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The aim of these notes is to show how to derive the momentum space form of the Feynman
propagator which is ∆(p) = i/(p2 −m2 + iε). For most of this course and for most work in
QFT, “propagator” refers to the Feynman propagator2.

Wightman function

The Wightman function D(x − y) is a useful mathematical construction and while it
contains physical information, it does not itself have a natural physical interpretation. It
is a useful algebraic tool in some circumstances. In terms of operators it is defined as the
vacuum expectation value of fields in a fixed order

D(x− y) = 〈0|φ̂(x)φ̂(y)| 0〉 . (1)

In principle this should be written as a function of two variables, D(x, y), but we will assume
our theories are space-time translation (and Lorentz invariant) which implies this can only
be a function of x− y.

The field operator for free fields3 is given by

φ̂(x) =

∫
d3p

(2π)3
1√
2ωp

(
âpe−ip·x + â†peip·x

)
, ωp = |

√
p2 +m2| (2)

So then the Wightman function is simply

D(x− y) =

∫
d3p

(2π)3
1

2ωp
e−ip(x−y) . (3)

Cauchy’s theorem

We now want to use a result from complex analysis. Suppose an analytic function f(z) has
simple poles at z = zi where i = 1, . . . , n. This means that near z = zi the function diverges
as

f(z) =
Ri

z − zi
+ . . . (4)

where the remaining terms are finite as z → zi and Ri is known as the residue at z = zi. For
simple poles like this, the Ri is simply the part of the function f(z) without the pole but
evaluated at the pole zi i.e. you find

Ri = lim
z→zi

(z − zi)f(z) . (5)

This means the residue is in principle different for every pole zi.

1Extended and adapted from notes by Prof.Waldram.
2There are other types of propagator such as the retarded propagator which we have seen as the Green

function for the Klein-Gordon equation with retarded boundary conditions. This is linked to vacuum expec-
tation values of pairs of field operators ordered in a different way from other types of propagator.

3This is the full field in the Heisenberg picture for a free field theory or, for interacting scalar fields, this
is the field operator in the interaction picture.
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Cauchy’s theorem states

C

3

z

z2

z1

z
∫
C

f(z)dz = 2πi
∑
i

Ri (6)

where the sum is over those points z = zi enclosed by the closed curve C.

Feynman Propagator

One definition of the Feynman propagator4 ∆, is as the vacuum expectation value of the
time-ordered expectation value two free fields of the form (2),

∆(x− y) = 〈0|Tφ̂(x)φ̂(y)| 0〉 . (7)

The time-ordering operator T is defined so that when acting on two fields we have

Tφ̂(x)φ̂(y) = θ(x0 − y0)φ̂(x)φ̂(y) + θ(y0 − x0)φ̂(y)φ̂(x) , (8)

where the Heaviside function or, as I will often call it informally, the theta function θ(t)
is given by5

θ(t) =

{
1 if t > 0
0 if t < 0

. (9)

We will ignore the t = 0 case for now.
From the definition (7) of the vacuum expectation value of time-ordered products, or

from the expression (11), we have the simple result that

∆(x− y) = θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x) . (10)

Then using the expression for the Wightman function of free fields, (1), we have that

∆(x) =

∫
d3p

(2π)3
1

2ωp

[
θ(x0)e−ip·x + θ(−x0)eip·x

]
, (11)

where pµ = (ωp,p) and p · x = pµx
µ = ωpt− p.x in the exponentials.

In energy-momentum space, the Feynman propagator is ∆(p) where

∆(x− y) =

∫
d4p

(2π)4
e−ip(x−y)

i

p2 −m2 + iε
. (12)

4There are two other ways to define this which we will encounter in this course. First it is a Green
function of the Klein-Gordon equation with appropriate boundary conditions, known as Feynman boundary
conditions. These boundary conditions are not well known outside the context of relativistic QFT. The second

is via contractions, φ̂(x)φ̂(y), encountered in the discussion of perturbation theory and Wick’s theorem.
5More generally the time-ordering operator T orders operators so that every operator in the expression,

say Â(t), has only earlier (later) operators B̂(t′) to the right (left), i.e. t > t′ (t < t′). See below for comments
about equal time case.
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Here ε is an infinitesimal positive real number and the integrations are along the real axes.
The aim is to prove that this momentum space form ∆(p) of (12) is completely consistent

with the space-time coordinate form.
As we are aiming for expressions involving three-momentum integrals through the Wight-

man function D of (3), it is useful to rewrite the four-momentum integrals of (12) as

∆(x− y) =

∫
d3p

(2π)3
e+ip.(x−y)

1

2π

∫
C0

dz e−izt
i

z2 − ω2
p + iε

. (13)

where C0 is the curve running from −∞ to +∞ along the real energy axis. Now we identify
that

(z − ωp + iε′)(z + ωp − iε′) = z2 − (ωp − iε′)2 = z2 − ω2
p + 2iε′ωp + ε′

2
(14)

As ε is infinitesimal we can ignore the ε′2 as compared to the 2iε′ωp term (provided m > 0).
As ωp > 0 (again assuming m > 0) the 2ε′ωp acts as a positive infinitesimal, and we can call
this ε ≡ 2ε′ωp. So we see that

z2 − ω2
p + iε ≡ (z − ωp + iε′)(z + ωp − iε′) (15)

That is the integrand in (13) has one pole at z = +ωp− iε′ in the lower-half plane and second
pole at z = −ωp + iε′ in the upper-half plane as shown in figure 1.
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Figure 1: Energy integration curve C0 (in red) and poles (blue crosses) for the integrals (12)
and (13). Integration shown in the complex p0 plane with <(p0) (=(p0)) plotted along the
horizontal (vertical) axis.

The expression for ∆ in terms of the Wightman function D(x, y) (10) involves two terms
for different time-orderings. So consider first t = x0 − y0 > 0. In this case we can complete
the energy integration in (13) along a semi-circle at infinity in the lower half-plane of the
complex energy variable z where =(z) < 0. The integral along this lower semi-circle (C−)
gives zero as exp(−izt) = exp(−i. − i(∞)t) exp(−i.<(z)t) → 0 so it can be added on. So
using the closed contour C0 + C− as shown in figure 2 gives us for t = x0 − y0 > 0

θ(x0 − y0)∆(x− y) = θ(x0 − y0)
∫

d3p

(2π)3
e+ip.(x−y)

1

2π

(
−2πi. e−izt

i

(z + ωp − iε′)

∣∣∣∣
z=+ωp

)
.

(16)
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Figure 2: Closed energy integration curve C0+C− used for positive time case of the integrals
(12) and (13). Integration shown in the complex p0 plane with <(p0) (=(p0)) plotted along
the horizontal (vertical) axis.

where we note that the closed curve is running in a negative sense so we get a factor of −2πi
times the residue at the pole enclosed by the contour. Tidying this up gives

θ(x0 − y0)∆(x− y) = θ(x0 − y0)
∫

d3p

(2π)3
1

2ωp
e−iωp(x0−y0)+ip·(x−y) = θ(x0 − y0)D(x, y) (17)

by comparing with (3).
The second case where t = (x0−y0) < 0 works in a similar way. In this case we complete

the energy integration in (13) along a semi-circle at infinity in the upper half-plane of the
complex energy variable z where =(z) > 0, see figure 3. The integral along this upper
semi-circle (C+) gives zero as exp(−izt) = exp(−i.+ i(∞)t) exp(−i.<(z)t)→ 0 so it can be
added on to the integration curve. So with the closed contour C0 + C+ of figure 3 we find
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Figure 3: Closed energy integration curve C0+C+ used for negative time case of the integrals
(12) and (13). Integration shown in the complex p0 plane with <(p0) (=(p0)) plotted along
the horizontal (vertical) axis.
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for t = (x0 − y0) > 0 that

θ(y0 − x0)∆(x− y) = θ(y0 − x0)
∫

d3p

(2π)3
e+ip.(x−y)

1

2π

(
+2πi. e−izt

i

(z − ωp + iε′)

∣∣∣∣
z=−ωp

)
.

(18)
where we note that the closed curve is running in a negative sense so we get a factor of −2πi
times the residue at the pole enclosed by the contour. Tidying this up gives

θ(y0 − x0)∆(x− y) = θ(y0 − x0)
∫

d3p

(2π)3
1

2ωp
e+iωp(x0−y0)+ip·(x−y) (19)

= θ(y0 − x0)
∫

d3p′

(2π)3
1

2ωp′
e+iωp′ (x0−y0)−ip′·(x−y) (20)

= θ(y0 − x0)D(y, x) (21)

by comparing with (3). Note that we can change integration variable from p to p′ = −p
and find the integrand is invariant, in part since the dispersion relation ωp is a function of
|p| which is invariant under this change.

Putting our two parts (17) and (21) together we have that

∆(x− y) = θ(x0 − y0)D(x, y) + θ(y0 − x0)D(y, x) (22)

as required from (10).

Definition of Time-Ordering for Equal Times

One problem with our definition of time ordering is that theta functions are not ‘proper’
functions in a strict mathematical sense. For two operators Â and B̂ our typical definition
is

TÂ(t1)B̂(t2) = θ(t1 − t2)Â(t1)B̂(t2) + θ(t2 − t1)B̂(t2)Â(t1) (23)

which clearly depends on how the “Heaviside step function”6 is defined around zero argument.
There are ways of dealing with this properly and mathematically. For instance one may use
the theory of distributions rather than ordinary functions, but we would need to be much
more careful with our mathematical definitions all the way through this course.

However, this definition of time ordering T need not be inconsistent. The key requirement
here is that we get the same answer which ever way we approach the t1 = t2 limit. That is
we want

lim
(t1−t2)→0+

TÂ(t1)B̂(t2) = lim
(t1−t2)→0−

TÂ(t1)B̂(t2) (24)

⇒ Â(t1)B̂(t1) = B̂(t1)Â(t1) (25)

That is there is no inconsistency if the two operators commute at equal times [A(t), B̂(t)] = 0.
As we are interested in time ordered products of fields, the equal time commutators

for fields guarantee time ordering is well defined for products of fields and their hermitian
conjugates as used in perturbation theory. The ETCR are true for free fields in a free theory
or for fully interacting fields. So fields and their Hermitian conjugates all commute at equal
times in the interaction picture; check by hand if you like.

6Like the Dirac delta function, the “Heaviside step function” or “theta function” is not strictly a function.

http://mathworld.wolfram.com/HeavisideStepFunction.html
http://mathworld.wolfram.com/HeavisideStepFunction.html

