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Abstract

Despite it’s great predictive power the orthodox formalism of Non-relativistic

Quantum Mechanics has many conceptual problems. De Broglie-Bohm the-

ory shows not only can a hidden variables theory reproduce the ortho-

dox quantum formalisms predictions, but also give a deeper insight into

the mechanisms behind the statistical results. Here we introduce both de

Broglie’s (1927) Pilot-Wave Theory and Bohm’s (1952) Bohmian Mechan-

ics and show how they address some of the problems of orthodox Quantum

theory using ’hidden variables’. We then look at the dynamical origin of

the Born probability rule ρ = |ψ|2 in the de Broglie-Bohm pilot-wave for-

mulation and look at how the nodes of the wavefunction drive the mixing

of trajectories and relaxation to |ψ|2.
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1 Introduction

First discovered by Louis de Broglie in 1927 [1] and later rediscovered by

David Bohm in 1952 [2], de Broglie-Bohm Theory is a description of non-

relativistic quantum mechanics that introduces particle positions as hidden

variables.

The wavefunction of a system of particles, with it’s time evolution given

by the Schrödinger equation, does not give the complete description of the

system like in orthodox quantum theory. The complete description of the

system is given by both it’s wavefuntion and the particle positions. The

dynamics of the particles are determined by the guiding equation which

expresses the particle velocities in terms of the wavefunction.

In de Broglie-Bohm theory the particles exisit in definite positions ob-

jectively with no need for observers or measurement. This means that

many of the problems of Orthodox Non-Relativistic Quantum Mechanics

are avoided. By Orthodox Quntum theory we mean any theory where the

wavefunction gives a complete description of a system, and so the theory is

fundamentally statistical in nature.

Orthodox Quantum theory has had great predictive success but there are

many conceptual difficulties. A major point of contention is that the dynam-

ics that the wavefunction obeys differ depending on whether the system is

being observed. The instantaneous non-local nature of the collapse dynam-

ics are at complete odds to the schrödinger evolution. For a fundamental

theory this seems highly undesirable.

Other conceptual difficulties arise on the quantum classical scales. The

fact that there is no definite distinction of where the system apparatus divide

should be or whether there should be one is another area where Orthodox

Quantum Theory fails to give a satisfying answer.

J.S. Bell [16], suggested that there were two ways out from the concep-

tual frailties of the orthodox quantum theory. The first possibility was that

something could be added to theory. By this he meant the wavefunction
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was not a complete description and that there must be some ’hidden vari-

ables’ that complete the description. The second way out is by modifying

the schrödinger equation so that it can encompass the random collapse dy-

namics, for example GRW spontaneous collapse models.

Reasons to consider hidden variable theories in general arise from deficien-

cies in the orthodox quantum formalism. De Broglie-Bohm theory says that

the statistical nature arises from underlying deterministic processes much

like in classical statistical mechanics. Not only does it smooth out/eliminate

the conceptual difficulties of orthodox quantum mechanics, it also gives us

a different interpretation about individual quantum events, interpretations

of experiments and what it actually means to make a measurement.

De Broglie-Bohm theory puts quantum mechanics on a sturdy mathemat-

ical foundation since all the theory requires as postulates are the Schrödinger

equation and the guiding equation. All else follows as secondary implica-

tions and can be derived from the dynamics. Non-locality is also explicit in

the de Broglie-Bohm formulation of Quantum Mechanics.

There are two main formulations of de Broglie-Bohm theory. The first,

Pilot-Wave theory sometimes called the minimalist interpretation, which.

Will be discussed in chapter 1. Bell was one of the main proponents of the

theory since de Brogile originally formulated it in 1927. Bell refered to the

actual particles as beables, unlike observables in orthodox quantum theory.

The second formulation is called Bohmian Mechanics which reformulates

de Broglies pilot-wave theory in line with the classical regime of second-

order equations of motion. It uses a modified form of the Hamilton-Jacobi

equation in it’s formulation. We discuss this in chapter 2.

In chapter 3 we study how in de Broglie Bohm Theory ρ = |ψ|2 is not a

postulate but is derived from the dynamics in terms of a relaxation argument

analogous to thermal equilibrium in classical statistical mechanics. We shall

further study the mixing role played by nodes in the relaxation process.
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2 De Broglie Pilot-wave Dynamics

We will now introduce the original formulation of pilot wave theory look-

ing at some simple applications, how the theory deals with measurement,

and how it reproduces the empirical results of non-relativistic quantum me-

chanics. Pilot-Wave Theory was formulated between 1923-1927 by Louis de

Broglie. He was motivated by the need of an explanation for experimental

results that were incompatible with the predictions of classical mechanics,

namely the diffraction and interference of single photons. De Broglie sought

to reconcile the wave and particle characteristics of the results of the exper-

iments by trying to unify the classical variational principles of Maupertuis,

δ
∫
mv ∙dx = 0, and Fermat, δ

∫
dS = 0, which apply to particles and waves

respectively [3].

2.1 Pilot Wave Theory Equations of Motion

For non-relativistic pilot-wave theory of a many-body closed system1 of N

spinless particles, a state is defined by:

1. Ψ(q, t) The systems wavefunction, a complex-valued field on 3N di-

mensional configuration space, where q = (x1,x2, ....,xN) is the point

in configuration space labelled by N particles in R3, which evolves

according to the Schrödinger equation

i~
∂Ψ

∂t
=
N∑

i=1

−
~2

2mi
∇2iΨ+ VΨ. (2.1)

Where mi is the mass of the i-th particle, ~ = h/2π with h being

Plank’s constant, and V is a potential energy function and indepen-

dent of time.
1where a ’system’ may in principle include; atoms, particles, fields, recording devices,
experimenters, the environment, even the whole universe! and where closed means
nothing outside the system can effect it’s dynamics
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2. The actual trajectories of the N particles xi(t) which evolve according

to the guiding equation

vi =
dxi
dt
= −

i~
2mi|Ψ|2

(Ψ∗∇iΨ−Ψ∇iΨ
∗) =

~
mi
Im
Ψ∗∇iΨ
|Ψ|2

(2.2)

where we have used y = −i(z − z∗)/2 to show the second equality

(z = x+ iy) 2 .

Because of the wavefunctions role in the guiding equation (2.2) it is also

referred to as the pilot wave or guiding wave. We also note the dynamical

law for the particle beables (2.2) is first-order, which is of course in stark

contrast to Newton’s second-order equation of motion F = mẍ.

If initial conditions Ψ(q, 0) and xi(0) are specified, the wavefunction

Ψ(q, t) and the trajectories of the N particles xi(t) are determined for all t.

We say that the theory is deterministic as the system is in a definite state

for all t. This is opposed to orthodox quantum theory which is probabilistic,

with a state defined by probabilities of outcomes.

In standard quantum theory the probability density 3 of measuring a sys-

tem with configuration q at time t is given by |Ψ(q, t)|2dΩ, where Ω is a

volume in configuration space. For pilot-wave theory we say |Ψ(q, t)|2dΩ is

the probability density of the system actually having configuration q (re-

gardless of measurement) with every particle xi having definite position. the

probability of a system being in configuration q in a volume on configuration

space Ω is given by

P =

∫

Ω
|Ψ|2dΩ. (2.3)

Differentiating both sides of (2.3) with respect to time and assuming the

volume to be constant with get

dP

dt
=

∫

Ω

∂|Ψ|2

∂t
dΩ =

∫

Ω

(
∂Ψ∗

∂t
Ψ+Ψ∗

∂Ψ

∂t

)

dΩ. (2.4)

2note for the case we are studying, of a spinless particle, Ψ∗ may be cancelled in the last
part of (2.2), but we leave it in it’s most general form where spinor valued wavefunc-
tions may be introduced.

3we are assuming all wavefunctions are normalized, |Ψ|2 = 1.
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Now using the Schrödinger equation (2.1) to find ∂Ψ∂t and it’s conjugate and

substituting into (2.4) and cancelling the potential terms we have

dP

dt
=

∫

Ω

N∑

i=1

i~
2mi
(Ψ∗∇2iΨ−Ψ∇

2
iΨ
∗)dΩ, (2.5)

and using the product rule for the divergence operator
∑N
i=1(Ψ

∗∇2iΨ−Ψ∇
2
iΨ
∗) =

∑N
i=1∇i ∙ (Ψ

∗∇iΨ−Ψ∇iΨ∗) we arrive at

dP

dt
=

∫

Ω

N∑

i=1

i~
2mi
∇i ∙ (Ψ

∗∇iΨ−Ψ∇iΨ
∗)dΩ. (2.6)

Finally substituting the second part of (2.4) for the left hand side of (2.6)

we arrive at
∫

Ω

(
∂|Ψ|2

∂t
+
N∑

i=1

∇i ∙ ji

)

dΩ = 0, (2.7)

which holds for all Ω, and the integrand must vanish everywhere so,

(
∂|Ψ|2

∂t
+
N∑

i=1

∇i ∙ ji

)

= 0. (2.8)

where ji =
i~
2mi
(Ψ∗∇iΨ − Ψ∇iΨ∗) = vi(t)|Ψ|2 is the 3-vector probability

current along the trajectory of the i-th particle. (2.8) is the continuity

equation and ensures conservation of probability for the system. The above

derivation of the continuity equation assumes the initial distribution of par-

ticles ρ is equal to the quantum equilibrium probability distribution |Ψ|2 we

will look later at the case where ρ 6= |Ψ|2.

Using our expression for the probability current have another way to

express the guidance equation

ẋi(t) =
~
mi
Im
∇iΨ
Ψ
=
ji
|Ψ|2

, (2.9)

and we shall also point out that if the wavefuntion is written in polar form,

Ψ = |Ψ|eiS/~ where S(q, t) is the phase, we can write the guidance equation

in the form

ẋi(t) =
∇S
mi

. (2.10)
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We shall leave a deeper discussion for later, mainly in chapter 3. For each

particle, ψ is called the guiding wave or pilot-wave which generates a velocity

field throughout space and at each moment in time tells the particle how to

move.

We shall now look at some simple applications of Pilot-Wave Theory.

2.2 Some Simple Examples[5]

In this chapter will will be finding the pilot-wave theory solutions of some

simple one particle systems and discussing how they differ and relate to

orthodox quantum theory. we will be using the Schrödinger and guidance

equations for one particle i.e. equations (2.1) and (2.2) with N = 1. make

sure to cite val in bib un published or in print like in his bibs

2.2.1 Plane Wave Solution

For the case or a free particle of mass m we want to find the solution of (2.1)

with N = 1 and V = 0, and then use this solution to find the particle beable’s

trajectory using (2.2). The solution of the one particle time-dependent free

Schrödinger equation in 3-dimensions may be found by noting that both

sides of the Schrödinger equation are equal to the constant total energy E

and solving each side separately,

i~
∂Ψ

∂t
= EΨ

−
~2

2m
∇2Ψ = EΨ,

and noting the total energy E = p2/2m is just the kinetic energy which

we have used to solve for the position solution, giving T (t) ∝ e−iEt/~ and

X(x) ∝ eip∙x/~ with the full solution given by their product

Ψ(x, t) = Aei(p∙x−Et)/~ (2.11)

where A is a constant and p is the momentum vecotr conjugate to x.

We can now use (2.10) to solve for the particle position and find the
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trajectory. the velocity field is given by

ẋ(t) =
∇S
m
=
p

m

and the trajectory is

x(t) = x0 +
p

m
t.

So we see the particle travels with uniform velocity in a straight line as a

classical particle. The trajectories move orthogonal to surfaces of constant

phase as shown in figure 2.1.

Figure 2.1: plane wave propagation, trajectories travel perpendicular to sur-
faces of constant phase

2.2.2 1-Dimensional Free Gaussian

For a Free particle of massm in 1-dimension a Gaussian wave packet solution

to the Schrödinger equation can be obtained by superposing plane wave

solutions. A Gaussian wave packet has initial wavefunction given by

Ψ0(x) =
1

(2πΔ20)
1/4
e−x

2/4Δ20 (2.12)
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where Δ0 is the initial width of the wave packet. After time t under free

Schrödinger evolution this evolves to

Ψ(x, t) =
1

(2π(Δ0 + i~t/2mΔ0)2)1/4
e−x

2/4Δ20(1+i~t/2mΔ
2
0) (2.13)

with the width of the wave packet Δ(t) = Δ0
√
1 + t2/τ2, where

τ = 2mΔ20/~ is the timescale.

The velocity of a particle with position x is

dx

dt
=
~
m
Im

(
1

Ψ

∂Ψ

∂x

)

=
xt

t2 + τ2
(2.14)

where 1Ψ
∂Ψ
∂x is simply

−x
2Δ20(1 + it/τ)

with the imaginary part easily found by Taylor expanding (1 + it/τ)−1.

Taking a factor of t/τ out of the expansion and cancelling the minus sign

leaves a geometric series in −t2/τ2, which after some tidying gives

dx

dt
=
xt

τ2

(
1

1− (−t2/τ2)

)

= (2.15)

where we have used the formula for a geometric series

∞∑

n=0

(

−
t2

τ

)2
=

1

1− (−t2/τ2)

Integrating (2.14) gives us the trajectory of the particle

x(t) = x0
√
1 + t2/τ2 (2.16)

and so we see the particle for initial position x0 > 0 the particle travels

to the right and for x0 < 0 it travels to the left. Only if x0 = 0 does the

particle remain stationary. We can also see for t � τ the particle travels

with uniform velocity. further from the origin (or center of the packet) the

greater the acceleration of the particle moving forward in time [6]
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Figure 2.2: Spreading Gaussian Wavepacket

2.2.3 Stationary States[5]

For stationary states, that is energy eigenfunctions such as

Ĥφn(x) = Enφn(x) (2.17)

where ψ(x, t) = φn(x)e
iEnt/~, then if the energy eigenfunction is real then

S = −Ent and so does not depend on position. This means that the veloc-

ity field is zero, ∇S/m = 0 and so the particle is at rest, which is opposed

to what orthodox quantum theory tells us. This is also the case for any

spherically symmetric potential, where the phase will not depend on po-

sition. An example of this is that in de Broglie-Bohm theory the ground

state a Hydrogen atom is stationary before any sort of interaction including

measurements.

In the case of the harmonic oscillator case the wavefunction of every

state ψn has the gradient of it’s phase equal to zero and so the actual

particle is before measurement motionless. a measurement gives the particle

a momentum and so we argue should we really call this a measurement in

the sense of measuring a pre-existing quality of the system and leads us to

look at what it means to make a ’measurement’ in Pilot-Wave theory which

we shall look at in section 4 of this chapter.
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2.3 Quantum Measurement in de Broglie-Bohm

Theory

As mentioned earlier in the chapter, de Broglie didn’t create theory to solve

the measurment problem or to provide a realist or deterministic theory, it

was soley created to explain experiment. Although it was not de Broglies

motivation or intention to solve the measurement problem, pilot-wave theory

manages to give a full description of a ’quantum measurement process’ in

completely consistently in terms of one single set of dynamical rules.

The measurement problem arises in the orthodox quantum theory due

to the assumption that the measurement process may be described using

analogous ideas to that of how we make measurements in classical physics.

In classical physics, if we want to measure an attribute ω of a system using a

measuring device with the output being some pointer described by position

y that can be either 0 or 1 say, Hamilton’s equations say ’switch on’ an

interaction Hamiltonian. This means that we add an interaction term, that

couples the two systems, to the total Hamiltonian i.e.

H = aωpy (2.18)

where a is a coupling constant and py is the momentum conjugate to y.

Evolving this in time gives

ω(t) = ω0, y(t) = y0 + aω0t (2.19)

so we see that the pointer is displaced by aω0t from y0 and so we can infer the

value of ω0. The result of our measurement being the pre-existing quantity

attributed to the system ω0.

This is fine for measurements in classical physics, where we have used the

theory to tell us how to make a measurement, but for a new theory which

explains different or wider ranging phenomena than classical mechanics a

new theory of measurement must be found constructed from the new theory.

In orthodox quantum theory this has not happened and the old classical

regime of measurement has been used as a guide on how to make correct

quantum measurements. To measure a property ω of a quantum system

orthodox quantum mechanics takes (2.18) and quantizes this procedure via
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the mapping

H = aωpy → Ĥ = aω̂p̂y (2.20)

where we have just quantised the classical Hamiltonian. From this follows

the same procedure of measurement as the classical theory, where in the

orthodox quantum theory a correct measurement of a property ω of a system

is obtained if the pointer y indicates the eigenvalue ωn (n = 1, 2 in this

example) where the pointer gives a correct measurement of the property ω

and the experimenter would say the ”the system has property ω with value

ωn”.

2.3.1 Orthodox vs. de Broglie-Bohm Measurements[2]

Measurement in Orthodox Quantum Theory

As a concrete example of a measurement in the orthodox quantum theory

take a particle at t = 0 with a wavefunction in a superposition of two

eigenfunctions of some operator ω

ψ0(x) = c1φ1(x) + c2φ2(x) (2.21)

where |c1|2 + |c2|2 = 1 and

ω̂φ1(x) = ω1φ1(x), ω̂φ2(x) = ω2φ2(x)

Now to make a ”measurement” of observable ω related to ω̂ a second system

is introduced, which we will call the apparatus and refer to the system

we want to measure the ”system”. The apparatus may be a ”pointer”

described by the particle position y with wavefunction g0(y) which is highly

localised around y = 0 (so that the value of the pointer position y when

the wavefunction is ”collapsed” into an eigenstate by observation it can be

concluded y ”points” to a definite value 0 or 1). We now wish to couple

the system and apparatus and evolve this coupled wavefunction using a Von
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Neumann type interaction 4 Hamiltonian

ĤI = aω̂p̂y, (2.22)

where now in the quantised scheme p̂y = −i~ ∂∂y is the momentum operator

conjugate to y.

The combined system of apparatus and system being measured is initially

Ψ0(x, y) = (c1φ1(x) + c2φ2(x))g0(y) (2.23)

For large enough coupling a and over a short enough timescale the total

Hamiltonian can be approximated by the interaction Hamiltonian,

ĤTot ≈ ĤI for a� 1 and t→ ε. The Schrödinger equation is then

i~
∂Ψ(x, y, t)

∂t
= −aω̂i~

∂Ψ(x, y, t)

∂y
(2.24)

with solution

Ψ(x, y, t) = c1φ1(x)g0(y − aω1t) + c2φ2(x)g0(y − aω2t) (2.25)

where the wavefunction branches into two different non-overlapping eigen-

states. This is due to the non-overlapping pointer packets 2.3 associated

with each eigenstate of ω̂ If a y value within the localised packet g0(y−aωit)

(i = 1, 2) is observed then we conclude the wavefunction has ”collapsed” into

the φi(x) (discarding all other eigenfunctions) eigenstate and we have the

value ωi for the measurement of the property ω (relating to operator ω̂)

of the system. The probability of y being in wavepacket g0(y − aωit) i.e.

”measuring” ωi is given by |ci|2[?].

Pilot-Wave Theory Measurements

For pilot-wave theory we add a configuration (x(t), y(t)) to the quantum

state. We now have the same wavefunction as in the orthodox case as the

guiding wave that lives in configuration space (x, y).

4A Von Neumann interaction is one where the measuring apparatus is also treated as
a quantum object and is assigned some wavefunction |g〉. The coupled wavefunction
of the entire system being some product of the the wavefunctions of apparatus and
system being measured i.e. |g〉|ψ〉.
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Figure 2.3: Non-overlapping pointer wavepackets |g0(y − aω1t)|2 and
|g0(y − aω2t)|2, and initial pointer wavepacket g0(y).[5]

If the initial distribution of the ensemble is ρ0(x, y) = |Ψ0(x, y)|2 then be-

cause the continuity equation for the probability distribution of the ensem-

ble and the quantum continuity equation are the same we have ρ(x, y, t) =

|Ψ(x, y, t)|2. The ensemble then has probability distribution

ρ(x, y, t) = |c1|
2|φ1(x)|

2|g0(y−aω1t)|
2+ |c2|

2|φ2(x)|
2|g0(y−aω2t)|

2, (2.26)

where there are no cross terms due to the non-overlapping pointer packets.

This means that the distribution ρ(x, y, t) of our ensemble separates or

branches in configuration space with the actual trajectory of particle beables

being guided into one of these non-overlapping regions as seen in 2.4.

In the pilot-wave view of measurement there is no need for observers

to ”collapse” the wavefunction and the problem of the remaining eigen-

state’s ontological status is avoided. These other eigenstates exist and still

have ontological status but have no influence on the actual configuration

(x(t), y(t)), i.e. the particle beables that are recorded in measurements.

The configuration is now guided by just one of the initial eigenfunctions.

This is pilot-wave explanation of the ”collapse” process.

Unlike orthodox quantum theory, in pilot-wave theory the above process

is not necessarily seen as a measurement of some pre-existing property of

the system, this is has been called ”naive eigenvalue realism” since in pilot-
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Figure 2.4: Separation of the probability distribution of an ensemble of par-
ticles ρ with identical wavefunction, with actual configuration
(x, y) guided into one of the regions[5].

wave theory the eigenvalues obtained from measurements in the orthodox

quantum theory are not always real properties of the system. The trajec-

tory x(t) is said to be guided by the reduced wavefunction φi(x) but this

does not necessarily mean the system has or had some actual attribute ω

with value ωi (the eigenvalue of the i-th eigenstate). We shall see how this

works in some examples shortly. There is one exception where eigenval-

ues correspond to real properties of the system and that is for position

measurements where ω̂ = x̂.

In conclusion we have

Table 2.1: orthodox quantum theory vs. pilot-wave theory.

Orthodox Quantum Theory Pilot-Wave Theory

”Observable ω̂ has value ωi” ” Trajectory x(t) is guided by φi(x)

2.3.2 Recovery of Orthodox Quantum Mechanics

For pilot-wave theory to a suitable candidate for a real physical theory

it must be capable of at least reproducing all the empirical results of the

orthodox formulation that has been experimentally verified. This can easily
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be done.

If we look at (2.26), the probability distribution of the ensemble, we would

like to reproduce the orthodox theories probabilities |ci|2 of measuring a

particle. If the probability of the configuration being in support i is given by

|ci|2, then that has the same consequence of saying it has that probability

of being measured there, thus reproducing the statistics of the orthodox

formulation. So the probabilities of the configuration lying in either support

are given by

∫

all

dx

∫

supportof |g0(y−aω1t)|2
dy |c1|

2|φ1(x)|
2|g0(y − aω1t)|

2 = |c1|
2,

∫

all

dx

∫

supportof |g0(y−aω1t)|2
dy |c2|

2|φ2(x)|
2|g0(y − aω2t)|

2 = |c2|
2,

which are the same probabilities as for the likelihood of measurement in

the orthodox quantum theory. Note, we have assumed initial distribution

ρ0 = |Ψ0|2.

in de Broglie-Bohm probabilities are a subsidiary condition of a casual

theory of individuals.

We either have to accept the non local collapse postulate and have two

incompatible dynamics to describe a quantum systems evolution or say the

spots on the screen are proof of hidden variables and have all encompassing

dynamics and have explanation for what happens during what is seen as

a ’collapse’ of the wavefunction in orthodox quantum theory. and so no

distinction in divide between system and apparatus is needed.

non locality is clouded by the born distribution and so information can’t

be sent faster than c.

2.3.3 An Example of a Quantum Measurement

As an example of a measurement in pilot-wave theory we shall look at a par-

ticle in the ground state of an infinite square well potential in 1-dimension,

and show how this leads to misplaced trust in eigenvalue realism. That is

that the what are said to be the results measurements in orthodox quantum

theory are in general not linked to what we would define as a measurement,

i.e. finding some pre-existing value of a property of a system.

The solution of the time independent Schödinger equation for the infinite
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square well potential in one dimension is

ψ0(x) = Ae
ipx + e−ipx (2.27)

the superposition of two momentum eigenstates. The velocity of the particle

in pilot-wave theory is ∇Sm = 0 since the phase is S = 0. This means

the momentum of the particle before measurement is guided by ψ0 and is

mẋ0 = 0.

After measurement of momentum of the type described above, the wave

function is either seen to ”collapse” or branch in configuration space and

the final guiding wave or collapsed wavefunction is φ1(x) = e
=px or

φ2(x) = e
−=px and so the particle beables final momentum is mẋ = p or −p.

What the ”measurement” interaction has done is disturb the system and

give the particle some momentum. To say we have measured this momentum

would be incorrect.

2.4 Features of Pilot-Wave Dynamics and New

Physics

Firstly an important point to make is that all measurements are reduced

to position measurements in pilot-wave theory. This makes sense because

even when measuring some attribute of a system that isn’t it’s position,

what it boils down to is reading of positions of instruments. Only position

eigenvalues are real measurements.

Another point to make is that the theory is highly non Newtonian and

naturally is written in terms of a first-order dynamics, which greatly con-

trasts with the second order dynamics of Newton. There is a one way force

from the wavefuntion acting on the particle(s), but the particle(s) do not

exert a force on wavefunction, meaning violation of Newton’s 3rd law.

Subjectivity of observer eliminated hidden variables have objective exis-

tence, and exist regardless of measurement interaction.

Two particles are entangled in de Broglie-Bohm theory if their wavefunc-

tions are not factorable. This means for particles with positions x1 and x2

their joint wavefunction is not separable in x1 and x2so that ψ(x1, x2, t) 6=

ψ1(x1, t)ψ2(x2, t). With regards to the guiding equation this would mean

that their phases are not sums of individual phases for x1 and x2 such
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that S(x1, x2, t) 6= S(x1, t) + S(x2, t), and therefore the velocity field at x1

depends on x2 and vice versa.

Another triumph of pilot-wave theory is that we can keep classical logic

and don’t have to resort to quantum logic.

De Broglie’s pilot-wave theory is not an alternative formulation of quan-

tum mechanics. instead it tells us quantum theory is a special case of a

much wider non-equilibrium physics.
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3 Bohmian Mechanics

In 1952 David Bohm’s two seminal papers [?] were published. Over the

two papers he set out how quantum mechanics could be reconciled with a

casual interpretation of some underlying ”hidden” variables. Bohm was not

aware of De Broglie’s work on pilot-wave theory until some of his work on

Bohmian mechanics had been published.

Unlike de Broglie’s first order dynamics, Bohm formulated his theory

in terms of a second order dynamics. Although more complicated and

not strictly necessary [5], Bohm’s formulation does have it’s advantages.

For de Broglie’s dynamics it is hard to see how a classical limit can be

achieved given that classical mechanical dynamics are described by second

order equations. Bohm’s formulation, although essentially the same a de

Broglie’s, recasts de Broglie’s dynamics into a second order form using a

modified version of the Hamilton-Jacobi equation. This gives an appropri-

ate language that links classical and quantum mechanics. The main key

feature of Bohm’s formulation is the Quantum Potential,but before coming

to this we shall look at classical Hamilton-Jacobi theory and see how it links

the wave and ray features of optics.

3.1 Classical Hamilton-Jacobi Theory

The Hamilton-Jacobi Equation is is a reformulation of classical mechanics

like the Lagrangian and Hamiltonian formulations. If we want to find the

equations of motion of a classical system with n degrees of freedom using

Hamilton’s equations we must solve the 2n first-order differential equations

ṗi = −
∂H

∂qi
and q̇i = −

∂H

∂pi
i = 1, ..., n. (3.1)

Where H is the hamiltonian of the system and qi and pi are generalised co-

ordinates and momenta. If the Hamilton-jacobi method is used the problem
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of solving the 2n ordinary differential equations can be reduced to finding

a single integral of a partial differential equation in (n+ 1) variables.

To do this we first want to find a canonical transformation of the gener-

alised coordinates and momenta (qi and pi) so that the new Hamiltonian is

zero ensuring the new coordinates are constant in time i.e.

(q, p) −→ (Q,P ) where Q̇ = Ṗ = 0. (3.2)

A canonical transformation is one which preserves the form of Hamilton’s

equations (3.1). If K is our new Hamiltonian then for a canonical transfor-

mation we require

Ṗi = −
∂K

∂Qi
and Q̇i = −

∂K

∂Pi
i = 1, ..., n. (3.3)

where K = K(Q,P, t). The equations (3.1) are may be derived from varying

the action integral

I =

∫
L dt =

∫ ( n∑

i=0

piq̇i −H

)

dt (3.4)

with respect to the 2n independent variables qi and pi, where have used the

Legendre transform to get to the final expression.

0 = δI (3.5)

=

∫ n∑

i=0

(δ(piq̇i)− δH)dt (3.6)

=

∫ n∑

i=0

[

(q̇iδpi − ṗiδqi)−

(
∂H

∂qi
δqi +

∂H

∂pi
δpi

)]

dt (3.7)

where, once the common factors δqi and δpi are taken out we are left with

two terms that must vanish for the integral to be zero, and so setting these

terms to zero gives Hamilton’s equations.

The same process can again be followed to find the equations of motion

in terms of the transformed coordinates (Q,P )

I =

∫ ( n∑

i=0

PiQ̇i −K

)

dt. (3.8)
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The integrands in (3.4) and (3.9) then differ by a total time derivative

n∑

i=0

piq̇i −H−
dS

dt
=

n∑

i=0

PiQ̇i −K. (3.9)

The function S is called the generating function of the canonical transform

and in general is an arbitrary of 2n of q, p,Q, P, and also depends upon t.

This is because Q = Q(q, p, t) and P = P (q, p, t) means each of the two new

generalised coordinates depend on two of the old generalised coordinates i.e.

only 2n of these coordinates are independent. For the case of S = S(q,Q, t)

(which is nice due to the time derivatives factoring), plugging this into (3.9)

collecting terms with like time derivatives and equating the separate terms

on either side we find

pi =
∂S

∂qi
(3.10)

Pi = −
∂S

∂Qi
(3.11)

K = H+
∂S

∂t
. (3.12)

These relations allow us to construct the canonical transform by solving

(3.10) for Q and then (3.11) for P , thus S generates the canonical transform.

Now we have a way of generating a canonical transform let us go back to

what we had set out to do in (3.2) using (3.10), (3.11) and (3.12). What we

want then is to find some canonical coordinates such that

Q̇i(q, p, t) = Ṗi(q, p, t) = 0. (3.13)

From (3.3) it is obvious that K = 0 is our requirement so that we have

(3.13). With K = 0 (3.12) becomes

∂S(q,Q, t)

∂t
+H(q,

∂S(q,Q, t)

∂q
, t) = 0, (3.14)

where we have used (3.10) to substitute for the momentum in the hamil-

tonian. This is the Hamilton-Jacobi equation, it is a partial differential

equation of n+1 variables q1, q2, ..., qn, t. the function S
1 in this equation is

called Hamilton’s principle function. Since S is not explicit in the equation

1It may also be shown that S is in fact equal to the action[7]
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the solution must have n nonadditive constants α1, ..., αn as arguments of

S i.e. S = S(q, α, t). These constants may be any function of the Qi coor-

dinates for example αi = Qi. If we have some other form for our generating

function such as S(p, P, t) the αi would be functions of Pi.

We have the Hamilton-Jacobi equation and would now like to solve it to

find our laws of motion. The constant transformed coordinates Qi may be

written as n independent functions of the integration constants αi so that

we have Qi = γi(αi, ..., αn) and the constant transformed momenta Pi is

found using (3.11)

Pi =
∂S(q, γ, t)

∂γi
= βi, (3.15)

which is called the Jacobi law of motion. It can be solved for qi in terms

of the constants αi and βi assuming that the determinant of the Jacobian

of the transformation is not singular (det(∂2S/∂qi∂γi) 6= 0)2. The original

canonical momenta is found using (3.10). Once q1 and pi have been found

all that is left is to express the 2n constants αi and βi in terms of the

actual initial conditions, q0i and p0i, of the problem. This may be done by

evaluating (3.10) and (3.15) at t0 to find respectively, p0 which relates q0,

p0 and γ, and q0 which relates β and γ. Once this is done we finally have

expression for q(t) and p(t) in terms of their initial values.

3.1.1 Solving the 1-D Simple Harmonic Oscillator Using the

Hamilton-Jacobi Equation

We will use the example of the 1-D Simple Harmonic Oscillator to illustrate

how the Hamilto-Jacobi equation can be used to solve dynamical problems.

The Hamiltonian for the harmonic oscillator is

H(q, p) =
p2

2m
+
1

2
kq2 (3.16)

substituting this into (3.14) and using ∂S∂q in place of the momentum we

have the Hamilton-Jacobi equation for the SHO

∂S

∂t
+
1

2m

(
∂S

∂q

)2
+
1

2
kq2 = 0 (3.17)

guessing at a solution of (3.17) of the form S(q, t) = S1(t) + S2(q) so that

2If it is singular we cannot solve for qi’s in terms of the γi’s
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we can use separation of variables and turn our PDE above into a set of

ODE’s. We find,

−
dS1
dt
=
1

2m

(
dS2
dq

)2
+
1

2
kq2. (3.18)

Since S1 on the left of (3.18) depends only on t and S2 on the right only

on q both sides must equal the same constant, we will call E. This gives a

set of 2 PDE’s

dS1
dt
= −E and

1

2m

(
dS2
dq

)2
+
1

2
kq2 = E. (3.19)

The time differential equation is easily solved by integrating to find

S1 = −Et+ C where C is the constant of integration. The integral in q is

S2 =

∫ √
m(2E − kq2) dq. (3.20)

To solve this we first bring it to the form

S2 =
√
mk

∫ √
2E

k
− q2 dq (3.21)

then make the substitution q =
√
2E/k sin t, where dq =

√
2E/k cos dt.

Factorizing the 2E/k term and using 1− sin2 t = cos2 t we arrive at

S2 =
√
mk
2E

k

∫
cos2 t dt. (3.22)

We then use the trigonometric half-angle identity cos2 t = 1
2(1 + cos 2t).

After integrating we have

S2 =
√
mk
2E

k

1

2

[

t+
1

2
sin 2t

]

+ c. (3.23)

(c = constant of integration) then we use the double angle identity sin 2t =

2 sin t cos t and substitute q back in for t, where
√
k/2Eq = sin t and cos t =

√
1− kq2/2E and so we finally arrive at our solution

S2 =
√
mk
1

2

[
2E

k
arcsin

(√
kq2

2E

)

+ q

√
2E

k
− q2

]

+ c. (3.24)
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Now we have solved both PDE’s we can write down the complete integral

S(q, t) = −Et+ S2(q, E) + const. (3.25)

apart from the constant of integration, there is a new non-additive constant

E in our solution. In this problem there is one degree of freedom n = 1 and

so as we would expect we have only α1 = E as our non-additive constant.

Using (3.15) we can find the constant β1, by putting t = 0 and q0 into

(3.26), which we will relabel t0.

∂S(q, γ, t)

∂E
= β1 = t0 = −t+

√
m

k
arcsin

√
kq2

2E
. (3.26)

So we can find q(t) in terms of a function involving constants α1 = E and

β1 = t0

q(E, t) =

√
2E

k
sin

[√
k

m
(t0 + t)

]

. (3.27)

Now we have the desired canonical position, we can find the canonical mo-

mentum of the system using (3.10) giving

p =
∂S

∂q
=
√
m(2E − kq2). (3.28)

where p(t) is found by substituting (3.27) into (3.28).

In the above example we have used the form of Hamilton’s principle func-

tion depending on the transformed momenta S = S(q, P, t) and so we first

find our constant E then find our initial coordinate which is the time t0.

(The example above is from [20]).

Other important features we should mention that are important for taking

H-J equations to the quantum theory. multi-valued S so different functional

forms of S may give the same momentum for some initial conditions but not

all. S describes an ensemble of trajectories found by holding α and varying

β.

Remarks

In the Hamilton-Jacobi Method for solving a mechanical system, Hamilton’s

principle function S is connected to not just the solution for the trajectory

that it has been solved for, but to an infinite set of trajectories, much like
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the idea of an ensemble in pilot-wave theory, see [8].

3.2 Bohm’s Hamilton-Jacobi Pilot-Wave Theory

Bohm’s version of de Broglie-Bohm theory is based around a second-order

dynamics much like classical mechanics. It is essentially a reformulation of

de Broglie pilot-wave theory, although Bohm arrived at his formulation in-

dependently of de Broglie’s work. Bohm started from writing the wavefunc-

tion in it’s polar form Ψ(x, t) = R(x, t)eiS(x,t)/~ and substituting this into

Schrödinger’s wave equation. Working with the one particle Schrödinger

equation we have

i~
∂

∂t
R(x, t)eiS(x,t)/~ = −

(
~2

2m
∇2 + V

)

R(x, t)eiS(x,t)/~. (3.29)

First working with the left hand side of (3.29), taking the time partial

differential using the product rule we find,

i~
∂

∂t
ReiS/~ = i~

(
∂R

∂t
+R

i

~
∂S

∂t

)

eiS/~. (3.30)

Now the right hand side, where ∇2 = ∇ ∙ ∇, is

−

(
~2

2m
∇2 + V

)

ReiS/~ =

(
~2

2m

[

∇2R+
i

~
2∇R ∙ ∇S +

i

~
R

(

∇2S +
i

~
∇S

)]

+ V R

)

eiS/~.

(3.31)

Equating (3.30) and (3.31) and cancelling the exponential terms, we can now

find separate equations for ∂R∂t and
∂S
∂t by separating the real and imaginary

parts respectively into two equations (3.32) and (3.33).

∂R

∂t
= −

1

2m
[R∇2S + 2∇R ∙ ∇S], (3.32)

∂S

∂t
= −

[
(∇S)2

2m
+ V −

~2

2m

∇2R
R

]

. (3.33)

We can rewrite (3.32) by calling P
1
2 = R so using ∂R∂P =

1
2P
−1/2 and revers-

ing the product rule (3.32) becomes

∂P

∂t
+∇ ∙

(

P
∇S
m

)

= 0, (3.34)
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and we see it is just the continuity equation for the ensemble with probability

density P (x, t).

Equation (3.33) is similar in form to the Hamilton-Jacobi equation where

S is Hamilton’s principle function and ∇S/m is again the particle velocity.

(3.33) is called the modified Hamilton-Jacobi equation and the term

−
~2

2m

∇2R
R
= −

~2

4m

[
∇2P
P
−
1

2

(∇P )2

P 2

]

= Q. (3.35)

is called the quantum potential. This shows that even a classically free

particle may be acted upon by forces arising from the quantum potential.

Putting the above modified Hamilton-Jacobi equation into a second-order

framework shows that it is consistent to regard Q as a potential acting on

the particle like V . This is done by bringing (3.33) to the form

∂S

∂t
+
(∇S)2

2m
= −(V +Q). (3.36)

now applying ∇ to (3.36) and using d/dt = ∂/∂t+ ẋ ∙ ∇ we have

∂∇S
∂t
+∇ ∙

(∇S)2

2m
=

(
∂

∂t
+
(∇S)
m
∙ ∇

)

∇S = −∇(V +Q) (3.37)

d

dt
(mẋ) = −∇(V +Q) (3.38)

giving us the particle equation of motion with the form of Newton’s second

law, where the particle is subject to a quantum force −∇Q as well as any

classical force.

Remarks

Using Bohm’s formulation may not be necessary but it does have some use-

ful features, for example classical mechanics is a limiting case of de Broglie-

Bohm theory but Bohm’s formulation makes this more apparent by showing

that the quantum effects that effect the particle through the quantum po-

tential decrease as ~→ 0.

in Bohm’s view, p = ∇S is not a law of motion but a condition on the

initial momentum that is preserved in time by his second order dynamics.

relaxation of p = ∇S means a spread of momentum values at each position.

If p = ∇S is the initial condition then it is preserved by time evolution.
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An important prediction of the Bohm theory, made in Bohm’s original

1952 paper, is that the electron in the ground state of a hydrogen atom is at

rest since s states have spherical symmetry and thus have constant phase,

it can be shown that the quantum force introduced by Bohm balances the

classical electromagnetic potential.
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4 Dynamical Origin of Quantum

Probabilities/Born rule

Up until now we have only mentioned in passing that ρ = |ψ|2 may be

derived from the underlying dynamics in de Broglie-Bohm theory and does

not need to be a postulate1 as the Born rule is in orthodox quantum theory.

In de Broglie-Bohm theory what we mean by ρ = |Ψ|2 is that the initial

distribution of an ensemble of particles, guided by Ψ, is to be distributed

according to the Born rule. By ensemble we mean a collection of many

identical configurations all with the same wavefunction, with the same po-

tential and boundary conditions, but differing initial conditions i.e. a set

of many different individual evolutions/trials of the same system with dif-

ferent initial conditions for each evolution/trial. This is how we arrive at

probability distributions, but in fact one trial or experiment only has one

actual configuration with on set of initial conditions (only one member of

the (statistical) ensemble actually exists).

Bohm made suggestions in [?] that the born rule may be seen as having

an analogous status to thermal equilibrium in classical statistical mechanics.

Pauli also pointed this out [15]. In reply Bohm showed that for the case

of a hydrogen molecule, excited to a doubly degenerate energy level E0
2,

with initial non-equilibrium distribution ρ 6= |Ψ|2 that random external

collisions would cause the initial distribution to relax to ρ = |Ψ|2 [17].

Due to difficulties in forming a general relaxation argument Bohm later

introduced stochastic elements to his theory[18].

Valentini and Westman’s paper [12] gave a general argument that ini-

tial non-equilibrium distributions would relax to |Ψ|2 without the need to

introduce stochastic ’fluid fluctuations’. [12] used the coarse-graining H-

theorem to show that an initial non equilibrium distribution would make a

1Most papers on de Broglie-Bohm theory assume ρ = |Ψ|2 as a postulate.
2i.e. a system with two eigenstates both with degenerate eigenvalue E0
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significant approach to equilibrium, within a certain finite timescale τ and

coarse-graining length ε (not proving that equilibrium is actually reached).

Numerical simulations were performed for the case of ensembles, in a 2-D

box with V = 0 for x, y = 0..π and V = ∞ everywhere else, with initial

guiding wave3

ψ(x, y, 0) =
4∑

m,n=1

1

4

[
2

π
sin(mx) sin(ny)

]

eiθmn (4.1)

at t = 0 and with energy eigenvalues Emn =
1
2(m

2 + n2), m,n = 1, 2, 3, 4.

The statistical ensemble’s initial distribution was

ρ(x, y, 0) =
4

π2
sin2 x sin2 y. (4.2)

The numerical simulations showed ρ(x, y, 0) to approach equilibrium |ψ|2

on a coarse grained level significantly after just one period of 4π i.e. that

the H-function decreases in time.

The results showed that a large number of degrees of freedom are not nec-

essary for efficient relaxation. Even for a single particle with a wavefunction

that is a superposition of a small number of energy eigenfunctions equilib-

rium would be approached in finite time. Generally similar simulations

would show any initial non-equilibrium state, obeying certain conditions

such as absence of fine-grained microstructure, would evolve towards |ψ|2.

This went beyond previous results [19] which showed relaxation would occur

for a many-body system with many D.O.F. Where it was then argued that

a particle extracted from the relaxed equilibrium distribution and prepared

with wavefunction ψ would have a distribution |ψ|2.

Arguments as to why all quantum systems probed so far all have the

quantum equilibrium distribution are given in [12] and [?]. The general idea

is that all quantum systems we experiment on today have had a violent

astrophysical history which will have caused relaxation to occur to well

beyond accuracies that we measure the systems to. These arguments leave

the likely option that particles in the early universe may not have ρ = |ψ|2.

What we shall now look further at comments made in [12] about how the

velocity field acts as a stirrer mixing two ”fluids” i.e. two distributions ρ

3The values for the phases θm,n were taken as exactly the four decimal place values from
Valentini and Westman’s paper (see footnote on page 5 of [12]).
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and |ψ|2. It is highlighted that ’quasi-nodes’ in |ψ|2, where |ψ|2 < ε where

the velocity field varies rapidly, are where the most efficient mixing occurs.

It has been mentioned, by Frisk [13], that trajectories close to nodes exhibit

chaotic behaviour. Relaxation is an effect of relative dispersion of different

trajectories in an ensemble, and so it seems plausible that if close proximity

to nodes causes trajectories to diverge then that relaxation is driven by

nodes in the guiding-wave.

4.1 Nodes, Divergent Trajectories and Relaxation

In this section we shall look at two trajectories with initially close positions

and the same wavefunction. We shall study the case of a single particle in

a 2-D box as in [12], using the same guiding wave/wavefunction (4.1). At

time t under Schrödinger evolution (4.1) becomes

ψ(x, y, t) =
4∑

m,n=1

1

4

[
2

π
sin(mx) sin(ny)

]

ei(θmn−Emnt) (4.3)

which is plotted below in figures 4.1 and 4.2 for t = 0, 2π, and 4π. Where

Figure 4.1: A plot of ψ(x, y, 0) = ψ(x, y, 4π) in a 2-D box

ψ is periodic in 4π. This is the guiding wave for our system.
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Figure 4.2: A plot of ψ(x, y, 2π) in a 2-D box

Using the dsolve tool in Maple to numerically integrate the velocity fields4,

in the two independent directions, we can plot the particle trajectories 4.3.

dx

dt
=

i

2|ψ|2

(

ψ
∂ψ∗

∂x
− ψ∗

∂ψ

∂x

)

(4.4)

dy

dt
=

i

2|ψ|2

(

ψ
∂ψ∗

∂y
− ψ∗

∂ψ

∂y

)

(4.5)

with initial conditions (4.2) and x0,1 =
π
2 , y0,1 =

π
2 and x0,2 =

π
2 + ε,

y0,2 =
π
2 + ε. The initial positions of the two trajectories (x0,1, y0,1) and

(x0,2, y0,2) are separated by
√
2ε, where ε = 0.001. The trajectories are

very complicated but clearly diverge at some point as the end points are

clearly far apart and have separated. On close inspection it can also be seen

that initially the trajectories stay quite close together and there is no great

deviation from one another for an initial period.

To make this clearer a plot 4.4 of the Euclidean distance (4.6) between

the two trajectories is given for t = 0 to 4π.

XED(t) =
√
(x1(t)− x2(t))2 + (y1(t)− y2(t))2 (4.6)

4Maple uses a Runge-Kutta 45 method
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Figure 4.3: Trajectories of Two Particles with initial separation
√
2ε

We now wish to see if significant divergences occur in the particle tra-

jectories when either of the trajectories passes close to a ”quasi-nodal re-

gion” (i.e. |ψ|2 is less than some small value making a nodal likely to be

close by). By significant divergences we mean divergences that are much

larger than the normal rate of separation. To see if divergences occur

when either trajectory passes close to a ”quasi-nodal” region we make a

plot of |ψ(x1(t), y1(t), t)|2 where we have evaluated ψ along the trajectory

(x1(t), y1(t)), see figure 4.5. Figure 4.6is a joint plot of 4.4(blue), 4.5 (red)

and a plot of |ψ(x2(t), y2(t), t)|2 (green).

From this we hope to see a correlation between large increases (i.e. a

steep slope) in the blue plot when either the green or red plots are below

some small value, during some initial period where the trajectories are still

close. It should also be noted when, after the trajectories have initially

diverged and are far apart, the trajectories suddenly come close together

again and again there is a steep slope in the curve of XED(t). either of

these situations would show that ”quasi-nodal” regions (that likely contain

a node) cause the trajectories to become chaotic, suddenly and sharply
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Figure 4.4: The distance between two initially close trajectories at time t

diverging, meaning memory of initial conditions is lost even with very small

errors in the numerical analysis.

Such a divergence arising from two initially close trajectories passing by a

”quasi-nodal” region would hint again at the idea that the velocity field acts

like a stirrer mixing the statistical ensemble distribution into the quantum

equilibrium distribution.

Remarks

Looking at a close up of the initial short time period of figure 4.6 in figure

4.7 the author can see no definite correlation between small values of one of

the |ψ(xi(t), yi(t), t)|2, i = 1, 2, curves and steep slopes in the XED(t) curve.

A clearer and more conclusive analysis may be carried out by plotting the

modulus of the gradient |dXEDdt | against the sum |ψ1(t)|
2 + |ψ2(t)|2 for a

finite number of points in t.
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Figure 4.5: A plot of |ψ(x1, y1, t)|2, the modulus squared of the systems
wavefunction evaluated along the trajectory (x1(t), y1(t))

Figure 4.6: Plots of |ψ|2 evaluated along (x1(t), y1(t)) and (x2(t), y2(t)) and
also XED(t)
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Figure 4.7: A close-up of figure 4.6
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5 Conclusion

The orthodox quantum formalism is not the only theory that can repro-

duce all experimental results that it is meant to. De Broglie-Bohm Theory

can explain quantum phenomena in an objective way using deterministic

dynamics. Due to Bell’s inequalities we know any such hidden variables

theory must be non local, which is a desired feature of a theory that de-

scribes nature.

The de Broglie-Bohm formalism gives us different perspectives and ways

of treating topics such as measurement. It is also a healthy activity to

explore other lines of thought, especially if they are consistent with experi-

ment.

It suggests many experiments, that would be worthwhile even for sceptics

of the theory. One of these may be testing for non-equilibrium particles

from the early universe that decoupled before they had time to relax to

the quantum equilibrium distribution. For such a particle a double slit

experiment would give a different diffraction pattern to what we are used

to.

non-local communication may be achievable with non equilibrium parti-

cles, and exact properties could be shown to be reality with very weakly

coupled system and apparatus set ups.

The analysis of chapter 3 gave inconclusive results and more would need

to be done to show, with this analysis, that nodes are key to an efficient

relaxation process.
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24 au 29 Octobre 1927 sous les Auspices de l’Institut International

de Physique Solvay, Paris: Gauthier-Villars.

[2] Bohm, D., 1952, ”A suggested interpretation of the Quantum

Thoery in terms of ’Hidden’ Variables, I and II,” Physical Review

85: 166-193.

[3] Valentini, A., 2009, ”De Broglie-Bohm Pilot-Wave Theory: Many

Worlds in Denial?” To appear in: Everett and his critics, eds. S. W.

Saunders et al (Oxford University Press, 2009).

[4] Valentini, A. (2001) Hidden Variables, Statistical Mechanics and The

Early Universe. In Chance in Physics: Foundations and Perspectives,

eds. J. Bircmont et al.. Berlin: Springer-Verlag, pp. 165-81

quant-ph/0104067

[5] Valentini, A. Introduction to Hidden Variables and Pilot-Wave

Theory, Lecture Course.

[6] P.R. Holland, The Quantum Theory of Motion(1993), pages 158-165.

Cambridge University Press.

[7] P.R. Holland, The Quantum Theory of Motion(1993), pages 33-34.

Cambridge University Press.

[8] P.R. Holland, The Quantum Theory of Motion(1993), pages 27-33.

Cambridge University Press.

[9] Struyve, W, Phd. thesis, The de Broglie-Bohm Pilot-Wave

Interpretation of Quantum Theory(2004). University of Ghent.

41



[10] Towler, M. Pilot-Wave Theory, Bohmian Metaphysics, and The

Fondations of Quantum Mechanics. Graduate Lecture Course.

[11] Goldstein, S. (2001)Bohmian Mehcnics, Stanford Encyclopedia of

Philosophy. http://plato.stanford.edu/entries/qm-bohm/

[12] Valentini, A. and Westerman, H. (2005). Dynamical Origin of

Quantum Probabilities. Proceedings ofthe Royal Society London A,

461, 253-272.

[13] Frisk, H. (1997) Properties of the trajectories in Bohmian mechanics.

Phys. Lett. A, vol. 227, issues 3-4, pages 139-142.

[14] J.B. Keller. phys. rev. 89, 1040, (1953)

[15] W. Pauli, in: Louis de Broglie: Physicien et Penseur (Albin Michel,

Paris, 1953)

[16] J.S. Bell, Speakable and Unspeakable in Quantum Mechanics

(Cambridge University Press, Cambridge 1987).

[17] Bohm, D. (1953) Proof That Probability Density Approaches |ψ|2 in

Causal Interpretation of the Quantum Theory. Phys. Rev. 89, pages

458-466.

[18] D. Bohm and J.P. Vigier, Phys. Rev. 96, 208 (1954).

[19] A. Valentini, Phys Lett. A 156, 5 (1991).

[20] Classical Mechanics by N.C.Rana and P.S. Joag pages 283-284

42


