a liquid magma, during a long and slow cooling process. These minerals are then removed from the melt, either through gravitational settling or through extrusion. This results in a residual melt of a different chemical composition than the original magma. Unless the melt cools and solidifies into rock, different mineral crystals continue to form and be removed, and thus the composition of the remaining magma continues to change in a gradual fashion. Rocks formed at different stages of crystal fractionation reflect this gradual change.

As in the case of the partial melting process, the crystal fractionation process can be modeled mathematically, using the Rayleigh fractionation model (Shaw 1970). This permits the derivation of various intermediate and end-member rocks from different original fractionating magmas, under different conditions of bulk composition, temperature, pressure, and rate of crystal removal. Souther and Hickson used mathematical modeling (of major elements) to derive various modes of crystal fractionation for the igneous rocks of the Mount Edziza Volcanic Complex.

The derivation of a genetic relationship among some of the Edziza obsidian flows would be useful in confirming that flow 6 is part of the Armadillo Formation. The simplest way of doing this is to plot major and minor element concentrations against the samples' SiO_2 content, as was done in the Harker diagrams above (Fig. 7). Relatively smooth compositional variations in such diagrams indicate that a postulated genetic relationship

is correct. Such variations were observed by Berman for rocks of the Coquihalla Volcanic Complex (Berman 1981:157-158) and by Souther and Hickson for the basalt comendite series of the Mount Edziza Volcanic Complex (Souther and Hickson 1984:88, 99).

The Harker diagrams in Fig. 7 can be examined to verify which of the ten Mount Edziza obsidian flows are genetically related. For the major elements (Fig. 7a), the set of obsidian flows postulated to originate within the Armadillo Formation (circles, representing flows 6, 7, 8, 1, and 2) in general show consistently higher concentrations of Ti, Fe, Mn, and P, and consistently lower concentrations of Al, than the other five flows (diamonds, representing flows 3, 9, 4, 10, and 5). Since the latter five flows are thought to have originated from three different formations, a large amount of scatter in these points should not be cause for concern.

Trace elements can also show gradual and predictable changes, although the range of variation commonly observed in them usually permits only qualitative observations to be made. Certain trace elements will tend to be depleted, either very quickly in the early stages of fractionation (for example, Ni) or very gradually (Cd). Other trace elements (Rb, Y) will show increasing enrichment as the fractionation proceeds. Still others (La and Th) can show enrichment in the early stages of fractionation, but are depleted during the latter stage of the process (Souther and Hickson 1984:99). Certain trace elements (for example Zr, Nd, Ce, and Nb) are commonly considered as <u>hygromagmatophile</u> or <u>incompatible</u>, and they tend to remain in the melt during the entire fractionation process, with resultant terminal enrichment (Berman 1981). Others (for example, Ba and Sr) have a chemical affinity for the crystal phase, and are removed in the minerals fractionating out of the melt, so that their highest concentrations are found in the early-stage rocks.

As in the case of Harker diagrams, a suite of rocks from a single continuously fractionating magma should show a positive linear correlation between the chemical concentrations of two incompatible elements in these rocks (B. Cousens, pers. comm.; Berman 1981). If the data points do not form one straight line, then either they are not all members of a single fractionating suite, or the crystal fractionation model is not appropriate for the formation of the set of rocks being studied. In general, nearlylinear patterns are not consistent with partial melting processes, and partial melting processes cause a much greater departure from linearity in trace element correlation diagrams than crystal fractionation processes (Berman 1981).

In order to test the above, several incompatible elements determined for the Edziza obsidian flows were plotted in element correlation diagrams (Fig. 8). Figure 8a shows the relationship between the element Rb and the elements Nb, Y, Ce, and Nd. The pattern which emerges from these graphs suggests that flows 1, 2, 8, 6, and 7 are related in the manner predicted by a crystal fractionation model for a single fractionating suite. This confirms the suggestion made earlier in this thesis that flow 6 is a part of the Armadillo Formation along with the other four flows, and that at least three of these (flows 1, 2, and 8) are closely related chemically.

The data points for flows 3, 4, 5, 9, and 10 show more scatter, and a strong positive linear correlation is not observed for them. Where a linear correlation can be inferred, it is either weak (Rb <u>vs</u> Nb, and Rb <u>vs</u> Y, Fig. 8a) or negative (Fig. 8b). Thus, it is unlikely that these five flows are

members of a single fractionating suite. Since they come from widely separated outcrops within the Mount Edziza Volcanic Complex, and have been assigned to different geological formations, this is a valid conclusion.

5,8%-4.4.

d. Relative vs Absolute Element Concentrations

Graphs relating the relative element/Compton ratios and the absolute element concentrations of each obsidian flow were constructed for most of the elements detected by both methods. They are presented in Figure 9a (Ti, Mn, Fe, and Zn) and in Figure 9b (Rb, Y, Zr, and Nb).

These relative <u>vs</u> absolute concentration plots can be useful in relating the semi-quantitative data obtained with the ED-XRF spectrometer at SFU to the absolute element concentrations in obsidian flows not studied here. Such a comparison would only be valid for obsidian data consisting of several measurements, with each relative element ratio given by a mean and a standard deviation. It would not be useful for individual samples. Also, as can be observed from the graphs in Fig. 9, the absolute element concentrations obtained through the use of the graphs would be of low precision.

In most of the relative <u>vs</u> absolute element graphs a linear relationship is observed. The interpretation of such a relationship is that for the obsidian flows studied, the semi-quantitative element/Compton ratios measured with a Ag secondary target are directly proportional to the absolute concentrations of these elements. In most cases, the straight-line fit falls within one standard deviation for all ten groups. The graphs for the trace elements Zr, Zn, Y, and Nb show this to be the case.

Two exceptions to such a linear relationship were observed for the graphs of Fe and Rb. Instead of a straight line, the data points for these two elements best describe a curve. However, a straight-line fit falls within two standard deviations of all data points on these two graphs.

Figure 9: Comparison of the two analytical methods used in the chemical characterization study of the Nount Edziza obsidian flows.
a) ED-XRF relative concentrations vs ND-XRF absolute concentrations for Ti, Nn, Fe, and Zn.

The failure of these two elements to show the expected linear relationship is due to an intrinsic limitation of the Compton normalization procedure. As already stated in Section 1, the Compton scatter peak observed in an XRF spectrum is inversely proportional to the average atomic number \underline{Z} of the specimen being analysed. When samples of a similar chemical composition (and therefore of similar average atomic number \underline{Z}) are examined, the Compton scatter peak is approximately the same in all of them. Thanks to this, element normalization to the Compton scatter peak is a valid procedure when several related obsidian flows are being studied, since theoretically, the major element chemical composition (and therefore the average atomic number \underline{Z}) of obsidian varies very little. In low- \underline{Z} , lightweight samples the Compton scatter peak is high; as the average \underline{Z} of a sample increases, the Compton peak becomes smaller.

Obsidian is a relatively light substance, and its average \underline{Z} is The absolute element concentrations in Table 6 show that most of the 10%. ten Mount Euziza flows are composed of about 76% by weight SiO2. However, one of the characteristics of the ten Mount Edziza obsidian flows which had already been pointed out above is the very large range of concentrations observed for Fe₂O₂. As Fe is one of the major constituent elements in obsidian, and Fe_20_3 is much heavier than SiO₂ (atomic weight = 160 amu, as opposed to 60 amu), a small change in its concentration can be expected to change the average Zoof the obsidian considerably. For example, a 5% increase in the concentration of Fe₂O₃ results in a 15% increase in the average atomic weight of the obsidian. Such a change will naturally lead to a change in the height of the Compton scatter peak: the flows with the highest Fe content (flows 6 and 7) will have the lowest scatter peaks, while the flows with the lowest Fe contents (flows 10 and 9) will have the nighest scatter peaks.

The curve for Fe (Fig. 9a) is supra-linear; that is, it rises faster than a straight line. The reason for this is as follows. As the Fe concentration increases, then the Compton scatter peak decreases, and so the relative Fe/Compton ratio increases faster than the real Fe concentration. The hignest Fe/Compton ratio observed is that for flow 6, the obsidian flow with the lowest SiO_2 (68.26%) and the highest $Fe_2 O_3$ (10.74%) concentrations observed in the ten flows.

The curve for Rb (Fig. 9b) is sub-linear: it curves down from a straight line. In fact, only the highest point on that graph does not fall on a straight-line fit; all others do. This point corresponds to flow 10, whose Fe concentration of 1.24% is the lowest observed in the ten Hount Edziza obsidian flows. The Compton scatter peak for this flow is therefore higher than in the other flows, and so the Rb/Compton ratio is lower than it would have been if the Compton did not vary inversely with a sample's average Z.

A graph of Ti shows that the linear relationship between the relative element/Compton ratios and absolute element concentrations is not well supported by the data for poorly detected low element peaks. A similar result (not included here) has been obtained for the relative <u>vs</u> absolute concentrations of Pb. The scatter observed in these graphs is due both to counting scatter and to the large errors (20%) in the computer-generated fit to the data obtained from low peaks.

Graphs for the two lightest elements detected, K and Ca are not included. For these two peaks near the low-energy extreme of the x-ray continuum, the scatter and the detection efficiency of the ED-XRF results are so poor that these relative K and Ca concentrations have little bearing on the real element concentrations in the sample. Obsidian analysis with a

Zn secondary target (K-alpha emission energy = 8.6 keV) should improve dramatically the detection efficiency and decrease the scatter in the observed relative concentrations of K, Ca, Ti, and In. Relative element/Compton ratios, measured for these four elements with a Zn secondary target, could then be used to construct similar relative vsabsolute concentrations as those presented here.
SECTION 3

A LOOK AT LOCAL OBSIDIAN EXPLOITATION PATTERNS THROUGH A STUDY OF FIVE ARCHAEOLOGICAL LITHIC ASSEMBLAGES.

Introduction

One of the specific goals of the archaeological survey of the Mount Edziza Volcanic Complex conducted by Fladmark in 1981 was to determine the extent of aboriginal utilization of the Edziza obsidian sources. This objective was achieved with the documentation of 114 prehistoric sites. Of these, all but 29 were found within Raspberry, Bourgeaux, and Artifact valleys, on Kitsu Plateau, and on "Goat" Mountain. Also, 82 of the 114 sites were designated either as quarry-workshops or flaking stations devoted exclusively to the processing of raw obsidian rock into lithic tool preforms. The remaining 32 sites were campsites or multi-function sites.

The previously documented wide distribution of artifacts made from Mount Edziza obsidian, extending hundreds of kilometres away from the Complex, attested indirectly to its significance as the largest and most heavily exploited obsidian quarry in the Northwest. As a result of the 1981 survey, it became clear that the exploitation of the Mount Edziza Volcanic Complex as an obsidian source was both extensive and intensive, and that the obsidian exploitation was probably the single most important reason for prehistoric human presence within the Complex.

Section 1 of this thesis established that the Raspberry Pass - "Goat" Mountain - Artifact Valley area (Fig. 6b) was host to five distinct types of obsidian, and that in most sampling locations, the obsidian occurred as single-type unmixed deposits. Also, certain of the obsidian types notably types 2 and 3 - show the heaviest concentrations in very different

areas. Edziza 2 is the only obsidian type found in the Raspberry Pass scatters, which are of poor quality and of no use for tool manufacture, while Edziza 3 is the predominant obsidian type in Artifact valley, and the only type found on "Goat" Mountain. The identification of particular obsidian types in the artifacts from an archaeological site could thus be used as a guide to the obsidian procurement strategies practiced by the makers of these artifacts. For example, the presence of artifacts made from obsidian types 5 or 9, at sites in Artifact valley, would indicate that the raw material was procured at the Pyramid, well to the north of Artifact valley. Of course, since Artifact valley is itself full of obsidian, such a scenario is highly improbable. Among other things, however, type characterization of obsidian artifacts can yield information on whether raw material procurement was a well-organized, task-oriented process, or a more casual, "pick-it-up-as-you-need-it" affair.

Description of the Sites and Assemblages chosen for study

Three sites were chosen for this study. Two of them (HiTp-63 and HiTp-1) are multi-function, multi-component sites, containing lithic workshop and campsite components, located in two different valleys. The natural obsidian type distributions near these sites are quite different, although their quality varies from poor to good. Accessibility to concentrated deposits of good quality obsidian from these sites also varies.

Analysis of artifacts from the two sites permit the following comparisons to be made: whether the obsidian type frequencies in the two aifferent components within each site are the same; whether the obsidian type frequencies in the lithic workshop components of the two sites are the same; whether the obsidian type frequencies in the campsite components of the two sites are the same, and how do they differ from the frequencies in

Figure 10: Location of the Archaeological Sites Discussed in the Text

the lithic workshop components; and finally, now do the obsidian type frequencies within each site relate to the natural obsidian type distributions in the immediate vicinity of that site.

A third site (hhTq-1) was also included in this study. It was chosen both because of its location, and because of the rather unusual lithic assemblage it contained. This site is located on the Arctic Plateau, far to the south of any obsidian sources within the Complex, and well isolated from any other archaeological sites in the Complex. It contained a diverse lithic assemblage which included microblades and a large well-flaked biface. Analysis of these artifacts was done to determine where the raw material for their manufacture was procured.

a. HiTp-1 (EP1, Wet Creek Site)

This site is located at the junction of Artifact Creek and its tributary "Wet" Creek, at an elevation of 4820' (1460 m). It is one of the two-component sites, composed of a lithic workshop component (House 1), and a campsite component (Area 2). The two components do not overlie each other, but are separated by a distance of some 70 m. Excavations of each component were performed (Flagmark 1982).

House 1. This is a large natural depression feature, presumed to be a single-occupation lithic workshop dedicated to biface preform manufacture. Upon excavation, this cultural depression was found to contain literally tens of thousands of obsidian detritus flakes, and over 70 biface preform fragments. Of the biface preforms, 8-10 are in an advanced state of manufacture.

This component is dated at 2860+-160 BP (SFU 141), by C14 dating on organic material associated with the lithics. It is also associated with a coastal-type ground slate or siltstone projectile point typologically dated

at 2000-3000 years BP. No evidence of a microblade industry was found.

Both the biface preforms and the obsidian flaking detritus were sampled for analysis. Twenty reasonably complete bifaces were chosen. The debitage flakes were sampled from levels 2 to 5 of a 50 x 50 cm unit (h22-23, E18-19, SE) within the cultural depression feature. This unit was chosen because it was in the core area of most intensive lithic reduction activity within the cultural depression, and it contained the highest number of flakes (nearly 10,000) excavated from any quadrat. A 1% sample of levels 2, 4, and 5 was taken. Level 3 was sampled at 5% to ensure that the sample size exceeded the number of obsidian flows found in the study area. The total number of obsidian debitage flakes analysed as a result of this sampling scheme was 111.

Area 2. The main excavations of this component were conducted about 70 m SE of the house 1 excavations. Thirty-two modified tools and several thousand obsidian detritus flakes were recovered. The modified artifact assemblage was a diverse one, consisting of microblades and microblade cores, end- and side-scrapers, bifaces and retouched flakes, as well as biface preforms and flake cores. The high diversity of artifact classes in this assemblage places it within the "camp" class as defined by Fladmark (1982:245).

This component is associated with a minimum date of 1140+-80 BP (SFU 162), obtained on material directly overlying the assemblage but not actually within it. However, on the basis of the strong microblade component in this assemblage, a much place date of approximately 4000 BP is suggested (Fladmark 1982:248).

The artifact sample chosen for analysis consisted of 12 of the 32 modified tools. This sample consisted of: one microblade core and one microblade, three scrapers, one complete and three broken bifaces, a

uniface, a retouched flake, and a core. This sample was chosen so that at least one of each class of artifact found in the assemblage would be submitted to analysis. No obsidian detritus was analysed.

b. HiTp-63 (EP80, Grizzly Run Site)

This site is located in Bourgeaux Creek valley, at an elevation of 4885' (1480 m). It is also a two-component site, represented by a campsite (Component 1) and a lithic workshop component (Component 2). Unlike the situation at the wet Creek Site, the two components at this site are found in a stratigraphic sequence. The two components are separated from each other by a distinctive marker horizon composed of a coarse volcanic ash (Ash 3).

Component 1. This is a surface and shallow subsurface component, separated from the lower component by a layer of volcanic tephra.

The artifact assemblage excavated here consisted of a large variety of artifact classes, including bifaces and biface fragments, retouched flakes, side- and end-scrapers, a core, and a large "battered piece" tool. Several artifacts were made of raw materials other than obsidian, including basalt, rhyolite, and andesite. No microblades were found. Approximately 1300 obsidian detritus flakes were also recovered from eight 1x1 m excavation units. Again, as in the case of the Area 2 component of the Wet Creek site, the variety of artifact classes found here suggests that this was a brief 2-3 day campsite, occupied by a small group of people. Alternatively, the assemblage may have been left deliberately as a tool cache.

The dating of Component 1 is based on two criteria. First, the volcanic tephra layer separating this component from the underlying Component 2 is known to have originated in a 4630 BP eruptive event, and it provides a maximum age limit for Component 1. Also, a radiocarbon date of

3910 +-120 BP (SFU 147) is tentatively associated with this component. This date is accepted as a probable and a reasonable estimate for the age of the component (Flagmark 1982:278).

Since the size of the assemblage was small, all seven obsidian artifacts found in this component were analysed. They consisted of 4 biface fragments, 1 flake core, and two scrapers. The obsidian detritus flakes were not sampled for analysis.

Component 2. This was clearly a lithic workshop component, devoted to biface and microblade production. It consists of a nearly pure lithic workshop residue: 12 biface fragments, 4 flake cores, and 60 microblades or microblade fragments, many of which were refitted to form a single microblade core. Additionally, a very large number (over 19,000) of obsidian detritus flakes) were recovered from eleven 1x1 m excavation units.

This component was found underneath the volcanic tephra layer, which places its minimum age at 4630 EP. A radiocarbon date of 4870 +- 120 BP (SFU 129) is associated with it. This gives not only the probable age of the oldest cultural occupation at this site, but also the oldest date associated with any cultural remains in the Edziza region.

The sample analysed consisted of 13 artifacts, all chosen from amongst the formed tools. Most consisted of biface or flake tool fragments. One of the microblades refitted to form the core was also analysed, which gave information on the obsidian type for a number of other microblades and the original core.

c. HhTy-1 (EP58)

This site is located on the Arctic Plateau at an elevation of 5085'. (1540 m), among a complex of esker ridges at the upper end of More Creek.

It is one of the most isolated sites, the area being otherwise barren of cultural remains. It is interpreted by Fladmark as representative of a single brief occupation, probably a short-term caribou-hunting camp. Environmental considerations suggest that the site was created during warm periods of the Hypsithermal, prior to 4000 B.P. (Fladmark 1982:152).

This was a surface scatter site, with no buried component or dateable material in association with the artifacts. The artifact assemblage was diverse, consisting of 24 obsidian flakes, one long and relatively thick collaterally flaked projectile point, 2 scrapers, 2 bifaces, 2 retouched flake tools, one flake core fragment, 2 microblade core remnants, and 14 microblades (Flaqmark 1982:151-152).

From this assemblage, six artifacts, including the projectile point, two microblades, a microblade core, and two flake tools, were analysed.

Hypotheses on possible local obsidian procurement strategies

HiTp-1 House 1. Since this is a high-intensity lithic workshop located very near prime obsidian source areas (on "Goat" Mtn., and in the "Fan Creek" talus deposit) it is presumed that high-quality obsidian was deliberately sought out and brought to this site for reduction. If the "Goat Mtn." source was being exploited, then Edziza 3 should be the sole obsidian flow represented here. Similarly, if the "Fan Creek" talus deposit was sought, then all artifacts should be made of type 2 obsidian, since that is the only type present in the "Fan Creek" deposit. If such was not the case, then a more generalized and diffuse exploitation pattern is indicated. A high percentage of Edziza 8 obsidian (and small quantities of types 2 and 7) would indicate that the slide in Destall Pass was exploited; similarly, high percentages of Edziza 3 and Edziza 6 (and small quantities of types 7 and 8) would indicate that the obsidian was collected from the outwash gravels of Artifact Creek. Presence of the obsidian flows represented in the gravels of Destall Pass and Artifact Creek is unlikely, as these deposits are small in quantity, and are composed of poor quality obsidian. The presence of these flows, despite the fact that this obsidian would necessarily be of inferior quality, or the presence of type 2 obsidian, would indicate that the people who left behind the enormous amount of obsidian detritus at House 1 preferred to collect the raw material at low-elevation easily accessible locations. The climatic conditions prevailing around 3000 BP were those of the Neoglacial (Fladmark 1982), and access to the high-altitude obsidian outcrops on "Goat" Mtn. during that period may have been seasonally restricted to such an extent that exploitation of low elevation source areas was necessary.

HiTp-1 Area 2. A greater number of obsidian flows is postulated for

this assemblage. The diversity of artifact classes and the fact that this is a campsite suggests that the tools found in this component were not all manufactured at the same time, thus a variety of source materials is more likely. The climate during 4000 BP was probably milder than the Meoglacial conditions of 3000 BP, and so higher-altitude obsidian outcrops would have been more accessible. This would include Edziza 3 and 2 on "Goat" Mtn. and its flanks. Edziza 2 at the base of "Fan" Creek would be the nearest lowelevation source of good quality obsidian clasts. Further away, flows 1, 4, 5, 9, and 10 would also likely have been as accessible as they are today. In spite of the accessibility of these flows, the site location in Artifact valley suggests that the frequency of Edziza 3 obsidian should be higher than any other. Association with a projectile point diagnostic of a coastal group raises the possibility that some of the obsidian tools need not be indigenous to Edziza. Some may have been manufactured on the coast from one of the Alaskan or Yukon obsidian sources, and may have been brought into the site by coastal people along with other tools made of nonlocal lithic material.

HiTp-63 Component 1. The presence and diversity of raw material types in the lithic artifacts not made of obsidian, suggests that a number of obsidian types may also be present in the artifacts from this component. Since this is a possible campsite component, a variety of obsidian types is likely, as the same arguments apply here as in the Area 2 component of hiTp-1 above.

HiTp-63 Component 2. This is a lithic workshop component, and so it is most likely that only the Edziza obsidian sources will be represented in the artifacts analyzed. Since it is located in Bourgeaux valley, the nearest naturally available obsidian is of type 2, and is located in the

scatters in Raspberry Pass. The principle of least effort would suggest that the artifacts in this component are made of the Edziza 2 obsidian obtainable in Raspberry Pass. This obsidian, however, is not of useable quality. The nearest source of useable quality obsidian is in the moraine at the nead of "Point Creek", which is composed of obsidian of type 3. The concentrated remnants of microblade production also suggest that this type was exploited here, since microblade production requires a particularly good quality of raw material. Also, the obsidian from which the microblades were made is visually suggestive of Edziza 3: it is black and glassy, and clearly transparent with a greenish tinge in transmitted light. The other obsidian types found at Mount Edziza which show this green tinge are at best translucent, and often almost completely opaque.

HhTq-1. This site was chosen for analysis because of its unique position and artifact assemblage within the Mount Edziza Volcanic Complex. Because of its isolated position it is impossible to guess where the obsidian was procured. The people may have traveled from the north along Hess Creek, down the west side of the Complex, in which case they may have collected their raw material at Cocoa Crater or Coffee Crater. In this case the obsidian flows 1, 2, and 4 would be expected in the assemblage. Alternatively, they may have traveled down the east side of the Complex, and collected their obsidian in Artifact Creek (the most easily accessible source area), and in upper Artifact valley. The presence of obsidian flows 2, 3, 6, 7, or 8 would confirm this route. Should all artifacts be made of Edziza 3 obsidian, a direct route over the high plateau areas to the "Goat" With, source would be indicated.

The Chemical Analysis of Five Artifact Assemblages

Sample preparation was limited to washing all artifacts under deionized water. The analysis was performed using the same instrumental setup of Section 1.

It was determined in Section 1: that only the elements Fe, Rb, Y, Zr, and Nb were significant in chemical flow discrimination, and the relative intensity of these peaks was wellidefined at even the shortest analysis times (Fig. 3). Since the purpose of this analysis was to assign each artifact to one of the 10 obsidian flows and not to establish precise concentrations for all elements in each flow, the artifacts were analysed for 5 minutes only. All 169 artifacts were analyzed non-destructively with the exception of 3 very large cores or flakes, from which a small flake was detached for analysis.

It is important to note that of the ten natural Edziza obsidian flows, a positive identification of flows 3, 4, 5, 9, and 10 can be made by visual examination of their spectra (Fig. 4). However, the Armadillo Formation flows 1, 2, 6, 7, and 8 cannot be reliably distinguished from each other on the basis of their spectra. During analysis most of the spectra collected were identified by inspection as representative of the Edziza 3 obsidian flow. The remainder of the spectra appeared to represent the five Armadillo flows (1, 2, 6, 7, and 8). None of the 169 artifact spectra examined were characteristic of flows 4, 5, 9, or 10.

The precise obsidian source identification of the artifacts whose spectra could not be positively identified by inspection was made analytically. Approximately half of the artifacts identified on the basis of their spectra as made of Edziza 3 obsidian were also analysed, to confirm that the flow identifications made visually were not in error. The

analyses involved peak extraction, normalization, and comparison with normalized element values obtained for source flows 1, 2, 3, 6, 7, and 8.

Inspection of the A-coefficients separating the relevant natural Edziza obsidian flows suggested that the most efficient way to attribute the artifacts to the obsidian source flows was on the basis of the element ratios Fe/Zr, Rb/Zr, and Nb/Zr. Rather than submitting the data to the lengthy process of peak extraction through the GAMANAL computer program as in Section 1, the peak areas corresponding to the K-alpha emission lines of Fe, Rb, Zr, and Nb were extracted using the internal peak extraction routine of the ND66 multichannel analyser. However, as this was a departure from the procedure followed for the establishment of the semi-quantitative element values for each flow in Section 1, it was felt that direct comparison of these results with the values for the ten Edziza flows presented in Table 3 would not be valid. This is unfortunately one of the shortcomings of the semi-quantitative method, and so a more cautious approach was indicated. Three source pebbles from each of the chemical types 1, 2, 3, 6, 7, and 8 were analysed with the artifacts, and their Fe, Rb, Zr, and Nb peaks were extracted using the ND66 multichannel analyser's peak extraction routine. The Fe, Rb, and Nb values were normalized to Zr, and the average values were computed from the three pebbles in each flow for these element/Zr ratios. The results of all artifact analyses were then compared to the source flow element/Zr ratios obtained in this manner, rather than directly to the results obtained in Section 1.

Artifact Analysis Results

I

ľ

Ī

The results of the analysis are presented in Table 8 and in Figure 11. Detailed results of the analysis of the 55 formed tools are presented in Appendix F., Briefly, the findings are as follows:

1. The 169 artifacts were identified as made from obsidian flows 2, 3, and 6. Flow 3 was predominant, and it made up 83% of the sample. Flow 2 made up the remaining 17%. Flow 6 was identified in only one artifact.

2. All artifacts from the two-component sites HiTp-1 and HiTp-63 were made from the obsidian flows 2 and 3. These two flows were identified both in the obsidian detritus flakes from hiTp-1, and in the formed tools sampled from each of the four components represented by the two sites. No other obsidian flows were represented in these artifacts.

3. Among the formed tools, there was no significant difference in flow frequencies between the two components within each of the twocomponent sites (HiTp-1, HiTp-63). However, there was a difference between sites: flow 2 was twice as common in HiTp-63 (14.5%) as in HiTp-1 (6.5%).

4. In HiTp-1 House 1 (the workshop component), flow 2 was much more frequent among the debitage (about 20%) than among the biface preforms (5%). There was considerable variation in the flow frequencies between levels. For example, flow 2 represented 38% of the level 2 sample, but only 12% of the level 4 sample.

5. The large collaterally flaked biface from HhTq-1 was of the flow 6. The only location where obsidian from this flow is found is in the outwash gravels of Artifact Creek (locality 3). The remaining 5 artifacts, including the microplades, were made of Edziza 3 obsidian.

TABLE 8

Obsidian Artifact Source Analysis Summary

a. Debitage									
HiTp-1 (N22-23 Lithic	House 1 E18-19 SE) Workshop	N*	ĒC	iziza #2	Edz	iza #3	۱ Ec	iziza	₩f
	Level 2 Level 3 Level 4 Level 5	16 15 50 30	ნ 3 6 8	(37.5%) (20%) (12%) (27%)	10 12 44 22	(63 - 5%) (8∪%) (さざ%) (73%)		ì	
	Subtotal	111	23	(21%)	88	(79%)			
b. Form	ed Tools	20	1	(5 %)	10	(059)			
нтір-т	Lithic Workshop	20	T	(5%)	19	(95%)			
	Area 2 Campsite	12	1	(8%)	11	(92%)			
Н і Тр-63	Component 1 Campsite	, 7	1	(14%)	6	(86%)			
	Component 2 Lithic Workshop	13	2	(15%)	11	(85%)			на - 1
HhTq-1	Hunting Camp	6			5		1		
	Subtotal	58	5	(9%)	52	(90%)	1	(2%)	
	TOTAL	169	28	(16.6%)	140	(82.8%)	1	(0.62	,)

(

×.

1

ASS - ASS

*N represents a 1% sample of Levels 2, 4, and 5, and a 5% sample of Level 3 in the debitage.

Figure 11: Results of the obsidian artifact source analysis.

105a

i

:

•

A: Obsidian type frequencies in artifacts of the Wet Creek Site (HiTp-1)

B: Obsidian type frequencies in the formed tools of HiTp-1, HiTp-63, and HhTq-1.

¹⁰⁵b

Discussion

and a second

A CONTRACTOR OF A CONT

It was surprising to find that among the five artifact assemblages examined, essentially only two obsidian flows were represented: Edziza 2 and 3. Edziza 3 was predominant in all assemblages. It made up between 64% and 95% of each assemblage analysed.

The obsidian sources nearest to the unizzly Run site are the scattered clasts naturally present in Raspberry Pass (represented by flow 2 only), and the obsidian in the gravel slide in Destall Pass (composed of obsidian from flows 8, 2, and 7). None of the material found in these gravels is of useable quality, however. The nearest and most accessible obsigian of flakeable quality is found in the moraine at the head of "Point Creek", which contains obsidian of type 3. The obsidian source nearest to the Wet Creek site is in the outwash gravels of Artifact Creek (locality 3), which is made up of obsidian from flows 3, 6, 7, and 8, but it too is not of sufficient quantity or quality to be used in tool manufacture. The nearest useable sources are found in the talus at the base of "Fan Creek", which is made up of type 2 obsidian, and in Artifact Valley Moraine, composed of type 3 obsidian. As none of the four assemblages from the two sites in Artifact and Bourgeaux valleys reflect the obsidian flow frequencies corresponding to one of the source localities of good quality obsidian nearest to each site, the possibility of obsidian exploitation by the "principle of least effort" has to be firmly rejected.

Judging by the consistently high frequencies of flow 3 in each assemblage, it seems evident that the source areas preferentially exploited were those where this flow is predominant. On the other hand, since none of the assemblages were made up exclusively of Edziza 3 obsidian, but all included small quantities of obsidian from flow 2, it would seem that the

single-flow sources of Edziza 3 obsidian were not necessarily always sought out. This includes the high-elevation sources on top of "Goat" Htn. and on Obsidian Ridge, and the two low-elevation sources of Point Valley Moraine and Artifact Valley Moraine.

The presence of small quantities of type 2 obsidian in both sites is indicative of an exploitation strategy of source areas where types 2 and 3 are mixed through natural erosive processes. The geological samples taken from sites on Kitsu Plateau and on Swarm Ridge (localities 1.01 and 1.26) indicate that the outcrops of flow 2 are found within an elevation range of 5900-6200' (1790-1880 m). It would thus appear that raw material procurement from the flanks of "Goat" Mth. at or below these elevations would result in some amounts of obsidian from flow 2 as well as obsidian from flow 3, being included in the sample. Obsidian procurement from these areas was probably preferred to the exploitation of valley bottom sources, because the rock fragments found hearer the outcrops were larger and less weathered than those found at lower elevations.

An alternative explanation for the presence of types 2 and 3 in the obsidian artifacts of the two sites under consideration is that the type frequencies reflect the exploitation of only the two low-elevation type 3 sources (Artifact Valley Horaine and "Point" Valley Horaine) and the type 2 source at the base of "Fan Creek". Because the frequencies of type 2 obsidian in these artifacts is so low, however, despite the fact that the "Fan Creek" deposit is readily accessible and of good quality, this is an unlikely situation.

The extensive and concentrated source areas on top of "Goat" Htn. were most likely also exploited, since it is highly improbable that people collecting obsidian from the flanks of the mountain would not have known of the high-quality obsidian to be obtained only 500-800' further up. However,

it is possible that conditions during the cooler periods of the Neoglacial, or simply the snow cover of the spring or fall seasons, may have made the highest areas inaccessible.

The slightly different frequencies of flow 2 in the formed artifacts from the two multi-component sites are most likely caused by the exploitation of slightly different source areas surrounding "Goat" Mtn. Geological information (J.Souther, pers. comm.) indicates that the Armadillo Formation of which flow 2 is a part, ends in the general area of Artifact valley. Thus the outcrops of flow 2 in the walls of Artifact valley should be thinner, and the resultant number of eroded clasts slightly lower, than the outcrops of this flow to the north of "Goat" Mtn. The people who left behind the assemblages at the Grizzly Run site most probably approached the mountain from the north, perhaps via "Point" Creek. whereas the people who created the assemblages at the Wet Creek site would have approached it from the southeast up Artifact valley, or through Destall Pass. The consistency of flow frequencies in the different assemblages within each site, even though these assemblages are not coeval. suggests that these frequendies are indeed caused by slight differences in natural flow distributions in different areas of "Goat" Mtn. This also suggests that the approach routes from Bourgeaux valley and Artifact valley to "Goat" Mtn. were slightly different, and probably led to specific source areas.

The hypothesis that a diverse assemblage representative of a camp occupation should contain a wider diversity of obsidian types than a lithic tool production worksnop was not borne out, in spite of the fact that they do contain diverse assemblages of other rock types. There was essentially no difference in obsidian flow frequencies between the campsite and the

lithic workshop component of the Grizzly Run site, and a similar lack of difference between the campsite and the lithic workshop component at the Wet Creek site.

T

ľ

ľ

Carl Sources

The hypothesis that obsidian detritus sampled from the lithic workshop component of the Wet Creek site should represent a more complete sample of obsidian flows than does the sample of biface preforms from this component was not confirmed. Obsidian from flows 2 and 3 only is found in both the detritus sample and in the biface preforms. There are, however, significant differences in the frequencies of each flow observed in the detritus as compared to the preforms. Flow 2 is found in only 5% of the biface preforms, but it represents 21% of the detritus sample. The higher frequency of flow 2 in the detritus may be due to the inferior industrial quality of this stone, and a greater tendency for it to fragment during early stages of the lithic reduction process, which led to the abandonment of the piece worked before the stage of a recognizable biface preform was reached. On the other hand, a completely different explanation is also possible if one assumes that the flow frequencies in the detritus reflect the true proportions of the flows in the obsidian worked and in all resultant biface preforms. Since the bifaces left at the workshop were those which were not successfully completed, and those analysed show a greater proportion of type 3, this may indicate a greater rate of success with the production of useable biface preforms out of obsidian from flow 2.

Flow frequency differences were observed in the obsidian detritus flakes sampled from the four stratigraphic levels of the Wet Creek site's workshop component. Since these are arbitrary excavation levels, the differences between them are useful as indicators of overall trends only. These differences may be suggestive of certain procurement strategies. The lowest level sampled (level 5) contains a high frequency (27%) of flow 2,

but this drops dramatically to only 12% in level 4. This suggests that some superior-quality obsidian was brought down to the workshop while the lithic reduction work was in progress. The frequency of obsidian from flow 2 increases gradually in subsequent levels, and is highest (37.5%) in the uppermost level sampled (level 2). Perhaps obsidian from flow 3 was deliberately selected during the manufacturing process on the basis of some of its visual attributes: glass clarity and purity, interesting colour variants, or the lack of textural graininess. As this prime quality obsidian was being depleted during the course of biface production, the workmen turned increasingly to the slightly coarser grades of black obsidian still available, rather than returning to "Goat" Mtn. for a fresh supply. All ten Nount Edziza obsigian flows, including flows 2 and 3, are predominantly of this grade, and it is impossible to select a specific obsidian flow from among this slightly coarse black variety. The frequency of flow 2 obsidian in the uppermost level (37.5%) is nearly two times that flow's frequency in the level immediately below (20%). Such a strong distinction is suggestive of a later reoccupation of the workshop aepression.

The presence of obsidian #o in the artifact sample from hnTq-1 suggests that the people who created this site procured their raw material from Artifact valley, and not from Coffee Crater or Cocoa Crater. As noted in the preceeding section, flow 6 is not represented by any geological samples, and its actual source or outcrop location is unknown. Chemical similarity to some of the other flows indicates that flow 6 is a part of the Armadillo Formation, and that its outcrops should occur at a somewhat lower elevation than the outcrops of Euziza flows 2, 7, and 8. Since the artifacts at HhTq-1 are made of obsidian from flows 3 and 6, a possible

procurement locality for this obsidian is the outwash gravels of Artifact Creek (locality 3), which contains obsidian clasts from flows 3, 6, 7, and b. However, the size of the projectile point which is made of the obsidian from flow 6 (minimum 6 cm, distal end dissing), the quality of material, and the excellent workmanship evident in its production, all argue that the raw material was probably not from among the mechanically-weakened small peoples obtainable at locality 3. Thus it is also possible that the people who explored the valley and then created the assemblage at MhTq-1 found the actual outcrop of flow 6 somewhere within Artifact valley, and there they procured a large chunk of the obsidian. The discovery of an outcrop of this flow should be one of the goals of future archaeological and geological explorations of Artifact valley.

Cultural Interpretations Summary

The results of ED-XRF analysis of 169 obsidian artifacts from three sites in the Mount Edziza Volcanic Complex indicate that the "Goat" Mountain obsidian source was well known and neavily exploited. It appears that the low-elevation obsidian sources located in passes, valley floors and moraines, with the possible exception of the "Fan Creek" deposit, were ignored. Instead, the high-elevation concentrated obsidian scatters located on the flanks of "Goat" Mountain were preferentially sought out for raw obsidian procurement purposes during the period 5000-3000 GP. Depending on the approach route taken, (from the north via Raspberry or Bourgeaux valleys, or from the southwest via Artifact valley) different obsidian concentrations on the mountain were utilized.

There was no evidence for exploitation of the obsidian sources on Big Raven Plateau, north of Raspberry Pass. Artifacts made of obsidian from flows 1 and 4, as well as 5, 9, and 10 would have provided this evidence.

Ubsidian flow frequencies in artifacts from an isolated site on the Arctic Plateau confirm that the exploitation of the "Goat" Mtn. source via Artifact valley was the preferred strategy in obsidian procurement within the Mount Edziza Volcanic Complex.

CONCLUSION

The purpose of this study was to determine how many distinct obsidian flows there are within the Mount Edziza Volcanic Complex of northwestern British Columpia. This Complex forms the largest and the most extensively exploited source of obsidian in the Northwest. The natural volcanic glass naturally available there was intensively quarried and widely traded in prehistoric times as a lithic material resource to adjacent provinces, territories and states. Prior to the commencement of this work, four distinct obsidian flows from the Hount Edziza Volcanic Complex were known.

Using a semi-quantitative energy-dispersive x-ray fluorescence technique, ten distinct obsidian flows were identified within the Mount Edziza Volcanic Complex. Four of these correspond to the Edziza flows previously reported by Melson, D'Auria and Bennett (1975). Nine of the ten obsidian flows identified in this study were correlated to obsidian outcrop samples from the Armadillo, Spectrum, Ice Peak, and Pyramid formations. Stratigraphic and geochemical information indicate that another flow, Edziza 6, probably forms part of a basal unit of the Armadillo Formation.

The analysis of obsidiant samples from a large number of gravel deposits within the Hount Edziza Volcanic Complex gave additional information on the high- and low-elevation secondary distributions of each flow, and the frequencies of each flow in mixed gravel deposits. Five flows (1, 4, 5, 9, and 10) are naturally present only in areas well north of Raspberry Pass. Because these are high-altitude barren and rugged terrains, accessibility to these flows is difficult, and their significance in prehistoric obsidian exploitation of the Complex is thus judged low. The other five obsidian flows (2, 3, 6, 7, and 8) are available in the valleys and passes immediately to the south and north of "Goat" Hountain. Flows 2,

3, 7, and 8 are also available either on "Goat" Mtn. and its flanks, or at high elevations in the surrounding landscape. The obsidian flow of high quality which is most easily accessible in large quantities is Edziza 3. This flow is predominant in all samples from "Goat" Mountain, Obsidian Ridge, and in Artifact valley.

The chemical composition of the ten obsidian flows was determined by wavelength-dispersive x-ray fluorescence. This analysis yielded ten major element concentrations (in %) and 17 trace element concentrations (in ppm) for each flow. This extensive data set enabled the Mount Edziza obsidian flows to be compared to the basalt-comendite rock series of the Mount Edziza Volcanic Complex, and to several other major obsidian sources of the world. These comparisons indicate that the Mount Edziza obsidians show an unusually wide range in their total Fe content, which varies from 1.2% to 10.7%, and very wide concentration ranges for Ti, Al, Mn, and several of the trace elements. Characteristic in all ten flows are very low Ba and Sr contents, and high enrichment in the trace elements Rb, Y, Zn, Zr, and Nb, and the rare earth elements Ce, Nd, and La. Trace element values for some Edziza flows in many cases reach or exceed the values reported for both the Mount Edziza basalt comendite series, and the obsidian sources with which they were compared.

Comparative information indicates that most of the Mount Edziza obsidian flows may be classified as peralkaline volcanic rocks. The chemical composition of flows 1, 2, 6, 7, and 8 is pantelleritic (flow 6 being transitional to a pantelleritic trachyte), while flows 3, 4, and 5 are only mildly peralkaline, and are classified as comendites. The chemistry of these eight flows is similar to some of the obsidian flows from the East African Rift Valley and to the Mayor Island obsidian source of New Zealand. The chemistry of flows 9 and 10, however, is interpreted

here as sub-alkaline; they are similar to the obsidian source from Glass Mountain, Mono County, California.

A study of 169 artifacts sampled from five components of three sites in the Mount Edziza Volcanic Complex, indicates that only those deposits which contain obsidian clasts from flows 2 and 3 were extensively exploited. Two such deposits were identified in the study of natural gravel scatters, both of which are found on the flanks of "Goat" Mtn. This suggests a preference by prehistoric people for exploiting the prime obsidian deposits found on "Goat" Mtn., and an unwillingness on their part to use the widely scattered poorer-quality obsidian gravel deposits found at low elevations in Artifact and Raspberry valleys, in Artifact and "Point" valley moraines, and at some other minor but easily accessible locations.

The absence in the sites of those obsidian types present solely in the rugged regions north of Raspberry Pass (flows 1, 4, 5, 9, 10) suggests that people of the middle prehistoric period (5000 - 2000 BP) avoided the more environmentally hostile regions. They confined their exploitation to the easily accessible major valleys of Bourgeaux and Artifact Creek, and to the gentler environment of the Arctic Plateau south of these valleys.

APPENDICES

2

I

-

APPENDIX A: Study Material Provenience

ľ

ľ

K

Rock Number	Source Location
Geological samples	Geological Survey Transect Number, 1965-1981 SE0504-73 IGC-72
1.02	SE13030_73
1.04	SE13030-73
1.05	ML 4111a-65
1.06	SE0104B-72
1.07	SE45VG-65
1.09	SE5214-65
1.10,1.25	SE1306-72;
1.11	SE2902a-66
1.12	SE 4 a
1.13	SE10D-56 (one pebble)
1.14	SE3115-66
1.15,1.27	SE2309a-66
1.16	SE0101-73
1.17,1.36,1.37	SE18065-70
1.18	SE226B-81
1.19	SEU603A-72
1.20	SEU604-72
1.22	SE 10-3B
1 23	ML4111-00 SED606-72
1 24	SE06024-72
1.26	SE0002A-72
1.29	SF01048-73
1.30	SE4617-65
1.31	SE14-8A
1.32	SE28136-67
1.33	SE0812D-68
1.34	SE709A-72
1.35	NL1208A-65
1.38	SE2202A-76
here a second	1077 11001
Archaeological sample	s, corrected 1977 and 1981
2.01-2.20	Gravel slide on the west side of Destall Pass
3.01-3.24	Outwash gravels in Artifact Creek between "wet"
	and "Fan" creeks
6.01-6.06	Near 1977 camp, Artifact Valley
7.01-7.07	Source areas west of the 1977 camp in Artifact Valley
9.01-9.11	Slide, west end of Raspberry Pass-
12.01-12.03	Peak north of the 1977 camp in Artifact Valley
16.01-16.13	East Coffee Crater
17.01-17.09	West Coffee Crater
18.01-18.08	Point Valley Moraine
20. 01-19.05	Cononal scattone in Dase of "Fan" Creek
20.01 - 20.05	Ubsidian Viduo overlagging Stockart Court
22.01-21.04	Artifact Valley Monsing
23.01-23.05	Ridde between Raspherry and Artifact valleys
	A CHACK AND CHACK AND A CHACK AND AND A CHACK AND AND A CHACK AND

APPENDIX B

AN APPLICATION OF ESCA ANALYSIS TO THE STUDY OF TWO MOUNT EDZIZA OBSIDIAN FLOWS

The purpose of this work was to determine whether ESCA (electron spectroscopy for chemical analysis) could be applied to distinguish between related obsidian flows, to compare these ESCA results to those obtained using χ (x-ray fluorescence), and to determine what advantages there are in using ESCA instead of χ F for obsidian studies.

The material chosen for this study consists of obsidian pebbles from two flows found within the hount Edziza Volcanic Complex in northern B.C. The two flows in question are separated geographically by several kilometres (see Figure 2 in text). They are known as Edziza #1, one of several flows associated with the Armadillo Formation, and Edziza #3, associated with the relatively young Spectrum Formation. The Edziza #1 samples come from the east flanks of Coffee Crater, while the Edziza #3 samples come from three locations in the Artifact Creek valley area: "Goat Hountain" (quotation marks indicate informal name given this landmark), Artifact valley moraine, and Obsidian Ridge. All these samples were collected by K. Fladmark and his crew during a 6-week archaeological reconnaissance of the Complex in 1981.

Since this was a test case, the obsidian chosen for this work was already known to represent two distinct chemical types. They were first identified by Nelson, D'Auria and Bennett (1975), who detected 13 elements using energy-dispersive x-ray fluorescence (ED-XRF). The semi-quantitative concentrations of three of these elements (Fe, Rb, and Nb, expressed as ratios with respect to Zr) were sufficiently different as to discriminate between the two flows.

The main difference between the ESCA method and XRF is that in ESCA a beam of nigh-energy electrons rather than high-energy x-rays is used for excitation of the atoms in the sample. ESCA can usually detect the major constituent elements only, ie., those whose concentrations exceed 1%, while XRF is capable of detecting trace elements (in parts per million concentrations). The two methods are similar in that in both cases the characteristic K and L x-rays emitted by the elements in a sample are analyzed.

Because of the specific differences between the particular instruments used in this work, it was noted that the ESCA system has some advantages: 1. it is used in conjunction with a scanning electron microscope, so one could actually see the surface being analyzed; 2. it could detect much lighter elements such as Na, Si, and Cl; 3. the beam of electrons which analyzes the sample could either be focused down to a diameter of 6 μ m, or it could be "fanned out" to obtain an averaged reading from a large area; and 4. beam penetration is confined to the top 2 nm from the surface of the sample, which ensures that only the visible features are being analyzed. These points made this system very useful in the detection and chemical analysis of any micro-crystals, phenocrysts, and other deviations from the typical amorphous glassy matrix of obsidian, as well as the chemical effects of very shallow-layer weathering of the glass.

Instrumentation and Sample Preparation

The ESCA instrument used in this study was a JEOL JSM-35CF scanning electron microscope. Data collection and elemental analysis were done on a Tracor Northern TN4000 multichannel analyzer, in tandem with a dedicated TN2000-TN131 computer system. The samples were washed in distilled water and then electroplated with a thin layer of Au-Pd alloy in order to make

them conductive. The plating process was done in a Hummer V ion sputtering instrument, for 5 minutes at 10 mA and 6-8 volts, under a partial vacuum (110 millitorr). This process deposits a 50 nm thick layer of metal on the sample, which can easily be cleaned off with acetone afterwards. The samples were placed on a small Cu-Zn pedestal, inserted into the analysis chamber, and analyzed under vacuum. This process is non-destructive. No grinding or surface polishing is necessary, and so samples of any shape may be analyzed in this manner. An upper limit to the size of a sample is placed by the 2" diameter of the entrance to the analysis chamber. All pieces were analyzed at least twice, on different parts of the surface.

Results

The ESCA results obtained are semi-quantitative. They are presented in Table 1A. The element values for all the ESCA results presented here (also in Tables 2 and 3) were normalized so that their sum totals 100. These are compared with the actual elemental concentrations (Table 1B, determined by wavelength-dispersive XRF) and with semi-quantitative ED-XRF results (Table 1C), presented in the main body of this thesis. The ED-XRF work was done in the Chemistry Department at Simon Fraser University, while the WD-XRF work was done in the Oceanography Department at the University of British Columbia.

Table 1A shows that it may be possible to distinguish between the two flows on the basis of the relative concentrations of some of the major elements detected. The Al and Fe values have no overlap at one standard deviation, while Ti is present in one flow (#1) and absent in the other (#3). These three elements (Al, Fe, and Ti) are thus on the verge of being able to discriminate between the flows.

A comparison of the ESCA relative concentrations with the absolute

element concentrations given in Table 1B indicates that the ESCA data reflect the actual elemental differences between the two flows, although the statistical errors associated with the ESCA results are large. We also note that the discrimination between the flows is achieved on the basis of elements whose absolute concentrations differ by 2% or more, ie. Al and Fe. Also notable is the fact that Ti was not detected at all in Edziza #3, but that it was detected (although not consistently) in Edziza #1. This indicates that a 0.4% Ti concentration is right at the detection limit of the ESCA instrument, while 0.2% Ti is clearly below the detection limit. We are confident that further work could reduce the statistical errors to more acceptable levels, so that statistically significant flow discrimination (no overlap at two standard deviations) can be achieved.

The ESCA data were also compared with semi-quantitative ED-XRF data, presented in Table 1C. The ED-XRF instrument and sample treatment were essentially as described by Nelson, D'Auria and Bennett (1975), with some minor improvements. The XRF data presented here were normalized to the Compton scatter peak. The discrimination between the two flows is better than that achieved with ESCA however, since several elements show no overlap at 2 standard deviations from their means, whereas ESCA was only capable of this discrimination at 1 standard deviation. In addition to the elements quoted, the ED-XRF instrument detected several minor and trace elements (Ca, Zn, Ga, Pb, Sr, Y, and Zr) not able to distinguish between the two flows. It did not, however, detect the low-Z elements Na, Al and Si. Finally, the ED-XRF result was obtained without the need for plating, with comparable data collection periods (10 minutes per sample).

In conclusion, the results of Table 1 suggest that ESCA may be used to discriminate between obsidian flows on the basis of their major elements, if their absolute concentrations differ by 2% or more. However, at this

time such discrimination can be achieved faster, with less sample preparation, and with a greater degree of separation using semiquantitative ED-XRF. However, both of the above methods are faster and simpler than fully quantitative analysis using wavelength-dispersive XRF.

The results obtained here are consistent with the findings of Michels (1982). He applied bulk element analysis in an attempt to differentiate between a number of obsidian source areas within the El Chayal source system in Guatemala. He found that the obsidian source areas could be differentiated successfully 70% of the time. The differentiation of the same source areas, using the same raw material specimens, but based on trace element concentrations, was successful in 97% of cases.

This work thus confirms that, all other things being equal, bulk element analysis is not as effective as trace element analysis in discriminating between closely related flows. However, semi-quantitative bulk element analysis using the ESCA system described here would probably be successful in discriminating between obsidian flows which are not as closely related as those analyzed in this test. For example, the Fe concentrations in two obsidian flows of the Mount Edziza Volcanic Complex can differ by as much as 9.5% by weight (for flows 6 and 10); the Si concentrations by as much as 10.4% (flows 6 and 5); and the Al concentrations by as much as 5% (flows 7 and 10). Semi-quantitative ESCA analysis should have no difficulty in distinguishing these flows from each other. Bulk-element differentiation between non-related sources from vastly different locations (for example, the Edziza obsidians from the Anahim obsidians of central B.C.) should be easily successful as well.

Other applications for ESCA

1

Having said all that, two instances where the use of the SEM-ESCA system holds an advantage over XRF were noted.

First, it permits the recognition and examination of weathered surfaces of flakes which appeared surficially unaltered when viewed with the naked eye. The weathering is recognizable through the irregular pitting and surface scratches, clearly visible at 600x magnification, and completely distinct from a fresh surface. It was thus possible to compare the chemical compositions of these weathered surfaces with the unaltered glassy matrix of the same flake (Table 2).

No significant difference in the chemical compositions of these two surfaces were found. This disagreed with the data of Tsong et al (1978) who found a 20% depletion of Na and K within the hydration rind of obsidian. The findings of this study are interpreted as indicating that the observed weathering pattern on the obsidian flake is due to mechanical pitting and scouring, and that chemical alteration had not taken place within the shallow surface layer.

The second test made possible with the SEM-ESCA system which cannot be done using XRF is a check for microscopic inhomogeneities within the obsidian glass. This might be helpful in distinguishing different colour variants of a single obsidian flow, or pieces which differ in graininess or their fracturing properties. Among the several pieces examined, one such instance was found, a small crystal which had formed within an otherwise perfect glassy matrix. Its elemental concentrations differed from that of the surrounding glass (Table 3).

The crystal showed a significantly greater proportion of Al, while its relative Fe concentration was depleted.

Conclusion

The foregoing results show that ESCA is a very powerful method, and that it has several potential advantages over XRF. However, because of the large experimental uncertainties in the results, some of these advantages could not be realized. However, it is certain that the large errors can be reduced. This error reduction might be achieved mainly through using a defocused electron beam to analyze the glass matrix, to average out "spot differences" in the chemical composition of the glass, and through the analysis of more samples. The ESCA method can be applied successfully to differentiate quickly and non-destructively on a semi-quantitative basis between some of the less closely related flows from a major obsidian source area such as the Mount Edziza Volcanic Complex, and to differentiate between obsidians from unrelated source areas, using the semi-quantitative concentrations in their major elements.
A: ESC	<u>A Relati</u>	ve Conce	ntration	5	
na Al Si K Ti Fe ND Total	#1 x 1.0 2.7 00.4 12.1 0.4 16.5 0.0	(n=4) s 0.2 0.3 1.4 1.7 0.4 1.2 2.1	#3 x 1.3 4.2 64.4 12.2 n.a. 11.0 7.0	(n=13) s U.8 0.8 5.4 1.6 2.4 3.4	
<u>b:</u> kD-X	KF Absol	ute Conc	entration	15	
Na (%) Al Si K Ti Fe Ko (ppm)	#1 x 4.25 9.09 76.34 4.24 0.39 6.00 106		#3 x 4.13 11.10 76.78 4.52 0.18 2.99 124		(n=10) s 0.06 0.11 0.29 0.02 0.01 0.03 1
C: EU-XI	RF kelat Malized	ive Conce to the Co	entration ompton sc	atter j	peak)
na Al Si K Ti Fe	#1 x n.d. n.a. 9.2 5.7 628.2 104.3	(n=26) s 2.0 1.3 09.9 4.9	#3 x n. n. 7. 2. 273. 124.	a. .a. .d. 4 1 0 (0 5 26	1=80) S L.2 J.8 5.4 4.8
inn RU i.otes: n	7.9 51.9	1.1 4.4 t aetecte	3. 81.	4 (8 §	J.9 5.0

Ĩ

I

I

ľ

T

ľ

Ī

ľ

1

Ĩ

Ī

ſ

T

1

ľ

Table 1

1

i

x = experimental mean of n analyses s = one standard deviation from the mean n = number of analyses

			0
1 3	h I	0	•)
10			
1 04	~ .	~	-

		Fresn Surface	Weathered Surface
;	i a	1.6 + 0.2	1.4
:	61	4.0 ± 0.1	4.3
	51 K	63.5 ± 4.9 11.7 + 0.3	67.1 11.5
	Ti	n.a.	n.a.
ì	Fe	11.5 ± 2.7 7.6 ± 2.0	9.1 6.7
	Total	99 . 9	100.1

T

I

T

ľ

Ĩ

T

1

I

1

Ī

Ī

I

ľ

Table 3

	Glass	Crystal					
ыa	1.0 ± 1.0	2.0					
N	4.6 ± 1.1	10.1					
Si	67.9 ± 5.6	65.5					
N	12.8 ± 2.4	15.5					
Ti	n.d.	n.d.					
Fe	9.2 ± 2.0	4.2					
1.0	4.7 ± 2.9	2.0					
Total	100.2	100.0					

APPENDIX C

ECZIZA SOURCE CESIDIANS: UNCORRECTED RAW PEAK COUNTS GETAINED FROM THE GAMAMAL SPECTRUM-STRIPPING PROGRAM.

Case	Label	Κ	Ca	ĨΪ	Nn	Fe	Zn	5 J	Pb	Rb	Sr	Y	Zr	NЬ	Rayleig	h Compton
1	1.01	768	U	481	815	56730	2292	355	367	5974	0	9316	04150	11570	775.01	05500
2	1.02	840	310	544	693	59240	1765	3.62	26.9	4897	0	7923	70620	10250	01741	95589
3	1.03	641	0	0	311	24750	1320	424	330	7471	0	6211	00600	11020	21/41	07200
4	1.04	634	0	287	365	28670	1482	346	2.88	8533	0	0525	101400	11230	/5361	97322
5	1.05	892	0	217	274	26140	1243	303	21.8	0931	402	9525	64110	13/10	83893	110470
6	1.06	773	0	263	331	27350	1208	271	200	0763	403	11300	C4110	16230	8//92	114267
7	1.07	730	õ	0	194	24660	1217	201	200	0/03	2.70	9743	90600	13630	84572	110547
8	1.09	981	1.83	1 50	346	25770	1065	201	000	2003	379	10220	57820	1444C	82496	106525
9	1.10	662	105	157	394	24050	1005	201	234	8116	290	9147	52330	13000	69631	<u>91826</u>
10	1.12	923	0	620	074	24950	1278	149	297	- /505	0	8017	78130	11500	74284	95547
11	1.13	787	0	025	2.25	20100	2071	447	202	5/93	e	9500	95500	12480	97418	117680
12	1 14	1062	211	244	305	30100	1041	442	532	14/00	0	12840	91400	18200	97521	128510
12	1 14	706	511	244	234	28440	1296	285	224	10030	357	11550	66530	16680	91990	120272
1.4	1 . 14	700	251	229	290	26350	1259	264	197	10440	335	11600	66470	16910	98394	132079
14	1.15	190	251	352	497	4/620	1826	228	229	4831	0	7409	74670	8969	46837	56756
15	1.10	830	2.00	240	413	33510	1734	468	394	9990	0	11040	107000	15520	97959	125842
10	1.15	1002	299	543	942	72900	2854	331	361	8132	0	13780	142000	17700	103453	121579
17	1.10	11//	211	200	396	32640	1687	404	303	9331	0	10070	94460	12720	83396	107904
18	1.1/	50/	0	142	311	19060	1066	295	114	5545	0	5801	55960	8100	49004	63418
19	1.18	895	87	0	217	21190	1499	264	671	17190	0	13450	47450	17960	84039	113995
20	1.1/	793	0	254	370	28410	1550	386	351	8233	0	8435	80980	11520	66439	88169
21	1.18	/89	0	158	176	21290	1673	213	728	17850	0	14300	50220	19440	101657	136150
22	1.19	999	0	537	1207	85560	3032	402	323	7734	141	12160	131200	17210	78362	92067
23	1.19	1042	363	523	885	76400	2584	375	338	7133	0	12870	129345	17692	91201	107337
24	1.20	919	0	586	780	74520	2438	447	373	6418	0	11690	117400	16180	90209	108404
25	1.21	898	0	164	237	30110	1729	0	538	15050	0	13720	99550	19410	111785	147058
26	1.20	872	0	624	1007	76810	2516	337	396	6976	0	12300	125300	17050	102076	120411
27	1.21	911	0	179	369	30980	1694	414	496	14100	0	11610	81730	15540	72930	00153
28	1.22	779	0	182	387	29790	1584	530	134	11370	537	12930	73970	18390	104854	137397
29	1.23	886.	0	376	1295	92520	4307	283	718	11800	2 90	22500	254400	35720	02432	105102
30	1.22	1096	0	353	364	37660	1789	514	304	14120	633	15950	91260	22830	120007	158622
31	1.23	1114	0	.443	1228	95060	4187	193	769	12270	477	2 50 90	262700	33820	97878	110160
32	1.24	907	0	489	1148	87650	3314	535	541	9209	0	16570	171900	22950	102076	110156
33	1.25	973	0	307	437	35380	1874	321	419	10980	Ő	11940	115600	17290	107402	140200
34	1.24	1146	321	319	1106	88040	3295	417	401	8874	0	16640	169700	22650	100076	114662
35	1.25	932	0	238	380	35420	1819	456	336	1 04 50	0	11700	112400	16110	104567	122001
36	1.26	901	0	527	604	62960	2290	4.82	348	8025	147	12010	128300	1 5 5 0 0	104507	133981
37	1.27	963	0	508	776	75180	2973	466	463	8403	147	13620	120500	1 7 2 2 0	105806	12/150
38	1.26	963	0	534	852	65990	2339	316	328	7000	0	12240	1 3 0 4 0 0	17520	93389	111.001
39	1.27	903	0	471	652	65030	2612	3.84	385	6064	0	12540	116000	1 50 90	98314	121108
40	1.28	840	0	237	462	32860	1682	363	275	10040	0	11000	116900	14/30	/8342	93851
41	1.29	879	174	310	371	32350	1684	297	160	10220	0	11160	104100	15390	96361	125880
42	1.28	933	0	197	410	33820	1727	207	400	10220	0	11160	104200	15440	101080	130208
43	1.29	668	0	292	302	25160	1264	1.89	302	7621	0	0200	112400	10220	10334/	134884
44	1.30	753	0	0	0	13710	1370	4.6.4	784	26110	0	16040	/0240	11190	08/49	914/5
45	1.31	876	Ő	165	176	13740	1 5 2 1	404	067	27140	0	16840	23200	21250	10/252	14//60
4.6	1.30	957	356	0	0	13300	1426	201	06.0	26200	0	10900	23040	21070	95881	134239
47	1 31	662	0	0	0	12020	1425	2 00	070	20380	0	10850	22920	21110	105454	146914
48	1 32	1046	243	277	305	30040	1 1 1 0 0	207	221	20000	0	17630	24430	22070	109768	150621
49	1 33	1060	251	453	707	63810	2106	397	231	10000	417	11980	68410	16660	88301	116571
50	1 . 32	97.0	176	240	256	27640	1222	114	220	0.40	0	10220	103400	13010	84206	103924
		210	1 / 0	6 7 3	200	2/040	1	4 7 44	() []	40.2 /	4110	1156()	Pi H Pi Pi ()	1 4 400	19105	16 (16 /

EDZIZA SOURCE OBSIDIANS: UNCORRECTED RAW PEAK COUNTS OBTAINED FROM THE GAMAHAL SPECTRUM-STRIPPING PROGRAM.

(āse	Label	К	Ca	Τi	Mn	Fe	Zn	Ga	РЬ	R.b.	Sr	Y	Zr	Nb	Rayleig	h Compton
51	1.33	1020	179	526	880	63250	1975	2 98	256	6527	0	10340	100700	12800	98420	112031
52	1.54	848	0	221	326	30270	1551	211	371	0483	0	10510	101400	1 50 00	06765	126261
53	1.34	946	160	202	507	33190	1495	178	440	10250	õ	11200	107300	15650	06636	127210
54	1.35	579	0	0	134	15300	1090	320	408	11890	0	0420	31400	12260	59709	70100
55	1.36	1110	230	208	388	33260	1695	391	446	9820	0	10100	102700	165.80	01646	110105
56	1.35	806	0	0	184	19680	1541	481	614	16840	0	13640	47150	19320	07271	1 1 2 1 0 2 0
57	1.36	841	0	250	408	33250	1718	503	355	9970	0	11220	105300	15300	05700	1 2 2 2 0 0
58	1.37	924	0	273	535	35350	1918	234	374	10660	0	11700	112600	16740	07024	120241
59	1.28	751	0	193	416	30600	1421	1.84	444	0110	0	CRF2	05750	12020	95061	1120241
60	1.37	870	96	366	431	32860	1730	337	3.61	10020	0	10740	104700	15230	09225	127142
61	1.38	776	0	186	409	32270	1699	358	2.62	9024	0	0062	031.00	13620	70407	12/142
62	1.11	716	0	443	577	57190	1562	303	164	4911	0	7432	74490	0610	76467	02062
63	1.11	1038	296	432	824	57280	1610	2 5 5	156	3263	0	5465	53470	6471	12/9/	92003
64	2.01	762	0	515	744	64240	2161	1 97	311	5264	0	9376	04000	12690	71157	04/82
65	2.02	751	0	3 \$ 4	647	53430	1812	363	1.81	6750	69	10100	110000	12000	00420	100707
66	2.03	722	0	506	816	65340	2101	285	265	5926	0	10410	104700	14610	02221	07026
67	2.04	511	0	354	434	39600	1301	104	153	3316	0	5781	58040	8200	12206	5/030
68	2.04	809	0	440	691	62700	2168	413	314	5612	0	94.95	06700	13060	42300	02070
69	2.05	820	321	590	734	61830	2071	412	321	5586	0	06.00	90790	13000	72204	82078
70	2.06	740	0	466	654	58460	1947	314	246	5200	0	0102	02160	1 2 7 2 0	67014	00210
71	2.07	632	0	349	597	40270	1676	230	171	3317	0	60.01	50100	12/20	42.005	62244
72	2.08	621	0	420	581	53970	1708	314	226	450.8	0	7630	76010	10420	43885	52274
73	2.09	602	0	340	563	48470	1609	280	176	3288	0	6967	65060	0772	20203	- 6/388
74	2.10	685	0	269	563	42810	1403	215	199	3758	0	6616	65910	01/2	4//00	50720
75	2.11	587	0	482	714	52640	1697	258	227	4403	0	76.04	75450	9155	52237	65225
76	2.12	753	0	580	833	65030	2103	325	345	5001	0	10240	102200	10250	50839	00320
77	2.13	663	0	424	622	49420	1430	0	183	3006	0	7029	60020	14360	80984	94847
78	2.14	508	0	259	821	62 98 0	2702	135	531	7671	0	14770	09920	9/52	54612	635/1
79	2.15	980	278	425	677	52050	1746	260	222	1576	0	7004	100400	20700	58/44	63034
80	2.16	936	170	512	770	65550	2176	317	313	5867	5.6	10210	102200	11110	02543	73054
81	2.17	730	205	368	648	49420	1637	1.80	263	1370	50	7000	103300	14000	814/9	96295
82	2.18	457	0	227	531	41160	1865	07	233	5131	0	10000	112000	10720	12800	67120
83	2.18	959	···· 0 -	417	1124	902-50	A154	473	642	10640	207	20210	200100	14930	40527	50158
84	2.19	315	Õ	275	3 90	33730	1079	227	173	2022	297	20210	209100	26820	6/218	1/489
85	2.19	783	0	506	852	66510	2175	364	320	5401	0	5249	50560	0/30	39406	46048
86	2.20	587	151	303	495	42400	1367	177	1.86	3401	0	6100	87890	11830	62359	/61/8
87	3.01	593	0	169	229	19440	1052	1 / /	237	5457	0	6108	50530	8395	44/96	53669
88	3.02	1120	478	1107	2380	109900	1092	344	227	5/42	0	0203	59630	8915	58205	/2640
89	3.03	655	0	0	3.81	30730	1579	326	366	0490	0	10/50	114100	18860	86228	91544
90	3.04	813	262	795	1 97 3	04050	1076	260	100	5200	0	10170	96690	14330	85808	112370
91	3.05	81.8	2.87	610	1 3 3 0	64440	1162	104	1 9 9	2243	0	8931	89410	14530	66049	69339
92	3.05	671	210	670	1306	67400	1163	1 6 9	145	3310	0	5483	57880	9537	43455	45925
93	3.06	408	0	121	1350	20620	1133	102	1/9	3710	0	5/51	60140	9/1/	40442	44529
94	3 07	951	401	641	2019	20020	1139	2/0	207	6682	0	/418	68180	9969	63540	85289
95	3 08	907	4412	774	1702	94330	1 3 3 5	280	212	5221	0	8517	91110	14990	66787	70739
96	3.00	667	442	202	1/03	24020	1204	3/5	220	5342	0	9047	94790	15590	69576	74042
97	3.10	60.6	0	202	272	24020	1284	202	224	6181	0	6627	62870	8820	51781	67398
0.0	3 11	701	0	203	426	20120	1024	243	212	5568	0	6076	57600	8349	53017	67847
00	3 12	860		207	430	20300	1 502	353	309	8113	0	0188	84960	12440	70225	92217
100	3 12	1055	402	641	439	28120	1483	331	327	8705	0	9066	86830	12890	71724	96231
100	3.15	1055	482	041	1944	33850	1/36	339	184	5890	0	9433	100400	16350	72117	77276

		LULIIX	SUURC	E 0531	UTANS:	UNCORREC	IED RAW	PEAK	CCUNTS	OBTAINED	FROM THE	GAMAN	L SPECT	RUM-STR I	PPINC PPC	GRAM.
(àse	Lābe]	K	Ca	71	Mn	Fe	Zn	Ga	Pb	Pb	Sr	Y	. 7r	₽b	Rayleigh	Compten
101	3.14	787	345	756	1906	96740	1716	279	262	5444	0	001 0	02210	15200	60054	72606
102	3.15	805	C	590	867	65820	2270	454	259	6095	ē	11220	110200	15550	34605	08061
103	10 د ن	643	279	518	1318	62640	1132	204	131	3358	0	5205	54600	09.89	32830	41206
104	3.17	454	0	178	253	16770	924	194	156	4424	0	4959	47850	6902	42104	54836
105	3.18	/50	0	246	238	22440	1213	234	2 5 1	6953	0	6843	66070	9601	59432	77112
107	3.15	813	0	426	104/	/8260	3618	387	601	9642	207	19390	201100	25640	68139	77970
108	3.21	1171	510	233	397	26250	1426	292	2 86	7315	0	7980	77790	11270	66401	86556
109	3.22	1027	401	705	2200	102600	1920	246	212	6399	0	10280	110400	17690	82879	85779
110	3.23	20.7	401	225	2030	27700	1820	234	2.02	5995	0	9706	104400	17270	73958	79445
111	3.23	760	ŏ	226	3.08	31880	1601	20/	341	/180	0	/626	68900	91 00	53138	70319
112	3.24	752	ē	185	457	29950	1417	250	216	9306	C O	0551	97700	14200	26/9/	112591
112	6.01	600	Ō	294	331	32750	1724	414	356	10300	0	9551	91690	13510	1/423	101307
114	6.02	£99	0	283	392	33590	1811	582	477	10750	0	11/10	100000	1 2 5 0 0	53427	123/3/
115	6.03	880	0	350	365	34110	1679	327	423	9923	0 0	10600	104000	15110	104373	1 3 3 3 0 0
116	6.04	831	0	271	448	32410	1769	396	3 8 5	10060	õ	11200	108800	15820	102215	1 30 94 2
117	6.05	705	0	325	374	32400 -	- 1060	405	331	9993	õ	10810	104700	15140	04 98 2	122330
118	5.05	857	0	551	752	65880	2113	337	279	6414	71	10380	106000	13420	79101	96071
120	7.01	836	0	259	351	31570	1627	176	366	9322	0	10170	98200	14210	86184	112277
120	7.02	760	0	297	334	29740	2078	264	339	8939	Û	9632	91020	12630	76329	100650
122	7 64	701	0	208	321	2/340	1324	221	359	8428	0	9272	89100	12840	82448	106736
123	7.04	895	0	1 90	323	21300	1097	170	216	6271	Q	6708	. 62620	6165	53522	70287
124	7.06	-722	0	1/0	321	30940	1698	396	425	9718	0	10890	101500	15060	98779	126963
125	7.07	897	ň	220	437	20950	1408	23/	330	8817	0	9614	90360	13570	83989	112132
126	9.01	958	268	530	791	59220	2005	363	4/9	10190	0	10990	102700	1 52 60	97859	126705
127	9.02	866	0	508	871	62240	2154	523	110	6544	0	9/38	102100	12350	92433	113468
128	9.03	1007	197	520	707	62590	2120	376	246	5263	0	9957	103000	13030	90827	109/50
125	9.04	735	0	562	656	60030	1965	181	254	6360	0	10000	104200	13120	500/0 	112898
130	9.05	00 1	0	488	726	63510	2063	434	0	6405	0 0	10260	106000	13570	97 90 6	116294
131	9.06	788	0	572	800	61670	2279	428	249	6218	õ	9848	101800	12520	89896	108980
132	9.07	824	0	543	671	60130	2052	320	149	6336	Ō	9853	102900	12710	91065	111761
134	9.08	11/6	237	508	809	62220	2066	436	185	6259	0	9875	101100	12730	84667	104112
134	9.09	071	153	528	654	66500	2178	17 د	228	6658	0	10320	112000	15140	99757	120673
136	9.11	898	0	535	0/3	66100	21/3	473	321	6812	0	10820	113400	14070	102318	122989
137	12.01	884	ŏ	372	348	29690	2128	219	155	6552	0	10460	107200	13030	91701	110588
138	12.02	948	232	367	541	48150	1708	247	277	8912	0	9188	94930	14970	90050	113718
139	12.02	1049	220	492	735	57000	1908	260	117	5545	0	10100	86670	10340	62036	/6668
140	12.03	559	0	355	495	43030	1559	345	194	5347	Ő	8353	88110	10500	70 80 1	97260
141	16.01	733	0	449	845	55220	1420	Ō	0	4777	114	7640	77550	10030	85387	104177
142	16.02	90 9	0	541	706	59560	1826	320	234	4659	0	7690	77240	9627	74805	92038
143	16.03	906	132	573	827	59570	1663	253	1 97	4876	130	7468	72660	9014	72915	88903
144	16.04	9/8	0	837	844	74030	2255	381	1 52	6397	0	1 02 50	103000	12790	111997	134990
145	10.00	931	109	691	776	65520	1813	376	118	5303	0	8191	80620	10000	74495	92740
140	16 09	020 774	0	836	889	/2330	1994	254	190	6147	0	9874	100300	13050	106349	128962
148	16.00	701	0	567	199	55830	1051	320	136	4656	0	7057	70620	8997	66618	82537
149	16.10	1111	326	512	765	03/2U 59340	1055	384	128	5161	0	8464	82810	10910	79351	98735
150	6.11	923	Č.	684	819	65460	1806	201	1 2 2	5140	U	8217	80930	10190	79635	9462
151	16.11	935	1 70	575	823	65060	1 876	340	225	5223	U	1905	//540	900/	85401	835/9
152 1	6.12	808	69	558	856	63550	1600	362	1 80	5447	0	C042 99/2	070CA	115/0	20015	109023
153 1	6.13	1002	0	633	930	76210	2160	266	226	6549	0	10440	102200	13070	22291	11451/
154 1	17.01	750	0	478	665	55310	1666	386	109	4431	õ	7237	69710	G125	71607	P7040
155 1	17.02	1169	284	994	896	78210	2265	477	211	5795	õ	9619	92630	11590	88917	106753

EDZIZA SOURCE CESIDIANS: UNCORRECTED RAW PEAK COUNTS OBTAINED FROM THE GAMAMAL SPECTRUM-STRIPPING PROCEAM

EDZIZA SOURCE CESIDIANS	: UNCORRECTED RAW PEAK	CCUNTS	CBTAINED FROM THE	GAMANAL	SPECTRUM-STRIPPING	PROGRAM.
-------------------------	------------------------	--------	-------------------	---------	--------------------	----------

	Zr I'D	Payleigh Compton
156 17.03 1034 0 606 994 74280 2074 349 316 6237 0 10240 1	103300 12410	112117 12200
157 17.04 1336 308 645 917 68640 2076 357 247 5388 0 8161	79620 0840	50550 <u>95006</u>
158 17.04 1074 246 411 760 60760 1773 328 165 4918 0 7598	77200 9808	75513 02633
159 17.05 1020 0 635 1039 74580 2262 520 291 6113 0 9729	99560 12380	100260 128126
160 17.06 1309 252 650 966 70080 1.03 413 171 5922 C 9286	92740 12020	-95017-116789
161 17.07 1055 297 590 800 63910 1944 369 256 5240 0 8274	81930 10190	82637 100227
162 17.06 987 0 495 799 64750 1883 399 0 5315 0 8395	83810 10750	P4574 103465
163 17.09 912 0 402 745 63130 1947 364 303 5508 0 8812	88210 11450	93633 112772
165 16.62 870 0 237 515 33410 1673 383 417 10170 0 11290 1	109700 15740	102740 133283
166 18.03 927 C 267 130 34730 1676 279 319 9897 O 11000 1	105700 15410	101052 129909
167 16.04 807 0 230 428 33500 1705 191 337 10/50 0 12000 1	114200 16540	101723 135611
168 18.05 796 0 192 425 33390 1653 334 401 9917 9 11280 1		94463 128797
169 18.06 812 0 377 376 31920 1669 364 405 10190 0 11020 1	106200 15880	99480 128187
170 18.07 941 0 212 374 32350 1871 546 392 9459 0 10220	107100 15280	99572 131084
171 18.08 947 0 215 430 34160 1658 386 416 9611 156 10730 1	95620 13880	
172 19.01 999 0 433 699 63610 - 2389 508 325 8001 0 12530 1		94196 121253
173 19.02 861 0 583 756 64040 2166 314 164 8348 0 12300 1	124200 15050	11/4/0 138154
174 19.03 1187 407 438 761 62800 2243 393 441 7678 0 11690 1	125700 15650	103907 128026
175 19.04 912 0 431 739 54550 1985 331 285 6506 0 10360 1	100600 10000	
176 19.05 1150 280 530 672 62960 2293 427 335 7689 0 12040 1	120200 15160	101695 125100
177 20.01 773 0 613 970 69640 2306 398 341 7199 0 11170 1	115000 14200	100460 122942
178 20.02 835 0 578 829 69200 2276 421 347 7137 0 11260 1	116500 14390	103590 122042
1/9 20.63 999 0 600 832 67460 2204 402 0 6846 0 10990 1	113800 14450	106937 126850
180 20.04 796 0 385 649 53610 1749 413 281 5202 0 8039	79620 9723	61537 75750
181 20.04 704 0 341 594 44020 1370 0 125 4505 0 6804	69630 8671	60062 75695
102 20.05 8/0 0 4// 681 56570 1678 271 243 5654 146 9079	92320 11580	76652 95522
187 21 01 1106 158 343 211 32/30 1639 293 376 10340 0 11380 1	105400 15790	101276 130203
165 21.02 039 0 296 372 31360 1686 334 388 9491 0 10240	96990 13920	82921 110201
186 21 03 <i>927</i> 0 231 454 32400 1640 222 346 10030 0 11000 1	105000 15360	94249 124324
167 22.01 929 0 109 607 326690 1070 383 285 94/6 0 10280	93470 14420	93763 125715
188 22.02 809 0 348 325 36110 1729 102 204 10810 0 11840 1	114100 16650	99747 130767
189 22.03 1029 0 269 338 36890 1814 419 514 11430 0 11700 1	110100 16040	99153 128077
190 22.04 1066 0 243 338 35810 1822 371 392 10520 0 12520 1	122000 17450	114202 147052
191 22.05 972 230 357 482 38610 2036 531 461 11720 0 11810 1		102225 133160
192 22.06 867 0 428 368 35090 1802 416 338 10680 147 11570 1	111300 16200	103698 13/46/
193 22.07 573 0 0 255 26670 1494 311 214 8233 0 8780	82070 11820	70663 92106
194 22.08 852 130 154 451 29470 1571 393 262 8866 83 9430	90680 12980	80071 105938
195 22.09 983 0 269 539 39030 2106 526 486 10840 0 11460 1	110700 15640	88421 119353
196 22 10 668 0 247 239 26920 1380 264 290 8070 0 8765	81990 11860	71803 95095
197 22.11 1413 269 222 426 39270 1812 53° 472 11690 0 12450 J	121900 18020	111545 143604
196 22.12 930 0 3/1 490 36630 1996 450 480 11440 0 12160 1	116800 16750	103454 136338
200 22 14 809 0 0 522 36410 1950 3/4 526 11610 228 12640 1	122400 18070	111115 146701
201 22 15 1137 0 014 500 0 127400 1909 438 418 11410 0 12700 1	122400 17470	112136 146830
202 202 1000 0 214 502 36420 1954 417 485 11180 0 12480 1	122600 17940	119154 151337
201 201 1057 0 267 493 344/0 1736 358 378 10790 0 11840 1	111800 16560	100104 132627
204 23 03 601 0 224 453 3/660 2251 486 357 11000 0 12310 1	120700- 17270	113178 144052
205 23 04 040 0 224 453 36640 2130 667 454 11530 0 12120 1	116200 17030	108813 141284
206 23.05 984 0 213 426 35/30 18/0 448 340 10590 0 11940 1	113600 16660	108245 139856
	116300 17000	104695 136927

.

1.

APPENDIX D

1

1

. .

EDZIZA OBSIDIAN SOURCE DATA MORMALIZED TO THE COMPTON PEAK (PK/COMP * 10E2)

T

(ā se	Label	ĸ	Ca	Ţi	Mn	Fe	Zn	Ga	Pb	Рb	Sr	Y	Zr	ИР	Rayleigh	Compton	Pk
1	1.01	8.03	0	5.03	8.53	593.48	23.98	3.71	3.84	62 50	٥	86 24	09/ 05	121 04	011 61	05500	
2	1.02	8.44	3.12	5.47	6.97	595.48	17.74	3.64	2.70	40.22	ñ	70 20	800 45	103 03	821 67	90209	
3	1.03	6.59	0	0	3.20	254.31	13.56	4 36	3.48	76.77	õ	72.20	829.10	121 56	774 75	27322	
4	1.04	5.74	0	2.60	3.30	259.53	13.42	3.13	2.61	77.24	Ō	73.13	017.00	124.11	750.42	110470	
5	1.05	7.81	0	1.90	2.40	228.76	10.88	2.65	1.91	86.04	3.53	84.31	561.05	142.04	768.31	114267	
6	1.06	6.99	0	2.38	2.99	247.41	12.65	2.45	2.70	79.27	0	74.70	819.56	123.30	765.03	110547	
/	1.07	6.85	0	0	1.82	231.49	11.42	2.33	2.84	85.08	3.56	82.08	542.78	135.56	774.43	106525	
8	1.09	10.68	1.99	1.63	3.77	258.86	11.εΟ	3.06	2.55	88.38	3.16	84.63	569.88	141.57	758.29	91826	
. 9	1.10	6.93	0	1.64	4.02	261.13	13.38	1.56	3.11	78.55	0	70.59	817.71	120.36	777.46	95547	
10	1.12	1.84	C C	5.35	7.43	595.51	17.60	3.80	1.72	49.23	0	72.38	811.52	106.05	827.82	117680	
12	1.13	0.12	0	0	3.00	234.22	12.77	3.44	4.14	114.39	0	80.53	711.23	141.62	758.86	128510	
12	1.14	8.83	2.59	2.03	1.95	236.46	10.78	2.37	1.86	83.39	2.97	81.90	553.16	138.69	764.85	120272	
14	1 15	3.35	4 42	1./3	2.24	199.50	9.53	2.00	1.49	79.04	2.54	74.43	503.26	128.03	744.96	132079	
15	1 16	6 64	4.42	0.20	8.76	636.03	32.17	4.02	4.03	85.12	0	116.11	1315.63	158.03	825.23	56756	
16	1 16	9 24	2 16	1.95	3.26	266.29	13.78	3.72	3.13	79.39	0	74.27	850.27	123.33	778.43	125842	
17	1 16	10 01	2.40	4.4/	1.15	599.61	23.4/	2.72	2.97	66.89	0	102.00	1167.96	145.58	850.91	121579	
18	1 17	9 04	0	2 24	3.0/	302.45	15.63	3.74	2.81	86.48	· 0	78.67	875.41	127.15	772.87	107904	•
10	1 18	7 95	76	2.24	4.90	300.55	16.81	4.65	1.80	87.44	0	76.65	882.40	127.72	772.71	63418	
20	1 17	8 00	0.70	2 00	1.90	185.89	13.15	2.32	5.89	150.80	0	92.43	416.25	157.55	737.22	113995	
21	1 18	5 80	0	1 16	4.20	322.22	17.58	4.38	3.98	93.38	0	79.84	918.46	130.66	753.54	88169	
22	1.19	10.63	0	5 71	12 94	150.37	12.29	1.56	5.35	131.11	0	82.81	368.86	142.78	746.65	136150	
23	1.19	9.71	3.38	4 87	8 25	910.53 711 70	32.21	4.28	3.44	82.31	1.50	126.10	1396.23	183.15	833.93	93967	
24	1.20	8.48	0	5.41	7 20	687 43	24.07	J.49 1 12	3.15	50.45	0	108.64	1205.04	164.83	849.67	107337	
25	1.21	6.11	õ	1.12	1 61	204 75	11 76	4.12	2.44	59.20	0	97.80	1082.99	149.26	832.99	108404	
26	1.20	7.24	õ	5.18	8.36	637 90	20 00	2 80	3 20	57 62	0	/5.95	0/0.94	131.99	760.14	147058	
27	1.21	9.19	Ō	1.81	3.72	312.45	17 08	4 18	5 00	142 20	0	92.00	1040.00	141.00	847.73	120411	
28	1.22	5.67	0	1.32	2.82	216.82	11 53	3 86	3.00 QR	A2 75	3 01	92.99	624.20	120./3	735.53	99153	
29	1.23	8.43	0	3.58	12.32	880.29	40.98	2.69	6 83	112 27	2 76	105 05	2/20 51	133.05	/03.15	13/39/	
30	1.22	6.91	0	2.23	2.29	237.42	11.28	3.24	1.92	89 02	3 00	85 47	575 33	142 02	756 56	105102	
31	1.23	10.11	0 .	4.02	11.15	862.93	38.01	1.75	6.98	111.38	4 33	208 88	2384 71	307 01	750.20	110160	
32	1.24	7.61	0	4.10	9.63	735.59	27.81	4.49	4.54	77 20	4.55	125 06	1442 65	102 60	964 21	110100	
33	1.25	6.94	0	2.19	3.12	252.35	13.37	2.29	2.99	78.32	õ	71 89	824 54	123 32	766 06	140200	
34	1.24	9.99	2.80	2.78	9.65	767.82	28.74	3.64	3.50	77.30	ñ	132 00	1470 00	107 54	872 78	114663	
35	1.25	6.96	0	1.78	2.84	264.37	13.58	3.40	2.51	78.00	õ	74.11	838.92	120 24	780 46	133981	
36	1.26	7.09	0	4.14	4.75	495.16	18.01	3.79	2.74	63.11	1.16	83.76	1009.04	122.61	832.14	127150	
37	1.27	8.63	0	4.55	6.95	673.65	26.64	4.18	4.15	75.30	0	109.28	1241.03	155.20	836.81	111601	
38	1.26	7.95	0	4.41	7.04	544.89	19.31	2.61	2.71	65.31	Ó	90.82	1076.72	129.55	811.79	121108	
39	1.2/	9.62	0	5.02	6.95	692.91	27.83	4.09	4.10	74.20	0	109.96	1245.59	156.95	834.75	93851	
40	1.28	6.6/	0	1.88	3.67	261.04	13.36	2.80	2.18	79.76	0	74.34	826.98	122.26	765.50	125880	
41	1.29	0./5	1.34	2.38	2.85	248.45	12.93	2.20	3.59	78.49	0	72.40	800.26	118.58	776.30	130208	
46	1.20	0.92	0	1.46	3.04	250.73	12.80	2.06	3.43	77.84	0	71.32	833.31	120.25	766.19	134884	
43	1.29	7.30	U	3.19	3.30	275.05	13.82	2.06	3.30	83.31	0	75.52	833.45	122.33	751.56	91475	
44	1.30	5.10	0	U	0	92.79	9.33	3.14	5.31	176.71	0	84.02	157.42	143.81	725.85	147760	
45	1.31	0.53	U 0 40	1.23	1.31	102.35	11.33	3.20	7.20	202.18	0	92.07	171.63	156.96	714.26	134239	
40	1 21	0.51	2.42	U	0	91.14	9.70	1 98	6.59	179.56	0	84.26	156.01	143.69	717.79	146914	
47	1 22	4.53	2	0	U	92.48	10.32	2.59	6.50	1 85 . 90	0	85.54	162.20	146.53	728.77	150621	
40	1 33	10 20	2.00	2.38	2.02	25/./0	12.08	3.41	1.98	90.93	3.58	87.36	586.85	142.92	757.49	116571	
72	1.00	10.50	6.46	4.30	/.D/	014.01	21.14	- 3.62	1 41	62 03	n	87 93	001 06	125 10	010 27	102024	

131

1

3

}

EDZIZA CESIDIAN SCURCE DATA NORMALIZED TO THE COMPTON PEAK (PK/COMP * 1083)

â

Case	Label	K	. C a .	Ti	MnFe _	Zn.	Ga. ,	Рb	Р.Ь	Sr	Y	Zr	КР	Payleigh	Compton	Pk
50	1.32	10.20	1.85	2.62	2,69 290.75	14 01	4 75	2 42	101 68	4 97	02.06	615 00	156 74	750 22		
51	1.33	8.58	1.51	4.42	7.40 531 82	16 61	2 51	2 16	101.00	4.27	22.00	010.90	1:0.74	/59.23	95064	
52	1.34	6.71	0	1.75	2.58 239 55	12 27	1 67	2.15	20138	0	77.55	972.38	116.03	827.54	118931	
53	1.34	7.43	1.26	1 56	3 08 260 70	11 74	1.67	2.94	75.05	0	70.45	802.46	119.42	766.02	126361	
54	1.35	7 31	0	0	1 60 102 10	11.74	1.40	3.40	80.51	U	74.33	242.82	122.93	759.06	127310	
55	1 76	0 31	1 02	1 75	1.05 155.10	13.76	4.04	5.15	150.13	0	93.61	397.61	154.80	742.41	79199	
56	1 35	6 07	1.55	1.75	3.26 2/9.06	14.22	3.28	3.74	82.39	0	70.78	861.69	130.11	768.94	119185	
57	1 36	6 62	0	4 02	1.39 148.15	11.60	3.62	4.62	126.77	0	81.19	3 54 . 94	137.91	733.01	132838	
57	1 27	0.02	0	2.03	3.31 269.69	13.93	4.12	2.28	80.94	0	77.29	854.C2	124.10	77£.95	123290	
50	1.37	1.21	0	2.1:	4.1/ 2/5.65	14.96	1.82	2.92	83.12	0	77.85	878.03	130.54	756.58	128241	
59	1.30	0.09	0 76	1.72	3./1 2/2./2	12.66	1.64	3.96	81.27	С	74.12	853.35	124.06	766.11	112205	
00	1.3/	0.34	./6	2.88	3.39 258.45	13.61	2.65	2.84	78.81	0	71.11	823.49	110.70	772.56	127142	
C 1	1.36	1.43	0	1.78	3.92 309.06	16.27	3.43	3.47	86.43	0	80.76	892.41	130.44	751.69	104414	
02	1.11	1.18	0	4.81	6.27 621.21	16.97	3.29	1.78	53.24	0	71.69	809.01	104.29	823.32	92063	
63	1.11	15.95	5.40	7.89	15.04 1045.58	29.39	4.65	2.85	70.51	C	87.81	976.03	118.12	811.25	54783	
64	2.01	9.07	0	6.13	8.86 764.59	25.72	2.34	3.70	62.65	0	100.97	1129.51	150.92	846.92	84019	
65	2.02	6.85	0	3.59	5.90 487.02	16.52	3.31	1.65	61.53	.63	82.45	1002.67	122.51	824.28	109707	
66	2.03	7.38	0	5.17	8.34 667.85	21.47	2.91	2.71	60.57	0	96.14	1070.16	149.33	840.40	97.836	
67	2.04	10.12	0	7.01	8.60 784.45	25.77	3.84	3.03	65.69	Ó	103.38	1167.57	162 62	830 64	504.81	
68	2.04	9.86	0	5.36	8.42 763.91	26.41	5.03	3.83	68.37	õ	104 00	1170 28	150 12	837 52	82078	
69	2.05	9.30	3.64	6.69	8.32 700.89	23.48	4.67	3.64	63 32	ñ	09 11	1105 02	156 66	820 83	88216	
70	2.06	9.00	0	5.67	7.95 710.81	23.67	3.82	2.99	63.34	õ	99 94	1120 57	154 66	824 55	92244	
71	2.07	12.09	0	6.68	11.42 770.36	32.06	4.40	3.27	63.45	ň	105 77	1132 30	153 02	024.55	52244	
72	2.08	9.22	0	6.23	8.62 800.88	25.35	4.66	3.35	66.90	ň	102 02	1127 05	153.02	P34 76	57200	
73	2.09	10.61	0	5.99	9.92 854.43	28.36	5.09	3,10	68 54	õ	100 43	1162 74	154 63	942 05	56720	
74	2.10	11.00	0	4.32	9.04 687.38	22.53	3.45	3,20	60.74	ň	96 00	1056 68	146 97	838 74	62280	
75	2.11	8.99	0	7.38	10.93 805.82	25.98	3.95	3.47	67.40	ñ	106 36	1154 00	156 01	970 10	66326	
76	2.12	7.94	0	6.12	8.78 685.63	22.17	3.43	3.64	63.16	õ	07 26	1089 12	151 40	853-84	01017	
77	2.13	10.43	0	6.67	9.78 777.40	22.49	0	2.88	62.86	õ	99 90	1000 87	153 40	859 07	63 571	
78	2.14	8.06	0	4.11	13.02 999.14	42.87	2.14	8.42	121.70	õ	217 69	2481 20	328 30	031 04	63034	
79	2.15	13.41	3.81	5.82	9.27 712.49	23.90	3.68	3.04	62.64	ň	97 30	1077	152 08	951.54	73054	
80	2.16	9.72	1.77	5.32	8.00 680.72	22.60	3.26	3.25	60.93	58	95 70	1072 75	145 30	846 14	06205	
81	2.17	10.88	3.05	5.48	9.65 736.29	24.39	2.68	3.92	65 24	0.00	106 49	1162 40	1 50 71	846 56	67120	
82	2.18	9.11	0	4.53	10.59 820.61	37.18	1.93	6 64	108 34	õ	108 05	2252 88	207 66	027 61	60150	
83	2.18	12.38	0	5.38	14.51 1164.68	53.61	6 10	8 29	137 31	3 93	237 54	2600 . 45	2 57 .00	927.01	- 77490	
84	2.19	6.84	0	5.97	8.47 732.50	23 43	4 93	3 76	61 28	3.03	103 60	1007 00	146.11	007.43	11409	
85	2.19	10.28	Ó	6.64	11.18 873.09	28.55	4 78	4 20	70 90	õ	105.00	1152 75	140.20	010 60	76170	
86	2.20	10.94	2.81	5.65	9.22 790.03	25 47	3 30	3 47	65 16	õ	102.76	1120 40	155.29	010.00	70170	
87	3.01	8.16	0	2.33	3,15 267 62	1.1 .49	0	3 26	70 05	0	72 02	1120.40	1 30 . 42	834.07	33009	
88	3.02	12.23	5.22	12.09	26 00 1200 52	21 65	3 76	2 40	79.05	0	12.02	1246 40	122.73	801.28	72640	
89	3.03	5.83	0	0	3 30 273 47	14 04	2 00	2.40	70.90	0	105.40	1240.40	200.02	941.93	91544	
90	3.04	11.73	3.78	11.47	28 45 1360 36	29 50	2.50	2 07	76 61	0	10.49	800.40	127.53	/03.02	112370	
91	3.05	17.81	6 25	13 28	20.45 1309.30	20.00	3.07	2.0/	/5.01	0	115.99	1289.40	209.55	952.55	69339	
92	3.05	15.07	4 72	15 05	31 35 1613 62	25.32	4-22	- 3.10	/2.0/	U A	107.17	1260.32	207.66	946.22	45925	
93	3.06	4 78	0	1 42	0 2/1 77	23.05	3.04	4.02	a3.32 70.35	0	115.03	1350.58	218.22	908.22	44529	
94	3.07	13 44	5 67	0 06	29 52 1222 40	13.35	3.24	2.43	78.35	C	/3./0	/99.40	116.88	/45.00	85289	
95	3 00	12 25	5.07	10 46	20.33 1333.49	21.98	3.90	3.83	73.81	0	107.89	128/ .9/	211.91	944.13	70739	
96	3 09	0 00	0	3 00	E 67 256 20	24.03	5.00	3.05	/2.15	U	105.86	1280.22	210.56	939.68	/4042	
97	3 10	9.90 9.90	ñ	2.00	1 02 206 55	19.05	3.89	3.32	91./1	U	82.78	932.82	130.86	768.29	67398	
00	2 11	C EU C 33	0	2.33	4.02 290.55	15.09	3.58	3.21	82.07	U	15.64	848.97	123.06	781.42	67847	
20	2 12	0.00	0	2.29	4./3 306.88	16.29	3.83	3.35	87.98	0	81.27	921.31	134.90	761.52	92217	
99	3.12	8.94	U	2.15	4.56 292.21	15.41	3.44	3.40	90.46	0	78.88	902.31	133.95	745.33	96231	
100	3.12	13.05	0.24	8.29	25.16 1291.73	22.46	4.39	2.38	76.22	٥	100.15	1299.24	211 58	033.24	77276	

EDZIZA GBSIDIAN SOURCE DATA KORMALIZED TO THE COMPTON PEAK (PK/COMP * 10E3)

Case	Lãbei	ĸ	Ca	Ti	Mn	Fe	Zn	Ga	Рb	Rb	Sr	Y	Zr	мР	Rayleigh	Compton	Pk
101	3.14	10.84	4.75	10.41	26.25	1372 40	23 63	3 94	2 61	74 00	0	111 20	1000 70				
102	3.15	8.21	0	6.02	9.05	671 21	23.05	3.04	2.01	74.98	0	111.39	1283.78	209.35	951.08	72606	
103	3.16	15.57	6.75	12.54	31 91	1516 40	27 41	4 04	2.04	02.10	0	103.88	1129.91	158.57	863.70	98061	
104	3.17	8.28	0	3.25	4 61	305 92	16 95	2 54	3.17	61.30	0	112.23	1321.84	215.22	940.06	41206	
105	3.18	9.73	õ	3,10	3 00	201 00	16.00	3.03	2.04	80.08	U	/6./6	8/2.60	125.87	767.82	54836	
106	3.19	10.43	ñ	5 46	13 43	1003 72	15.75	3.03	3.20	90.17	0	/3.46	856.79	124.51	770.71	77113	
107	3.20	7.86	ň	2 60	13.43	202 07	40.40	4.90	/ . /]	123.66	2.65	22/./2	2579.20	328.84	873.91	77970	
108	3.21	13.65	5 95	12 43	25 72	1215 01	10.4/	3.3/	3.30	24.51	U	77.87	898.72	130.20	767.14	86556	
109	3.22	12.93	5 05	10 01	26 41	1203 00	22.00	2.07	2.4/	74.60	U	107.20	1287.03	206.23	966.19	85779	
110	3.23	11.48	0	3 34	5 36	205 20	20 44	2.95	3.00	/5.46	U	109.38	1314.12	217.38	930.93	79445	
111	3.23	6.75	ň	2 54	3 53	202 15	20.44	4.08	4.85	102.11	0	91.14	979.82	141.04	755.67	70319	
112	3.24	7.42	ň	1 93	J . 55	205.10	14.22	2.12	3.42	82.65	0	75.70	867.74	127.01	770.91	112591	
113	6.01	6.47	ñ	2 38	2 69	253.04	13.99	2.50	2.13	89.02	0	/9.10	905.07	133.26	764.24	101307	
114	6.02	6 74	0 0	2.50	2.00	204.07	13.93	3.38	2.88	83.97	0	72.97	861.50	125.27	755.04	123737	
115	6.03	7 16	ň	2 95	2.94	201.07	13.58	4.26	3.58	80.61	0	71.89	823.34	119.53	782.64	133360	
116	6.04	6 35	ň	2.03	2.5/	2// .02	12.0/	2.00	3.44	80.76	0	74.21	853.78	122.98	770.38	122866	
117	6.05	5 76	õ	2.07	3.42	24/+01	13.51	3.02	2.94	76.83	0	72.51	830.90	120.82	780.61	130942	
118	6.06	8 92	0	5 74	7 02	204.00	10.02	3.31	2./1	81.69	0	74.52	855.88	123.76	775.63	122330	
119	7.01	7 45	0	2 21	2 12	005./4	21.99	3.51	2.90	66.76	.74	96.73	1103.35	139.69	823.36	96071	
120	7 02	7 55	õ	2 05	3.13	201.10	14.49	1.5/	3.26	83.03	0	76.51	874.62	126.56	767.60	112277	
121	7 03	7 04	0	2.95	3.32	295.48	20.05	2.62	3.3/	88.81	0	80.64	904.32	125.48	758.36	100650	
122	7 04	0 07	0	1.55	3.01	200.10	12.40	2.07	3.36	78.96	0	73.48	834.77	120.30	772.45	106736	
123	7 05	5.57	0	2.70	4.60	303.04	15.61	2.42	3.07	89.22	0	80.31	890.92	130.65	761.48	70287	
124	7.05	6 14	0	1.39	2.53	243.69	13.3/	3.12	3.35	76.54	0	72.80	799.45	118.62	778.01	126963	
125	7 07	7 69	0	1 74	2 45	240.34	13.09	2.11	2.94	78.63	0	72.41	805.84	121.02	749.02	112132	
126	ç 01	9 1 1	2 26	1.74	3.45	247.90	13.50	3.09	3.78	80.42	0	73.11	810.54	120.44	772.34	126705	
127	9.02	7 89	0	4.07	7 04	521.91	1/.6/	3.3/	2.78	55.33	0	76.27	899.81	108.84	814.62	113468	
12.8	9.03	8 69	1 70	4.03	6 10	567.11	19.03	4.//	1.00	59.63	0	80.62	938.50	118.72	827.58	109750	
129	9.04	6.23	ñ.,0	4 76	5 56	540.04	10.29	3.24	2.12	54.04	0	76.38	904.24	113.46	834.15	115898	
130	9.05	8.68	õ	4.20	6 24	546 12	10.00	1.53	2.15	53.89	U	/5.59	896.41	111.16	833.07	118027	
131	9.06	7.23	ñ	5 25	7 34	565 00	20 01	3./3	0 20	55.08	U	/8.89	911.48	116.69	841.88	116294	
132	9.07	7.37	õ	4.86	6 00	538 02	10.91	3.93	2.20	57.00	U	80.69	934.12	114.88	824.89	108980	
133	9.08	11.30	2.28	4.88	7.77	597 63	10.30	2.00	1.33	50.09	0	78.55	920.71	113.72	814.82	111761	
134	9.09	9.51	1.27	4.38	5.42	551 08	19.04	9.63	1 00	55 17	0	84.00	9/1.0/	122.27	813.23	104112	
135	9.10	7.90	0	4.35	7.10	537 45	17 67	2.03	2 61	55.17	0	70.17	928.13	125.46	826.67	1206/3	
136	9.11	8.12	Ō	5.17	7.52	600.97	19 24	1 08	1 40	55.39	0	78.59	922.03	114.40	831.93	122989	
137	12.01	7.77	Ō	2.93	3.06	261.08	14.15	2 17	2 44	70 37	0	64.54	909.30	117.82	829.21	110588	
138	12.02	12.37	3.03	4.79	7.06	- 628-03-	- 22.28	3 46	2 97	72 32	ñ	0/.51	1120 46	131.04	/91.8/	113/18	
139	12.02	10.30	2.16	4.83	7.22	559.78	18.74	2.55	1 15	67 52	ñ	94.51	1050.40	134.67	809.15	/0008	
140	12.03	6.41	0	4.07	5.67	493.12	17.87	3.95	2 22	61 28	ň	85 34	1000.04	120.40	011 20	101825	
141	16.01	7.04	0	4.31	8.11	530.06	13.63	0	0	45.85	1 00	65 56	744 41	121.30	910 63	0/200	
142	16.02	9.88	0	5.88	7.67	647.12	19.84	3.48	2.54	50.62	0	74 97	930 22	104 60	019.03	02020	
143	16.03	10.19	1.48	6.45	9.30	670.06	18.71	2.85	2.22	54 85	1 46	74.37	917 20	104.00	012.70	92038	
144	16.04	7.24	0	6.20	6.25	548.41	16.70	2.82	1.13	47.39	0	67 00	763 02	04 75	820.10	124000	
145	16.06	10.04	1.18	7.45	8.37	706.49	19.55	4.05	1.27	57.18	ñ	78 63	869 31	107 83	803 27	92740	
146	16.07	6.40	0	6.48	6.89	560.86	15.46	1.97	1.47	47.67	õ	68.49	777 75	101 19	824 65	128962	
147	16.08	9.38	0	6.20	9.68	676.42	20.00	3.88	1.65	56.41	ñ	75.94	855 62	100 01	807 13	82537	
148	16.05	8.04	0	5.64	8.39	645.36	18.79	3.89	1.30	52.27	ō	76 . 86	838 71	110.50	803 68	98735	
149	16.10	11.17	3.28	5.15	7.69	586.56	17.60	2.62	1.75	51.74	Ō	73.84	813 68	102 45	800 66	99462	
150	16.11	11.04	0	8.18	03.0	783.21	21.61	4.14	1.46	62.49	õ	83.99	927.75	115.66	782 51	83570	
151	16.11	8.58	1.56	5.27	7.55	596.75	17.20	3.13	2.16	49.96	ē	70.20	823 13	106 12	211 PO	109023	
152	16.12	7.06	.60	4.87	7.47	554.94	14.84	3.16	1.57	48.22	õ	69.06	767 14	100.12	811 15	114517	
153	16.13	8.09	0	5.11	7.51	615.33	17.44	2.15	1.82	52.88	ŏ	75 22	825 19	105 53	821 68	123852	
154	17.01	8.62	0	5.49	7.64	635.39	19.14	4.43	1.25	50.90	ŏ	74.51	200 . 21	104.83	P27 04	87040	
155	17.02	10.95	2.66	9.31	8.39	732.63	21.22	4.47	1.98	54.28	õ	80.90	867.70	108.57	832.92	106752	
											-		JU / / / U				

EDZIZA OBSIDIAN SOURCE DATA NORMALIZED TO THE COMPTON PEAK (PK/COMP * 10E3)

156 17.03 7.76 0 4.55 7.46 15.7.4 15.7 2.462 2.77 46.81 0 6 8.92 77.5.7 10.065 441.44 123276 157 17.04 11.59 2.66 4.44 8.20 655.92 19.14 3.54 1.78 53.09 0 77.02 832.40 105.66 41.15.16 9475.1 10.55 17.04 11.59 2.66 4.44 8.20 655.92 19.14 3.54 1.78 53.09 0 77.02 832.40 105.66 41.15.17 9475.1 10.0 67.44 775.99 94.62 852.67 12.15 11.15 1.0 11.15 1.0 11.15 2.18 5.61 8.34 605.24 11.64 1.35 1.42 51.14 0 71.55 400.94 102.67 11.56 41.64 10.67 82.25 1.0 10.56 41.15.17 11.15 1.0 10.27 11.15 1000.94 102.67 11.15 1.0 10.27 11.15 100.94 102.67 11.15 1.0 10.27 11.15 100.94 102.7 11.15 100.94 10.16 11.15 1.0 11.0 11.15 1.0 10.20 11.15 100.24 11.15 1.0	Lase	Label	K	Ca	Τi	Mn	Fe	Zn	Ga	РЬ	РÞ	Sr	Y	Zr	NÞ	Rayleigh	Compton	Ρk
	156	17.03	7.76	0	4.55	7.46	557.54	15.57	2.62	2 37	46 81	0	69 02	775 26	100 65	641 54	1 2 2 0 0 0	
	157	17.04	15.72	3.62	7.59	10.79	807 47	24 42	1 20	2 01	62 20	0	06.95	115.20	100.05	641.54	133229	
	158	17.04	11.59	2.66	4 44	8 20	655 02	10 14	2 54	1 70	63.30	0	25.20	924.88	115.86	819.35	85006	
10 17.06 11.31 2.16 5.41 65.24 16.54 3.59 - 4.26 4.1.1 0 0 - 4.76 76.69 96.62 92.69 128135 96.60 15789 976.61 17.60 976.62 92.69 128135 976 976 976 976 976 976 976 976 976 976	159	17.05	7.96	0	4 96	P 11	592 04	17.65	3.54	1.78	53.09	0	13.02	233.40	105.88	815.18	92633	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	160	17 06	11 21	2 10	F 61	0.11	002.04	17.05	4.00	2.21	4/./1	0	67.84	776.99	96.62	852.69	128135	
$ \begin{array}{c} 12 \\ 17 \\ 16 \\ 17 \\ 16 \\ 16 \\ 17 \\ 16 \\ 16$	161	17.00	10 52	2.10	5.01	8.34	605.24	16.44	3.57	1.48	51.14	0	71.53	800.94	103.81	820.60	115789	
117.02 3.84 0 4.78 7.72 82.20 3.68 0 51.7 0 72.43 P110.33 103.00 B17.42 103.246 164 16.02 7.76 0 1.76 3.25 2.69 48.42 0 69.66 762.20 101.60 87.42 13222 165 18.02 7.76 0 1.76 3.25 2.67 1.17 2.76 0 7.77 0.64 13222 167 18.02 6.77 0 1.79 3.79 2.60 1.77 0 7.75 642.41 12.19 7.50 11115 115.01 11	162	17.07	10.53	2.90	5.89	7.98	637.65	19.40	3.68	2.55	52.28	0	73.69	817.44	101.67	824.50	100227	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	162	17.08	9.54	0	4.78	7.72	625.82	18.20	3.86	0	51.37	0	72.43	810.03	103.90	817.42	103465	
$ \begin{array}{c} 18 & 0.1 & f. / k & 0 & 1 & .7k & 0 & 1 & .7k & 3 & .86 & 250 & .67 & 12 & .55 & 2 & .87 & 3 & .12 & .76 & .70 & 0 & .71 & .77 & .27 & .66 & 118 & .06 & .770 & .24 & 132223 \\ 166 & 18 & .04 & 6 & .46 & 0 & 2 & .15 & .25 & .256 & .10 & 12 & .57 & 1 & .41 & 2 & .49 & .72 & .72 & 0 & .75 & .72 & .242 & .11 & 121 & .97 & .750 & .11 & 135611 \\ 16 & 16 & .04 & 6 & .62 & 0 & 1 & .79 & .73 & .72 & .26 & .73 & .77 & .70 & .75 & .72 & .242 & .11 & 121 & .97 & .750 & .11 & .135611 \\ 16 & 16 & .06 & 6 & .27 & 0 & .150 & .3 & .23 & .250 & .48 & 12 & .90 & .215 & .246 & .73 & .77 & .70 & .73 & .26 & .284 & .42 & 123 & .06 & .755 & .128 & .128 & .756 & .121 & .756 & .121 & .756 & .561 & .260 & .731 & .56 & .260 & .771 & .66 & .662 & .66 & .6$	103	17.09	8.09	0	3.56	6.61	559.80	17.26	3.23	2.69	48.84	0	69.86	782.20	101.53	830.29	112772	
$ \begin{bmatrix} 165 \\ 18.02 \\ 6.70 \\ 0 \\ 16.03 \\ 6.84 \\ 0 \\ 2.102 \\ 16.70 \\ 16.04 \\ 6.27 \\ 0 \\ 1.79 \\ 16.04 \\ 6.27 \\ 0 \\ 1.79 \\ 1.79 \\ 3.79 \\ 260.10 \\ 1.27 \\ 1.79 \\ 3.79 \\ 260.10 \\ 1.27 \\ 1.79 \\ 1.27 \\ 1.79 \\ 1.27 \\ 1.79 \\ 1.27 \\ $	164	18.01	7.76	0	1.78	3.86	250.67	12.55	2.87	3.13	76.30	0	71.77	823.06	118 00	770 84	133283	
	165	18.02	6.70	0	2.05	3.33	257.49	12.90	2.15	2.46	76.18	0 .	72.45	812 65	118 62	777-87	120000	
	166	18.03	6.84	0	2.12	. 56	256.10	12.57	1.41	2.49	79.27	0	75 72	842 11	121 07	750 11	125505	
16618.056.2101.503.22260.4612.902.613.1971.76073.76687.40163.76162.9173.76687.40163.76173.76162.73173.76162.73173.76173.7717	167	18.04	6.27	0	1.79	3.79	260.10	13.26	2 67	3 73	77 00	0	74 52	040 40	121.57	730.11	100707	
	168	18.05	6.21	0	1.50	3.32	260.48	12.90	2 61	3 10	77 15	0	72 26	049.40	125.00	733.58	128/9/	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	169	18.06	6.19	0	2.88	2.87	243 51	12 72	2 70	2 00	77 66	0	13.30	828-48	123.88	. //605	128187	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	170	18.07	8.96	0	2 02	2 56	200 05	17.00	2.70	3.05	//.00	0	69.68	817.03	121.14	159.60	131084	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	171	18.08	7 81	0	1 77	2 55	201 72	17.02	5.20	3.73	90.06	0	82.05	910.54	132.17	760.69	105015	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	172	10 01	7 22	0	2 12	3.00	281.72	13.0/	3.18	3.43	19.26	1.29	75.06	837.92	122.06	776.86	121253	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	172	10.02	6 70	0	3.13	5.00	460.43	17.29	3.68	2.35	57.91	0	88.08	962.69	113.64	850.28	138154	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	173	19.02	0.73	0	4.55	5.91	500.21	16.92	2.45	1.28	65.21	0	85.02	1049.01	123.80	812.08	128026	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	174	19.03	9.48	3.25	3.50	6.08	501.69	17.92	3.14	3.52	61.34	0	82.99	1004.19	120.31	818.06	125176	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/5	19.04	8.25	0	3.90	6.69	493.64	17.96	3.00	2.58	59.88	0	83.77	091.81	119.00	809.83	110505	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	176	19.05	9.19	2.24	4.23	5.37	502.88	18.31	3.41	2.68	61.41	0	25.76	1031.06	125 64	812 19	125100	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	177	20.01	6.29	0	4.99	7.90	566.91	18.77	3.24	2.78	58.60	0	81 00	043 49	116 33	817 80	122842	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	178	20.02	6.74	0	4.66	6.69	558.30	18.36	3.40	2.80	57 58	0	81 00	030 02	116 10	025 76	122047	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	179	20.03	7.88	0	4.73	6.57	531.81	17.37	3 17	0	53 07	0	77 40	939.92	110.10	835.70	123947	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	180	20.04	10.51	0	5.08	8.57	707 72	23 00	5 45	2 71	60 67	0	77.49	897.12	113.91	843.02	126850	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	181	20.04	9.30	0	4.50	7.85	581 54	18 10	0	1 65	50 52	0	70 00	1051.09	128.30	812.37	/5/50	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	182	20.05	9.11	0	4 99	7 13	502 22	17 57	2 04	1.00	59.52	0	79.80	919.88	114.55	/93.4/	15695	
164 21.02 7.79 0 2.69 19.41 0 73.94 R09.51 121.27 777.83 120201 185 21.02 7.46 0 1.86 3.65 260.61 13.19 1.79 2.78 80.12 0 74.80 R80.12 126.31 752.45 110201 186 21.04 6.71 0 1.51 4.64 172.85 14.30 2.88 2.63 82.67 0 74.80 R44.57 123.55 758.09 124324 187 22.02 6.32 0 2.72 2.54 281.94 1.50 3.08 83.54 0 77.19 859.64 125.24 774.17 128077 189 22.03 7.00 0 1.83 2.50 2.64 12.68 2.77 2.94 79.83 0 73.66 R63.52 126.37 176.78 13160 191 22.05 7.07 1.67 2.60 3.51 280.45 16.05 3.34 2.30 894.03 129.41 754.59 124.67 176.58 <td< td=""><td>183</td><td>21.01</td><td>8.96</td><td>1 21</td><td>2 63</td><td>1 62</td><td>251 20</td><td>12.50</td><td>2.84</td><td>2.54</td><td>59.19</td><td>1.53</td><td>85.01</td><td>966.48</td><td>121.23</td><td>802.45</td><td>95522</td><td></td></td<>	183	21.01	8.96	1 21	2 63	1 62	251 20	12.50	2.84	2.54	59.19	1.53	85.01	966.48	121.23	802.45	95522	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	184	21.02	7 70	0	2.60	2 20	201.30	12.59	2.25	2.89	/9.41	0	73.94	809.51	121.27	777.83	130203	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	185	21 03	7 46	0	1 06	3.30	284.57	15.30	3.03	3.52	86.12	0	78.32	880.12	126.31	752.45	110201	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	186	21 04	6 71	0	1.80	3.05	260.61	13.19	1.79	2.78	80.68	0	74.80	844.57	123.55	758.09	124324	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.97	22 01	7 10	0	2.12	3.03	254.80	13.53	3.05	2.2/	75.38	0	69.00	743.51	114.70	745.84	125715	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	22.02	6.20	0	1.51	4.64	272.85	14.30	2.88	2.63	82.67	0	76.53	872.54	127.33	762.78	130767	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	22.02	0.32	0	2.12	2.54	281.94	13.49	1.50	3.08	83.54	0	77.19	859.64	125.24	774.17	128077	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109	22.03	7.00	0	1.83	2.30	250.86	12.34	2.84	4.18	77.73	0	71.97	829.64	118.67	776.61	147052	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190	22.04	8.01	0	1.82	2.54	268.92	13.68	2.79	2.94	79.83	0	73.66	863.62	126.31	767.69	133160	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	191	22.05	7.07	1.67	2.60	3.51	280.87	14.81	3.86	3.35	85.26	0	78.23	894.03	129.41	754.35	137467	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	192	22.06	6.78	0	3.34	2.88	274.20	14.08	3.25	2.64	83.46	1.15	76.27	869.74	126.59	746.96	127970	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	193	22.07	6.15	0	0	2.74	286.45	16.05	3.34	2.30	88.43	0	79.31	881 47	126 95	758 05	03106	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	194	22.08	8.04	1.23	1.45	4.26	278.18	14.83	3.71	2.47	83.69	.78	74 83	855 07	122 52	755 93	105030	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	195	22.09	8.24	0	2.25	4.52	327.01	17.65	4 41	4 07	90 82	0.70	80 62	027 50	122.52	755.03	105950	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	196	22.10	7.02	0	2.60	2.51	283.09	14.51	2 78	3 05	94 96	0	77 70	927.50	131.04	740.84	119353	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	197	22.11	9.84	1.87	1.55	2 97	273 46	12 62	3 75	2 20	01 40	0	77.79	862.19	124.72	/55.0/	95095	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	198	22.12	6.82	0	2.72	3.59	268 67	14 64	3 30	3.29	01.40	0	72.90	848.80	125.48	//6./5	143604	
200 22.14 6.12 0 3.42 254.99 13.00 2.98 2.85 77.71 0 73.22 834.35 123.18 757.42 146701 201 22.15 7.51 0 1.41 3.32 240.65 12.91 2.76 3.20 73.87 0 69.94 810.11 118.98 763.71 146830 202 23.01 7.54 0 2.01 3.72 259.90 13.09 2.70 2.85 81.36 0 75.48 842.97 124.86 754.78 132627 203 23.02 7.34 0 0 3.78 261.43 15.63 3.37 2.42 76.36 0 72.51 837.89 119.89 785.67 144052 204 23.03 6.31 0 1.59 3.21 259.34 15.08 4.72 3.21 81.61 0 71.95 822.46 120.54 770.17 141284 205 23.04 6.72 0 1.67 3.06 255.91 13.37 3.20 2.43 75.72 <td>199</td> <td>22.13</td> <td>7.88</td> <td>1.72</td> <td>1 83</td> <td>3 56</td> <td>248 10</td> <td>13 20</td> <td>3.50</td> <td>3.52</td> <td>70 14</td> <td>1 55</td> <td>74.97</td> <td>850.69</td> <td>122.86</td> <td>758.81</td> <td>136338</td> <td></td>	199	22.13	7.88	1.72	1 83	3 56	248 10	13 20	3.50	3.52	70 14	1 55	74.97	850.69	122.86	758.81	136338	
201 22.15 7.51 0 1.41 3.32 240.65 12.91 2.76 3.20 73.87 0 69.94 810.11 118.98 763.71 146830 202 23.01 7.54 0 2.01 3.72 259.90 13.00 2.76 3.20 73.87 0 69.94 810.11 118.98 763.71 146830 203 23.02 7.34 0 2.01 3.72 259.90 13.09 2.70 2.85 81.36 0 75.48 842.97 124.86 754.78 132627 204 23.03 6.31 0 3.78 261.43 15.63 3.37 2.42 76.36 0 72.51 837.89 119.89 785.67 144052 204 23.03 6.31 0 1.59 3.21 259.34 15.08 4.72 3.21 81.61 0 71.95 822.46 120.54 770.17 141284 205 23.04 6.72 0 1.67 3.06 255.91 13.37 3.20 2.43 75.72	200	22.14	6 12	0	0	3 42	254 00	13.29	2.55	3.59	79.14	1.55	12.15	834.35	123.18	757.42	146701	
201 23.01 7.54 0 1.41 3.32 240.05 12.91 2.76 3.20 73.87 0 69.94 810.11 118.54 787.34 151337 202 23.01 7.54 0 2.01 3.72 259.90 13.09 2.70 2.85 81.36 0 75.48 842.97 124.86 754.78 132627 203 23.02 7.34 0 0 3.78 261.43 15.63 3.37 2.48 76.36 0 72.51 837.29 119.89 785.67 144052 204 23.03 6.31 0 1.59 3.21 259.34 15.08 4.72 3.21 81.61 0 71.95 822.46 120.54 770.17 141284 205 23.04 6.72 0 1.67 3.06 255.91 13.37 3.20 2.43 75.72 0 72.54 812.26 119.12 773.97 139856 206 23.05 7.19 0 2.29 3.36 272.48 14.61 3.94 3.21 <td>201</td> <td>22 15</td> <td>7 51</td> <td>0</td> <td>1 41</td> <td>2 22</td> <td>234.99</td> <td>13.00</td> <td>2.98</td> <td>2.85</td> <td>// ./1</td> <td>0</td> <td>/3.32</td> <td>833.62</td> <td>118.98</td> <td>763.71</td> <td>146830</td> <td></td>	201	22 15	7 51	0	1 41	2 22	234.99	13.00	2.98	2.85	// ./1	0	/3.32	833.62	118.98	763.71	146830	
201 23.01 7.34 0 2.61 3.72 259.90 13.09 2.70 2.85 81.36 0 75.48 842.97 124.86 754.78 132627 203 23.02 7.34 0 0 3.78 261.43 15.63 3.37 2.42 76.36 0 72.51 837.89 119.89 785.67 144052 204 23.03 6.31 0 1.57 3.21 259.34 15.08 4.72 3.21 81.61 0 71.95 822.46 120.54 770.17 141284 205 23.04 6.72 0 1.67 3.06 255.91 13.37 3.20 2.43 75.72 0 72.54 812.26 119.12 773.97 139856 206 23.05 7.19 0 2.29 3.36 272.48 14.61 3.94 3.21 79.68 0 72.54 812.41 124.15 764.60 136927	202	23 01	7 54	0	2 01	3.32	240.05	12.91	2.76	3.20	/3.87	0	69.94	810.11	118.54	787.34	151337	
203 23.02 7.34 0 0 3.78 261.43 15.63 3.37 2.48 76.36 0 72.51 837.89 119.89 785.67 144052 204 23.03 6.31 0 1.59 3.21 259.34 15.08 4.72 3.21 81.61 0 71.95 822.46 120.54 770.17 141284 205 23.04 6.72 0 1.67 3.06 255.91 13.37 3.20 2.43 75.72 0 72.54 812.26 119.12 773.97 139856 206 23.05 7.19 0 2.29 3.36 272.48 14.61 3.94 3.21 79.68 0 72.31 849.36 124.15 764.60 136927	102	23.01	7.54	0	2.01	3.72	259.90	13.09	2.70	2.85	81.36	0	75.48	842.97	124.86	754.78	132627	
204 23.03 6.31 0 1.59 3.21 259.34 15.08 4.72 3.21 21.61 0 71.95 822.46 120.54 770.17 141284 205 23.04 6.72 0 1.67 3.06 255.91 13.37 3.20 2.43 75.72 0 72.54 812.26 119.12 773.97 139856 206 23.05 7.19 0 2.29 3.36 272.48 14.61 3.94 3.21 79.68 0 72.31 849.36 124.15 764.60 136927	203	23.02	1.34	0	0	3.78	261.43	15.63	3.37	2.48	76.36	0	72.51	837.89	119.89	785.67	144052	
205 23.04 6.72 0 1.67 3.06 255.91 13.37 3.20 2.43 75.72 0 72.54 812.26 119.12 773.97 139856 206 23.05 7.19 0 2.29 3.36 272.48 14.61 3.94 3.21 79.68 0 72.31 849.36 124.15 764.60 136927	204	23.03	6.31	0	1.59	3.21	259.34	15.08	4.72	3.21	81.61	0	71.95	822.46	120.54	770.17	141284	
206 23.05 7.19 0 2.29 3.36 272.48 14.61 3.94 3.21 79.68 0 72.31 849.36 124.15 764.60 136927	205	23.04	6.72	0	1.67	3.06	255.91	13.37	3.20	2.43	75.72	0	72.54	812.2E	119.12	773.07	139856	
The second	206	23.05	7.19	0	2.29	3.36	272.48	14.61	3.94	3.21	79.68	0	72.31	849.36	124.15	764.60	136927	

APPENDIX E

1

1

EDZIZA OBSIDIAN SCURCE DATA NORMALIZED TO THE ZR PEAK (PK/ZR * 10E2)

Case	Label	к	Ca	Τi	Mn	Fe	Zn	Ga	ΡÞ	Rb	Sr	Y.	Zr	ND	Fayleigh	Zr peak
1	1.01	8.16	0	5.11	63.3	602.55	24.34	· 3.77	3.90	63.45	0	88.17	1000	122 89	824 01	0/150
2	1.02	10.55	3.89	6.83	8.70	743.94	22.17	4.55	3.38	61.50	è	87.82	1000	128 72	1026 51	79630
3	1.03	7.94	0	0	3.85	306.73	16.36	5.25	4.20	92.59	Ô	87.21	1000	146.61	073.06	002008
4	1.04	6.25	0	2.83	3.60	282.74	14.62	3.41	2.84	84.15	0	79.67	1000	135.21	827.25	101400
5	1.05	13.91	0	3.38	4.27	407.74	19.39	4.73	3.40	153.35	6.29	150.27	1000	253.16	1369.40	64110
6	1.06	8.53	0	2.90	3.65	301.88	15.43	2.99	3.29	96.72	0	91.14	1000	150.44	923.47	90600
/	1.07	12.63	0	0	3.36	426.50	21.05	5.21	5.24	156.75	6.55	151.22	1000	249.74	1426.77	57820
8	1.09	18.75	3.50	2.87	6.61	454.23	20.35	5.37	4.47	155.09	5.54	148.51	1000	248.42	1330.61	52230
10	1.10	8.4/	0	2.01	4.91	319.34	16.26	1.91	3.80	96.06	0	86.33	1000	147.19	950.77	78130
10	1 13	9.00	U	0.59	9.15	733.82	21.69	4.68	2.12	60.66	0	89.19	1000	130.68	1020.08	95500
12	1 14	15 06	. U	3 67	4.21	329.32	17.95	- 4.84	5.82	160.83	0	113.22	1000	199.12	1066.97	91400
15	1.14	10 62	4.07	3.07	7.25	427.48	19.48	4.28	3.37	150.76	5.37	148.05	1000	250.71	1382.68	66530
14	1.15	10.69	3 36	1 71	4.40	530.42	24 45	3.97	2.56	157.06	5.04	147.89	1000	254.40	1480.28	66470
15	1.16	7.81	0	2 30	3 86	313 19	24.45	3.05	3.07	64.70	U	88.26	1000	120.12	627.25	74670
16	1.15	7.06	2.11	3 82	6 63	513 38	20 10	4.37	3.02	93.30	U	87.35	1000	145.05	915.50	107000
17	1.16	12.46	2.23	2.12	4 19	345 54	17 86	4 26	2.24	27.27	0	87.34	1000	124.65	/28.54	142000
18	1.17	10.13	0	2 54	5 56	340 60	19 05	4.20	3.21	98.78	0	89.86	1000	145.25	882.87	94460
19	1.18	18.86	1.83	0	4.57	446 58	31 50	5.27	14 14	353 20	0	20.27	1000	144.75	8/5.70	55960
20	1.17	9.79	0	3.14	4.57	350 83	19 14	4 77	14.14	101 67	0	222.05	1000	378.50	1//1.11	4 / 4 50
21	1.18	15.71	Õ	3.15	3.50	423.93	33.31	4 24	14 50	355 44	0	224 60	1000	142.20	820.44	50350
22	1.19	7.61	0	4.09	9.20	652.13	23.11	3.06	2.46	58 05	1 07	224.50	1000	121 17	2024.23	121200
23	1.19	8.06	2.81	4.04	6.84	590.67	19.98	2.90	2.61	55.15	0	90 15	1000	176 78	705 10	120345
24	1.20	7.83	0	4.99	6.64	634.75	20.77	3.81	3.18	54.67	õ	90.31	1000	177 82	769 16	117400
25	1.21	9.02	0	1.65	2.38	302.46	17.37	0	5.40	151.18	õ	112.20	1000	194.08	1122.90	99550
26	1.20	6.96	0	4.98	8.04	613.01	20.08	2.69	3.16	55.67	0	88.73	1000	136.07	814.65	125300
27	1.21	11.15	0	2.19	4.51	379.05	20.73	5.07	6.07	172.52	0	112.81	1000	190.14	892.33	81730
28	1.22	10.53	0	2.46	5.23	402.73	21.41	7.17	1.81	153.71	7.26	148.75	1000	248.61	1417.52	73970
29	1.23	3.48	0	1.48	5.09	363.68	16.93	1.11	2.82	46.38	1.14	80.58	1000	140.41	363.33	254400
30	1.22	12.01	0	3.87	3.99	412.67	19.60	5.63	3.33	154.72	6.94	148.55	1000	250.16	1315.00	91260
32	1.23	4.24	0	1.69	4.67	361.86	15.94	.73	2.93	46.71	1.82	87.59	1000	128.74	372.58	262700
32	1 25	5.20 6.42	0	2.84	0.08	509.89	19.28	3.11	3.15	53.57	0	87.31	1000	133.51	599.05	171900
34	1 24	6 75	1 90	2.00	3.78	306.06	16.21	2.78	3.62	94.98	0	87.19	1000	149.57	929.08	115600
35	1 25	8 20	1.09	1.00	0.52	518.80	19.42	2.46	2.36	52.29	0	89.19	1000	133.47	589.72	169700
36	1.26	7.02	0	4 11	1 71	315.12	10.18	4.00	2.99	92.97	0	88.33	1000	143.33	930.31	112400
37	1.27	6.95	õ	3.67	5 60	542 82	21 47	3.70	2.71	62.55	1.15	83.01	1000	121.51	824.68	128300
38	1.26	7.38	ŏ	4.10	6.53	506.06	17 94	2 12	3.34	60.67	0	88.00	1000	125.05	6/4.29	138500
39	1.27	7.72	Ō	4.03	5.58	556.29	22 34	1 28	3 20	50 57	Ň	04.33	1000	120.32	/53.94	130400
40	1.28	8.07	0	2.28	4.44	315.66	16.16	3,39	2 64	96 45	ň	89 00	1000	120.01	-0/0.10	104100
41	1.29	8.44	1.67	2.98	3.56	310.46	16.16	2.75	4.49	98.08	ň	00 48	1000	14/.04	923.00	104100
42	1.28	8.30	0	1.75	3.65	300.89	15.36	2.47	4,12	93.42	õ	25 50	1000	140.10	910.00	112400
43	1.29	8.76	0	3.83	3.96	330.01	16.58	2.47	3,96	99.96	õ	90.61	1000	146 77	901 74	76240
44	1.30	32.37	0	0	0	589.42	59.29	19.95	33.71	1122.53	Õ	533.72	1000	913.59	4611.01	23260
45	1.31	38.02	0	7.16	7.64	596.35	66.02	18.62	41.97	1177.95	0	536.45	1000	014.50	4161.50	23040
46	1.30	41.75	15.53	0	0	584.21	62.17	12.70	42.23	1150.96	Ō	540.08	-1000	921.03	4600.96	22920
4/	1.31	2/.92	0	0	0	570.20	63.65	15.96	40.07	1146.13	0	527.38	1000	903.40	4493.16	24430
48	1.32	15.29	3.55	4.05	4.46	439.12	20.58	5.80	3.38	154.95	6.10	148.86	1000	243.53	1290.76	68410
49	1.33	10.25	2.43	4.38	1.71	617.12	21.24	3.69	1.42	62.34	0	88.27	1000	125.82	814.37	103400
20	1.52	10.5/	2.01	4.25	4.37	4/2.08	22.75	7.07	3.93	164.94	6.93	152.40	1000	254.48	1232.88	58550

۴

135

and the second second

EDZIZA OBSIDIAN SOURCE DATA NORMALIZED TO THE ZR PEAK (PK/ZR * 10E3)

Case	Label	K	Са	Τi	Mn	Fe	Zn	Ga	Рb	Rb	Sr	Y	Zr	NЬ	Payleigh	Zr peak
51	1.33	9.30	1.63	4.79	8.02	576.57	18.00	2.72	2.33	60.05	0	84.08	1000	125.80	807 17	100700
52	1.34	8.36	0	2.18	3.21	298.52	15.30	2.08	3.66	93.52	0	87.80	1000	148.82	054.59	101400
55	1.34	8.82	1.49	1.88	4.73	309.32	13.93	1.66	4.10	95.53	0	88.19	1000	145.85	900.62	107300
54	1.35	18.39	0	0	4.26	485.87	34.61	10.16	12.96	377.58	0	235.43	1000	389.23	1867.20	31490
56	1.30	17 00	2.24	2.03	3.78	323.86	16.50	3.81	4.34	95.62	0	82.14	1000	161.44	892.37	102700
57	1 35	7 00	0	0 27	3.90	417.39	32.68	10.20	13.02	357.16	0	228.75	1000	328.55	2065.13	47150
58	1.30	8 21	0	2.37	3.8/	315.76	16.32	4.82	3.37	94.77	0	90.49	1000	145.30	909.69	105300
59	1.28	7.64	0	2.42	4.75	313.94	17.03	2.08	3.32	94.67	0	88.66	1000	148.67	861.67	112600
60	1.37	8.31	92	3 50	4.54	319.58	14.84	1.92	4.64	95.24	0	86.85	1000	145.38	897.77	95750
61	1.38	8.33	0	2 00	4.12	315.05	10.52	3.22	3.45	95.70	0	86.36	1000	145.46	938.16	104700
62	1.11	9.61	0	5.95	7.75	767 86	20 07	3.84	3.88	96.84	0	90.50	1000	146.17	842.32	93180
63	1.11	19.41	5.54	8.08	15.41	1071 25	20.97	4.07	2.20	05.94	0	88.61	1000	129.03	1017.68	74480
64	2.01	8.03	0	5.43	7.84	676.92	22 77	2.08	2.92	12.25	0	89.96	1000	121.02	831.27	53470
65	2.02	6.83	0	3.58	5.88	485.73	16.47	3 30	1 65	55.4/	0	89.40	1000	133.61	749.81	94900
66	2.03	6.90	0	4.83	7.79	624.07	20.07	2 72	2 52	56 60	.03	82.24	1000	122.18	822.08	110000
67	2.04	8.67	0	6.01	7.36	671.87	22 07	3 20	2.55	56.00	0	29.23	1000	139.54	785.30	104700
68	2.04	8.36	0	4.55	7.14	647.79	22.40	4 27	3 24	50.20	0	00.07	1000	139.28	/19.14	58940
69	2.05	8.41	3.29	6.05	7.52	633.76	21.23	4.22	3 20	57.26	0	88.27	1000	134.93	/10.22	96790
70	2.06	8.03	0	5.06	7.10	634.33	21.13	3.41	2 67	56 52	0	00 10	1000	141.00	/50.35	97560
71	2.07	10.68	0	5.90	10.09	680.35	28.32	3.80	2.89	56 04	0	03.41	1000	138.02	735.83	92160
72	2.08	8.17	0	5.53	7.64	710.04	22.47	4.13	2.97	59.31	0	00 45	1000	137.00	741.43	59190
73	2.09	9.13	0	5.15	8.54	734.84	24.39	4.38	2.67	58.94	0	04 12	1000	132 00	724 20	65.050
74	2.10	10.41	0	4.09	8.55	650.51	21.32	3.27	3.02	57.10	õ	90.85	1000	130 08	703 75	65910
15	2.11	7.78	0	6.39	9.46	697.68	22.49	3.42	3.01	58.36	õ	92.08	1000	135.85	753 33	75450
/6	2.12	7.29	0	5.61	8.06	629.53	20.36	3.15	3.34	58.00	0	89.30	1000	139.01	783.97	103300
77	2.13	9.48	0	6.06	8.90	706.81	20.45	0	2.62	57.15	0	90.83	1000	139.47	781.06	69920
78	2.14	3.25	0	1.66	5.25	402.69	17.28	.86	3.40	49.05	0	86.12	1000	132.35	375.60	156400
20	2.15	12.45	3.53	5.40	8.60	661.12	22.18	3.42	2.82	58.12	0	90.29	1000	141.12	794.40	78730
81	2.10	9.00	1.05	4.96	7.45	634.56	21.06	3.04	3.03	56.80	.54	89.21	1000	135.53	788.76	103300
82	2.17	9.30	2.03	4.72	8.31	633.43	20.98	2.31	3.37	56.13	0	91.61	1000	137.40	728.29	78020
83	2 18	4.04	0	2.01	4.70	364.25	16.50	.86	2.95	48.09	0	88.31	1000	132.12	411.74	113000
84	2.19	6 23	0	5 44	2.38	431.01	19.8/	2.26	3.07	50.88	1.42	88.03	1000	128.26	321.46	209100
85	2.19	8.91	0	5.44	0 60	00/.13	21.34	4.49	3.42	55.81	0	94.36	1000	133.23	779.39	50560
86	2.20	9.69	2.49	5.00	9.09	700.12	24./5	4.14	3.64	61.45	0	91.06	1000	134.60	709.51	87890
87	3.01	9.94	0	2.83	3.84	326 01	17 64	2.92	3.07	57.74	0	91.07	1000	138.62	739.70	60560
88	3.02	9.82	4.19	9.70	20.86	963 19	17.04	2 01	3.97	90.29	0	88.71	1000	149.51	976.10	59630
89	3.03	6.77	0	0	3.94	317.82	16.32	3 37	3 70	50.93	0	84.5/	1000	165.29	755.72	114100
90	3.04	9.09	2.93	8.89	22.07	1061.96	22.10	3.00	2 23	58 64	0	88.90	1000	148.21	887.45	96690
91	3.05	14.13	4.96	10.54	23.13	1113.34	20.09	3.35	2.51	57 19	0	85 04	1000	164 77	738.72	89410
92	3.05	11.16	3.49	11.14	23.21	1120.72	19.17	2.69	2.98	61 69	0	85 17	1000	161 57	672 46	57880
93	3.06	5.98	0	1.77	0	302.43	16.71	4.05	3.04	98.01	0	92.10	1000	146 22	072.40	68180
94	3.07	10.44	4.40	7.04	22.15	1035.34	17.07	3.07	2.99	57.30	ñ	83 77	1000	164 53	733 04	01110
95	3.08	9.57	4.66	8.17	18.81	996.41	18.77	3.96	2.38	56.36	0	85 80	1000	164.55	733.04	91110
96	3.09	10.61	0	3.21	6.08	382.06	20.42	4.17	3.56	98.31	0	88.74	1000	140 20	823 62	62 870
97	3.10	10.52	0	3.52	4.74	349.31	17.78	4.22	3.78	96.67	0	80 10	1000	140.29	020 42	57600
98	3.11	9.31	0	2.48	5.13	333.10	17.68	-4.15 -	3.64	95.49	0	88.22	1000	146.42	626.57	84960
99	3.12	9.90	0	2.38	5.06	323.85	17.08	3.81	3.77	100.25	Õ	87.42	1000	148.45	826.03	86830
100	3.13	10.51	4.80	6.38	19.36	994.22	17.29	3.38	1.83	58.67	0	84 01	1000	162 85	718 30	100400

EDZIZA OBSIDIAN SOURCE DATA NORMALIZED TO THE ZR PEAK (PK/ZR * 10E3)

1000

6.7

Case	Label K	Ca	Τí	Mn	Fe	Zn	Gə	Рb	Rb	Sr	Y	Zr	NÞ	Rayleigh	Zr peal	k
101	3.14 8.44	3.70	8.11	20.45	1037.87	18.41	2.99	2.81	58.41	0	86.76	1000	163.07	740.84	93210	
102	2 16 11 70	6 11	5.32	2.01	594.04	20.49	4.10	2.34	55.01	0	91.94	1000	140.34	764.40	110800	
103	2 17 0 40	5.11	9.45	24.14	1147.25	20.73	3.74	2.40	61.50	0	84.91	1000	162.82	711.17	54600	
104	3 10 11 25	0	3.72	5.29	350.47	19.31	4.05	3.26	92.46	0	87.97	1000	144.24	879.92	47850	
105	3 16 4 04	0	3.72	3.60	339.64	18.36	3.54	3.80	105.24	0	85.73	1000	145.32	899.53	66070	
107	3 20 9 74	0	2.12	5.21	389.16	17.99	1.92	2.99	47.95	1.03	88.29	1000	127.50	338.83	201100	
105	3 21 10 61	1 62	3.00	5.10	337.45	18.33	3.75	3.68	94.04	0	86.64	1000	144.88	853.59	77790	
109	3 22 0 94	4.02	9.00	19.98	1021.74	17.39	2.23	1.92	57.96	0	83.29	1000	160.24	750.72	110400	
110	3 23 11 71	0.04	2 41	E 47	984.07	17.49	2.24	2.80	57.42	0	83.24	1000	165.42	708.41	104400	
111	3.23 7.78	0	2 63	1 07	403.34	20.86	4.1/	4.95	104.21	0	93.02	1000	143.95	771.23	68900	
112	3.24 8.20	0	2.02	4 08	326 64	16.39	2.45	3.94	95.25	0	87.23	1000	146.37	888.40	97700	
113	6.01 7.50	0	2.76	3 11	307 22	16 17	2.62	2.30	98.35	0	87.50	1000	107.34	844.40	91690	
114	6.02 8.19	õ	2.58	3.57	305 92	16 40	5.20	3.24	97.47	0	84.70	1000	145.40	876.43	106600	
115	6.03 8.39	0	3.34	3.48	325.17	16 01	3 12	4.24	97.91	0	87.32	1000	145.17	950.57	109800	•
116	6.04 7.64	0	2.49	4.12	297.89	16.26	3 64	3 54	94.09	0	80.92	1000	144.04	902.23	104900	
117	6.05 6.73	0	3.10	3.57	309.46	18.72	3.67	3 16	95 44	0	07.27	1000	145.40	939.48	108800	
118	6.06 8.08	0	5.20	7.09	621.51	19.93	3.18	2.63	60 51	67	87 67	1000	126 60	746 24	104700	
119	7.01 8.51	0	2.64	3.57	321.49	16.57	1.79	3.73	04 03	0	87 47	1000	144 70	740.24	106000	
120	7.02 8.35	0	3.26	3.67	326.74	22.83	2.90	3.72	98.21	0	89 18	1000	138 76	939 60	98200	Ψ.
121	7.03 8.43	0	2.33	3.60	306.85	14.86	2.48	4.03	94.59	õ	88.03	1000	144 11	026 34	91020	
122	7.04 11.19	0	3.03	5.16	340.15	17.52	2.71	3.45	100.14	0	90.15	1000	146.65	854 71	62620	
123	7.05 8.72	0	1.73	3.16	304.83	16.73	3.90	4.19	95.74	Õ	91.06	1000	148.37	973.19	101500	
124	7.06 7.99	0	0	0	298.25	16.25	2.62	3.65	97.58	0	89.86	1000	150.18	929.49	90360	
125	7.07 8.73	0	2.14	4.26	305.84	16.66	3.81	4.66	99.22	0	90.19	1000	148.59	952.86	102700	
120	9.01 9.38	2.62	5.19	1.75	580.02	19.64	3.74	3.10	62.61	0	84.77	1000	120.96	905.32	102100	
120	9.02 8.41	1 00	4.93	8.46	604.27	20.91	5.08	1.07	63.53	0	85.90	1000	126.50	881.82	103000	
120	9.03 9.01	1.88	4.90	6.75	597.23	20.23	3.59	2.35	59.76	0	84.47	. 1000	125.48	922.48	104800	
130	9.04 0.95	0	5.31	6.20	567.39	18.57	1.71	2.40	60.11	0	84.33	1000	124.01	929.35	105800	
131	9.06 7.74	0	4.00	0.85	599.15	19.46	4.09	0	60.42	0	86.55	1000	128.02	923.64	106000	
132	9.07 8.01	0	5 28	6 52	594 25	22.35	4.20	2.45	61.08	0	86.39	1000	122.99	883.06	101800	
133	9.08 11.63	2.34	5 02	8 00	515 43	19.94	3.11	1.45	61.57	0	85.32	1000	123.52	884.99	102900	
134	9.09 10.25	1.37	4 71	5 84	503 75	10 46	4.31	1.83	61.91	0	87.18	1000	125.91	837.46	101100	
135	9.10 8.56	0	4.72	7 70	582 80	19.45	2.03	2.04	59.45	0	82.07	1000	135.18	890.69	112000	
136	9.11 8.38	õ	5.34	7.76	619 96	19.10	4.17	2.03	61 12	0	85.23	1000	124.07	902.28	113400	
137	12.01 9.31	0	3.51	3.67	312.76	16.95	2.60	2 92	03 98	0	87.21	1000	121.55	855.42	10/200	
138	12.02 10.94	2.68	4.23	6.24	555.56	19.71	3.06	2.63	63 98	0	83 61	1000	110 20	948.59	94930	
139	12.02 9.71	2.04	4.56	6.81	527.78	17.67	2.41	1.08	63.66	0	83.56	1000	121 11	759 02	108000	•
140	12.03 6.34	0	4.03	5.62	488.37	17.69	3.92	2.20	60.69	0	84.52	1000	120 10	803 55	88110	
141	16.01 9.45	0	5.79	10.90	712.06	18.31	0	0	61.60	1.47	88.08	1000	129.34	1101 06	77550	
142	16.02 11.77	0	7.00	9.14	771.10	23.64	4.14	3.03	60.32	0	89.34	1000	124.64	968.47	77240	
143	16.03 12.47	1.82	7.89	11.38	819.85	22.89	3.48	2.71	67.11	1.79	91.41	1000	124.06	1003.51	72660	
144	16.04 9.50	0	8.13	8.19	718.74	21.89	3.70	1.48	62.11	0	88.99	1000	124.17	1087.35	103000	
145	16.06 11.55	1.35	8.57	9.63	812.70	22.49	4.66	1.46	65.78	0	90.45	1000	124.04	924.03	80620	
140	16.00 10.00	0	8.33	8.86	721.14	19.88	2.53	1.89	61.29	0	88.06	1000	130.11	1060.31	100300	
14/	16.08 10.96	0	7.25	11.31	790.57	23.38	4.53	1.93	65.93	0	88.75	1000	127.40	943.33	70620	
148	16.10 12.72	4 02	0./3	10.00	769.47	22.40	4.64	1.55	62.32	0	91.65	1000	131.75	958.23	82810	
149	16 11 11 40	4.03	0.33	9.45	/20.87	21.64	3.23	2.15	63.59	0	90.75	1000	125.91	\$84.00	80930	
151	16 11 10 42	1 90	6 41	10.50	244.21	23.25	4.46	1.57	67.36	0	90.53	1000	124.67	843.45	77540.	
152	16.12 9.20	70	6 36	9.1/	729.98	20.89	3.80	2.62	60.70	0	86.01	1000	128.93	986.35	89740	
153	16.13 9.20	0.79	6 10	9.74	745 60	21 14	4.12	2.05	62.99	0	90.02	1000	130.79	1057.38	87850	
400	10.10 9.00	0	0.19	9.10	145.09	21.14	2.00	2.21	64.08	0	91.29	1000	127.80	995.76	102200	

EDZIZA OBSIDIAN SOURCE DATA NORMALIZED TO THE ZR PEAK (PK/ZR * 10E3)

Cāse	Label	K	Ca	Ti	Mn	Fe	Zn	Ga	РЬ	Rb	Sr	Y	Zr	Nb	Rayleigh	Zr peak	
154 155	17.01	10.76	0 3.07	6.86	9.54	793.43	23.90	5.54	1.56	63.56	0	93.04	1000	130.90	1032.75	69710	
156	17.03	10.01	0	5.87	9.62	719.07	20.08	3.38	3.06	60.38	0	88 80	1000	120 02	1005 35	92030	
157	17.04	16.99	3.92	8.20	11.66	873.06	26.41	4.54	3.14	68.53	0	02 10	1000	125.02	005 01	70620	
158	17.04	13.91	3.19	5.32	9.84	787.05	22.97	4.25	2.14	63.70	0	87 62	1000	127 05	078 15	78020	
159	17.05	10.25	0	6.38	10.44	749.10	22.72	5.22	2.02	61.40	õ	87.21	1000	124 35	1007 43	00560	
160	17.06	14.11	2.72	7.01	10.42	755.66	20.52	4.45	1.84	63.86	0	89 11	1000	120 61	1024 55	02740	
161	17.07	12.88	3.63	7.20	9.76	780.06	23.73	4.50	3.12	63.96	0	0.15	1000	124.27	1008 63	91 0 3 0	
162	17.08	11.78	0	5.91	9.53	772.58	22.47	4.76	0	63.42	0	89.42	1000	128.27	1009.12	83,810	
163	17.09	10.34	0	4.56	8.45	715.68	22.07	4.13	3.43	62.44	0	89.31	1000	129.80	1061.48	88210	
164	18.01	9.43	0	2.16	4.69	304.56	15.25	3.49	3.80	92.71	C	87.20	1000	143.48	936.55	109700	
165	18.02	8.23	0	2.52	4.10	316.46	15.86	2.64	3.02	93.63	0	89.05	1000	145.79	956.03	105700	
100	18.03	8.12	0	2.51	1.14	304.12	14.93	1.67	2.95	94.13	0	89.91	1000	144.83	890.74	114200	
167	18.04	7.38	0	2.10	4.46	306.22	15.61	3.14	4.40	90.65	0	87.74	1000	147.17	863.65	109400	
108	18.05	7.50	0	1.81	4.00	314.41	15.56	3.15	3.85	93.13	0	88.55	1000	149.53	936.72	106200	
109	18.00	7.58	0	3.52	3.51	298.04	15.58	3.40	3.78	95.05	0	85.29	1000	148.27	929.71	107100	
170	18.07	9.84	0	2.22	3.91	338.32	19.57	5.71	4.10	98.91	0	90.12	1000	145.16	835.43	95620	
171	16.08	9.32	0	2.12	4.23	336.22	16.32	3.80	4.09	94.60	1.54	89.58	1000	145.67	927.13	101600	
172	19.01	7.51	0	3.20	5.26	478.27	17.96	3.82	2.44	60.16	0	84.01	1000	118.05	883.23	133000	
173	19.02	0.41	2 24	4.34	5.63	4/6.84	16.13	2.34	1.22	62.16	0	81.05	1000	118.02	774.14	134300	
174	19.03	9.44	3.24	3.48	6.05	499.60	17.84	3.13	3.51	61.08	0	82.65	1000	119.81	814.65	125700	
176	19.04	0.32	2 17	3.93	0.74	497.72	18.11	3.02	2.60	59.36	0	84.46	1000	120.07	816.51	109600	
177	20 01	6 67	0	5 20	9 37	487.31	17.75	3.30	2.59	59.51	0	83.10	1000	121.75	787.04	129200	
178	20.02	7.17	0	4 96	7 12	503 00	19.90	3.43	2.94	61 26	0	85.85	1000	123.30	866.78	115900	
179	20.03	8.78	õ	5.27	7 32	592.79	10 37	3.01	2.98	01.20	0	86.27	1000	123.52	889.18	116500	
180	20.04	10.00	õ	4.84	8.15	673 32	21 07	5 10	3 53	65 24	0	80.38	1000	126.98	939.69	113800	
181	20.04	10.11	0	4.90	8.53	632.20	19.68	0	1 80	64 70	0	09.09	1000	122.12	112.88	79620	
182	20.05	9.42	0	5.17	7.38	612.76	18.18	2.94	2 63	61 24	1 58	00.75	1000	124.53	862.59	69630	
183	21.01	11.06	1.50	3.25	2.00	310.53	15.55	2.78	3.57	98.10	0	01 34	1000	125.45	050.29	92320	
184	21.02	8.86	0	3.05	3.84	323.33	17.38	3.44	4.00	97.86	0	88.99	1000	143 52	854 04	06 000	
185	21.03	8.83	0	2.20	4.32	308.57	15.62	2.11	3.30	95.52	0	88.57	1000	146.29	897 61	105000	
186	21.04	9.02	0	2.85	4.08	342.78	18.20-	4.10	3.05	101.38	0	92.80	1000	154.27	1003 13	93470	
187	22.01	8.14	0	1.74	5.32	312.71	16.39	3.30	3.01	94.74	0	87.71	1000	145.92	874 . 21	114100	
188	22.02	7.35	0	3.16	2.95	327.97	15.69	1.74	3.58	97.18	0	89.79	1000	145.69	900.57	110100	
189	22.03	8.43	0	2.20	2.77	302.38	14.87	3.43	5.03	93.69	0	86.74	1000	143.03	936.08	122000	
190	22.04	9.27	0	2.11	2.94	311.39	15.84	3.23	3.41	92.43	0	85.29	1000	146.26	888.91	115000	
191	22.05	7.91	1.87	2.90	3.92	314.16	16.57	4.32	3.75	95.36	0	87.50	1000	144.75	843.76	122900	
192	22.06	1.19	0	3.85	3.31	315.27	16.19	3.74	3.04	95.96	1.32	87.69	1000	145.55	858.83.	111300	
193	22.07	6.98	0	0	3.11	324.97	18.20	3.79	2.61	100.32	0	89.98	1000	144.02	861.01	82070	
194	22.08	9.40	1.43	1.70	4.97	324.99	17.32	4.33	2.89	97.77	.92	87.42	1000	143.14	883.01	90680	
106	22.09	0.00	0	2.43	4.8/	352.57	19.02	4.75	4.39	97.92	0	86.93	1000	141.28	798.74	110700	
197	22.10	11 50	2 21	1 02	2.91	328.33	16.83	3.22	3.54	98.43	0	90.22	1000	144.65	875.75	81990	
198	22 12	7 96	0	2 10	3.49	322.15	14.80	4.42	3.8/	95.90	0	85.88	1000	147.83	915.05	121900	
199	22 13	9 44	2 07	2 20	4.20	313.01	17.09	3.85	4.11	97.95	0	87.51	1000	143.41	885.74	116800	
200	22,14	7 34	0	0	4.20	305 00	15.93	3.00	4.30	94.85	1.86	87.19	1000	147.63	907.80	122400	
201	22.15	9.27	0	1 75	4.10	207 06	15.00	3.58	3.42	93.22	0	87.96	1000	142.73	916.14	122400	
202	23.01	8.94	0	2 30	4.09	200 22	15.94	3.40	3.20	91.19	0	86.34	1000	146.33	971.89	122600	
203	23.02	8.76	0	0	4 . 41	312 01	10.55	3.20	3.38	96.51	0	89.54	1000	148.12	895.38	111800	
204	23.03	7.67	0	1.03	3 90	315 32	18 33	4.03	2.00	91.14	0	66.54	1000	143.08	937.68	120700	
205	23.04	8.27	0	2.05	3.77	315 05	16.35	3 04	2 00	02 22	0	87.48	1000	146.56	936.43	116200	
206	23.05	8.46	0	2.69	3.96	320 81	17 21	4 64	3 70	03 01	0	05 10	1000	146.65	952.86	113600	
			-		0.20	0 L U I U I	1	0 -	5.10	20.01	0	CD . 1 *	1000	140.1/	000.21	1111111	

APPENDIX F

Results of the EU-XRF Analysis of 58 Formed Artifacts from HiTp-1, HiTp-63, and HnTq-1.

Catalogue Numper	Artifact Description	Obsidian Source Flow 2 3 6
HiTp-1 House 1	(Lithic Workshop)	
EP1:85	Biface preform	×
Уò	Biface preform	×
4 <u>9</u>	Biface preform	x
194	Biface preform	x
പ	Biface preform	x
217	Biface preform	x
122	biface preform	×
28	Biface preform	×
97	Biface preform	X
34	Biface preform	×
119	Biface preform	X
90	Biface preform	×
163	Biface preform	X
162	Biface preform	X
164	Biface preform	X
115	Biface preform	. X
220	Biface preform	X
113	Biface preform	X
93	Biface preform	x
121	Biface preform	x
HiTp-1 Area 2	(Campsite Area)	
EP1:199	Microblade	x
198	Microblade core	x
182a	Uval scraper	X
1820	Scraper	x
202	Core	x
177	Scraper	x
196	Flake	x
229	Uniface	×
197	Biface fragment, distal end	x
176	Biface, complete	x
201	Biface fragment, proximal end	×
172	Biface fragment	x

Catalogue number	Artifact Description	<u>Obsidian</u> 2	Source Flow	b

HiTp-63 Component 1 (Campsite/Cache)

_P80:12	Flake			X	
105	Scraper		Х		
102 .	Scraper			х	÷
14	Eage fragment			х	
53	Core fragment	1		X	
65	Large flake tool			х	
55	"battered piece"			X	Ì

HiTp-63 Component 2 (Lithic Workshop)

EP80:29	Large flake	Х	
29	Small flake		Х
86	Notched piece		Х
25	Biface fragment, proximal end		Х
77	Flake tool fragment		Х
41	Biface fragment		Х
108	biface fragment, proximal end		Х
25	Biface fragment		Х
81	Scraper fragment	х	
78	Flake tool		Х
44	Biface fragment		Х
43	Large scraper fragment		Х
74	nicroblade		х

HhTq-1 Surface Scatter (Campsite)

EP58

Ĩ

Į

T

[

T

1

Ţ

Ĩ

Ĩ

T

1

[

1

Scatter (Campsite) Long, collaterally flaked biface Hicroblade x Hicroblade x Flake tool x Flake tool x

Total: 5

1

52

x

REFERENCES

÷

ì

Armitage, G.C., R.U. Reeves, and P. Bellwood 1972 Source identification of archaeological obsidian in New Zealand, New Zealand Journal of Science 15:408-420. Bailey, D.K. and K. Hacdonald 1975 Fluorine and chlorine in peralkaline liquids and the need for magma generation in an open system. Mineralogical Magazine 40:405-414. Berman. R.u. 1981 Differentiation of calc-alkaline magmas: evidence from the Coquihalla Volcanic Complex, British Columbia. Journal of Vulcanology and Geothermal Research 9:151-179. Bertin, E.P. 1978 Introduction to x-ray spectrometric analysis. Plenum Press, Hew York. Bird, J.R., P. Duerden and D.J. Wilson 1983 Ion beam techniques in archaeology and the arts. Nuclear Science Applications, Section B 1(5):357-516. Bizouard. H. 1982 L'analyse par microsonde electronique des elements en faible teneur dans les mineraux et verres naturels. Journal De microscopie et De Spectroscopie Electroniques 7(5):543-553 Bowman, H.R., F. Asaro, and I. Perlman 1973 On the uniformity of composition in obsidians and evidence for magmatic mixing. Journal of Geology 81:312-327. Cann, J.R. 1983 Petrology of obsidian artefacts. In: D.R.C. Kempe and A.P. Harvey, editors, The petrology of archaeological artefacts, Clarendon Press, Oxford. Cann, J.R. and C. Renfrew 1964 The characterization of obsidian and its application to the Nediterranean Region. Proceedings of the Prehistoric Society 33:111-133. Carlson, R. 1984 Prenistoric trade in British Columbia: obsidian. Unpublished paper presented at the B.C. Studies Conference, February 1984, Vancouver, B.C. Chavez-Rivas, F., J.R. Regnard and J. Chappert 1980 Mossbauer study of natural glasses: Lipari and Teotihuacan obsidians. Journal De Physique 41:C1-275-276.

Cormie, A.B.

1981 Chemical correlation of volcanic ashes for use as stratigraphic markers in archaeology. Master of Arts thesis, Simon Fraser University.

Coote, G.E., N.e. Whitehead, and G.J.McCallum 1972 A rapid method of obsidian Characterisation by inelastic scattering of protons. Journal of Radioanalytical Chemistry 12:491-496.

Uixon, J.E., J.R. Cann and C. Renfrew
1958 Obsidian and the origins of trade. Scientific American
216:38-46.

Durrani, S.A., H.A. Khan, M.Taj, and C.Renfrew

1971 Obsidian source identification by fission track analysis. <u>Nature</u> 233:242-245.

Evans, J.J.R. and R. Wilmeth

1971 Neutron activation analysis fingerprinting of obsidian artifacts. Commercial Products, Special Livision Report CPSR-314, Atomic Energy of Canada, Ltd., Uttawa.

Ewart, A., S.R. Taylor and A.C. Capp

1968 Geochemistry of the pantellerites of Mayor Island, New Zealand. Contributions to Minerology and Petrology 17:116-140.

Fladmark, K.R.

1982 Glass and ice; a report on the archaeology of the Mount Edziza and Spectrum Ranges, Northwestern British Columbia. Manuscript submitted to the British Columbia Heritage Conservation Branch, Victoria.

Fladmark, K.R.

1984 Hountain of glass. Archaeology of the Hount Edziza obsidian source, British Columbia, Canada. <u>World Archaeology</u> 16(2):139-156.

Flaquark, K.R. and U.E. Nelson

1977 Report of a preliminary reconnaissance of a portion of Nt. Euziza Provincial Park. Hanuscript on file, Heritage Conservation Branch, Victoria, B.C.

Fox, D.J. and K.E. Guire

1976 Documentation for MIDAS. 3rd edition. Statistical Research Laboratory, University of Michigan, Ann Arbor.

Friéaman, I. and J. Obradovich

1981 Obsidian hydration dating of volcanic events. Quaternary Research 16:37-47.

uale, N.H.

1951 mediterranean obsidian source characterization by strontium isotope analysis. Archaeometry 23:41-51.

Gibson, I.L.

1972 The chemistry and petrogenesis of a suite of pantellerites from the Ethiopian rift. Journ. of Petrology 13:31-44.

Godfrey-Smith, D.I. and J.M. D'Auria

1984 New data on obsidian exchange routes in western Canada and Ontario. Paper presented at the 17th Annual Meeting, Canadian Archaeological Association, April 1984, Victoria. On file, Dept. of Archaeology, SFU.

Gunnick, R. and J.B. Niday

1972 Computerized Analysis by Gamma Ray Spectrometry. Volume 1, UCRL-51061, Lawrence Livermore Laboratory, University of California.

Green, R.C.

1962 Obsidian: its application to archaeology. New Zealand Archaeological Association Newsletter 5:8-16.

Green, R.C., R.R. Brooks, and R.D. Reeves

1967 Characterization of New Zealand obsidians by emission spectroscopy. New Zealand Journal of Science 10:675-682.

Griffin, J.B.

1965 Hopewell and the dark black glass. The Michigan Archaeologist 1(3/4):115-155.

Griffin, J.B. and A.A. Gordus

1966 A preliminary study of the source of Hopewellian obsidian in the United States. Paper presented at the VIIth Congress of Prehistoric and Protohistoric Sciences, Prague.

Heizer, R.F., H. Williams, and J.A. Graham

1965 Notes on Mesoamerican obsidians and their significance in archaeological studies. Contributions of the University of California Archaeological Research Facility, Berkeley, California, 1:94-103.

Hester, T.R.

1979 Archaeological studies of Mesoamerican obsidian. Studies in Mesoamerican Art, Archaeology and Ethnohistory 3. Ballena Press, Socorro.

Huntley, D.J. and Bailey, D.C.

1978 Obsidian source identification by thermoluminescence. Archaeometry 20:159-170.

Irvine, T.N., and W.R.A. Baragar

1971 A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8:524-548.

Jack, R.N.

1976 Prehistoric obsidian in California I: Geochemical aspects. In: Advances in Obsidian Glass Studies, Edited by R.E. Taylor, Noyes Press, New Jersey. Johnson, R.W., I.E.M. Smith and S.R. Taylor

1978 Hot-spot volcanism in St. Andrew Strait, Papua New Guinea: geochemistry of a Quaternary bimodal rock suite. <u>BMR Journal of</u> Australian Geology & Geophysics 3:55-69.

Jones, M.P.

1983 Native metals and minerals. In: The Petrology of Archaeological Artefacts, p. 330-350, edited by D.R.C.Kempe and A.P. Harvey.

Kempe, D.R.C. and A.P. Harvey, editors

1983 The petrology of archaeological artefacts. Clarendon Press, Oxford.

Klein, P, F. Kluger and H. Wieseneder

1979 A note on the petrology and geochemistry of obsidian and pumice from Iceland. <u>TMPM Tschermaks Mineralogische Und</u> Petrographische Mitteilungen 26:1-9.

Leach, B.F., S. Warren, and B. Fankhauser

- 1978 Obsidian from far north of New Zealand method of sourcing based on natural radioactive emission. New Zealand Journal of Science 21:123-128.
- Leach, B.F. and J.M. Davidson
- 1981 <u>Archaeological Studies of Pacific Stone Resources</u>. B.A.R. International Series 104, Oxford.

Leach, B.F. and B. Manly

1982 Minimum Mahalanobis Distance Functions and Lithic Source Characterisation by multi-element Analysis. <u>New Zealand Journal</u> of Archaeology 4:77-109.

Leach, B.F. and S.E.Warren

1981 Neutron activation analysis of New Zealand and Oceanic obsidians: towards a simple screening technique. In <u>Archaeological Studies of Pacific Stone Resources</u>, edited by B.F. Leach and J.M. Davidson.

Macdonald, R.

1974 Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bulletin Volcanologique 38:1-19.

Marshall, P.

1936 Geology of Mayor Island. Trans. Proc. Roy. Soc. of New Zealand 66:337-345.

McCallum, G.J., B.G. McFadgen, P.R. Moore, L.M. Richardson, and R.A. Sheppard

1979 Characterisation of New Zealand obsidian by energy-dispersive x-ray fluorescence. <u>Institute of Nuclear Sciences Contribution</u> 1001.

McDougall, J.M., D.H. Tarling and S.E. Warren 1983 The magnetic sourcing of obsidian samples from Mediterranean and Near Eastern sources. Journal of Archaeological Science 10:441-452. Merrick, H.V. and F.H. Brown 1984 Rapid chemical characterization of obsidian artifacts by electron microprobe analysis. Archaeometry 26:230-236. Michels, J.W. 1982 Bulk element composition versus trace element composition in the reconstruction of an obsidian source system. Journal of Archaeological Science 9:113-123. Michels, J.W., I.S.T. Tsong, and C.M. Nelson 1983 Obsidian dating and East African archeology. Science 219:361-366. Miller, D.S. and G.A. Wagner 1981 Fission track ages applied to obsidian artifacts from South America using the plateau annealing and the track size age correction techniques. Nucl. Tracks 5(1-2):147-155. Neivens, M., G. Harbottle, and J. Kimberlin 1981 Some geochemical characteristics of the Pachuca obsidian region: a strategy for interpreting artifact groups. Proceedings, Simposio La Obsidiana En Mesoamerica, Pachuca, Mexico. Nelson, D.E., J.M. D'Auria, and R.B. Bennett 1975 Characterization of Pacific Northwest coast obsidian by x-ray fluorescence analysis. Archaeometry 17:85-97. Nielson, K.K., N.W. Hill, N.F. Mangelson, and F.W. Nelson 1976 Elemental analysis of obsidian artefacts by proton particle-induced xray emission. Analytical Chemistry 48:1947-1953. Noble, D.C., M.L. Korringa, C.E. Hedge, and G.O. Riddle 1972 Highly differentiated subalkaline rhyolite from the Glass Mountain, Mono County, California. Bulletin of the Geological Society of America 83:1179-1184. Norrish, K. and J.T. Hutton 1969 An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta 33:431-453. Pires-Ferreira, J.W. 1976 Shell and iron-ore mirror exchange in Formative Mesoamerica. with comments on other commodities. In: The Early Mesoamerican Village, edited by K.V. Flannery. Academic Press, New York. Press, F. and R. Siever 1978 Earth. Second edition, W.H.Freeman and Company, San Francisco.

Reeves, R.D. and G.K. Ward 1976 Characterization studies of New Zealand obsidians: toward a regional prehistory. In: Advances in Obsidian Glass Studies, edited by R.E. Taylor. Noyes Press, New Jersey. Regnard, J.R. and J. Chappert 1980 Study of the oxidation states and magnetic properties of iron in volcanic glasses - Lipari and Teotihuacan obsidians. Mineral 104(2-3):204-210. Renfrew, C.A., J.E. Dixon, and J.R. Cann 1968 Further analysis of Near Eastern obsidians. Proceedings of the Prehistoric Society 34:319-331. Rummel, R.J. 1970 Applied Factor Analysis. Northwestern University Press, Evanston. Schirmeisen, K. 1936 Obsidiangerate unter der Mikroskop. Sudeta VII:90-92. Shaw, D.M. 1970 Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 34:237-243. Shotton, F.W. and G.L. Hendry 1979 The developing field of petrology in archaeology. Journal of Archaeological Science 6:75-84. Smith, D.G.W. 1975 An approach to fully quantitative energy dispersive electron microprobe analysis. Microbeam Analysis Society, Annual Conference Proceedings 10/1975:21A-21D. Souther, J.G. 1977 Volcanism and tectonic environments in the Canadian Cordillera - a second look. In Baragar, W.R.A., L.C. Coleman, and J.M. Hall, Editors, Volcanic regimes in Canada: Geological Association of Canada Special Paper 16:3-24. Souther, J.G., R.L. Armstrong and J.Harakal 1984 Chronology of the peralkaline, late Cenozoic Mount Edziza Volcanic Complex, northern British Columbia, Canada. Geological Society of America Bulletin 95:337-349. Souther, J.G. and C.J. Hickson 1984 Crystal fractionation of the basalt comendite series of the Mount Edziza Volcanic Complex, British Columbia: major and trace elements. Journal of Volcanology and Geothermal Researach 21:79-106.

Stevenson, D.P., F.H. Stross, and R.F. Heizer

1971 an evaluation of x-ray fluorescence analysis as a method for correlating obsidian artifacts with source location. <u>Archaeometry</u> 13:17-25.

Taylor, R.E.

1976 Advances in Obsidian Glass Studies. Archaeological and Geochemical Perspectives. Noyes Press, New Jersey.

1

Takeshi Tominaga and Yoshitaka Minai

1984 Applications of Mossbauer spectroscopy to environmental and geochemical studies. <u>Nuclear Science Applications</u> Section B 1(9):749-780.

Tertian, R. and F. Claisse

1982 Principles of quantitative x-ray fluorescence analysis. Heyden and Son Ltd., London.

Thorpe, O.W., S.E. Warren and J.G. Nandris

1984 The distribution and provenance of archaeological obsidian in central and eastern Europe. Journal of Archaeological Science 11:183-212.

Tsong, I.S.T., C.A. Houser, N.A. Yusef, R.F. Messier, W.B. White, and J.W. Michels

1978 Obsidian hydration profiles measured by sputter-induced optical emission. Science 201:339-341.

Umshler, D.B.

1975 Source of the Evan's Mound Obsidian. Master of Arts thesis, Institute of Mining and Technology, Socorro, New Mexico.

Washington, H.S.

1921 Obsidian from Copan and Chichen Itza. Journal of the Washington Academy of Sciences 11:481-487.

Weaver, J.R. and F.H. Stross

1965 Analysis by x-ray fluorescence of some American obsidians. Contributions of the University of California Archaeological Research Facility, Berkeley, California 1:89-93.

Wheeler, M.E. and D.W. Clark

1977 Elemental characterization of obsidian from the Koyukule River, Alaska, by atomic absorption spectrophotometry. <u>Archaeometry</u> 19:15-31.

Wilmeth, R.

1973 Distribution of several types of obsidian from archaeological sites in British Columbia. <u>Canadian Archaeological Association</u> Bulletin 5:28-60.