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Abstract

Thermodynamic aspects of black holes and Rindler horizons are reviewed

along with quantum field theory in the corresponding curved spacetimes.

The implication that gravity might be thermodynamic in origin is consid-

ered. Macroscopic space is seen to emerge at a course-grained limit via

the application of holography in the context of horizons. Both Newtonian

and Einsteinian gravity are seen (seperately) to be implied by an entropy

maximisation principle and the suggestion that gravity is not fundamental

is discussed and criticised. The fact that the thermodynamic perspective

applies to Lanczos-Lovelock models, a more general (arbitrary dimensions)

class of theories than Einstein’s D = 4 gravity, is also explained.
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1 Introduction

The discovery that black holes are intrinsically thermodynamic systems (Beken-

stein 1973, Hawking 1975-6) [2, 26, 12] and the striking similarity between the

laws of black hole mechanics and those of thermodynamics systems [5], has

provoked significant investigation. Together with the work that has been done

on quantum field theory in the Rindler spacetime (Fulling 1973, Davies 1975,

Unruh 1976)[9, 8, 29] these findings have led to the idea that gravity itself

is actually a macroscopic thermodynamic phenomenon (Jacobson 1995)[14],

perhaps similar to elasticity (Padmanabhan, Verlinde 2010)[30, 21, 23]. There

is now a persuasive argument that gravity is an emergent, rather than funda-

mental force and that its origin lies in the statistical tendency toward maximal

entropy. That is literally to suggest that the very nature of electromagnetism

and the nuclear forces sets them entirely apart from gravitation.

One attractive feature of this perspective is that it would explain why the

canonical quantisation of the microscopic forces have led to renormalisable

quantum field theories in a relatively straightforward manner, while quantum

gravity has proved so problematic. One can equivalently state the distinction

by noting the dimensions of Newton’s constant G in contrast to the coupling

constants for the other forces, or that the equivalence principle holds for grav-

itational and inertial mass but not for the other charges. It would also explain

the dominance of gravity at classical and cosmological scales along with its

relative weakness in comparison to the short range forces; like other thermo-

dynamic phenomena such as temperature or pressure, gravity might only arise

with statistical aggregation in multi-particle systems. The analogy is drawn

in [14] with sound waves in air (for which canonical quantisation is uncontro-

vertially inappropriate).

It is well understood that classical physics emerges naturally from quantum

mechanics with course-graining, as interference terms are averaged out [11].

In light of that fact, it would not be so surprising if gravity (which is naturally

associated with classical scales) also turned out to be statistically emergent

(c.f. Ehrenfest theorem and Newton’s second law). Furthermore, the generally

covariant nature from which general relativity derives its name, seems to sit at

odds with results in quantum theory such as the Kochen-Specker theorem [?]

and the experimental violation of Bell’s inequalties, which seem to imply an

unavoidably contextual nature of quantum observation, contrary to Einstein’s

realist intuitions. In other words, GR requires some objective information (e.g.

Riemann tensor) and quantum mechanics seems to imply that there is none.

There are thus conceptual differences to be overcome in unifying the two, in
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addition to the technical hurdles concerning renormalisation1. It is at least

an attractive idea then, to consider the possibilty of reclassifying gravity as

emergent, perhaps in the non-contextual limit of some microscopic quantum

theory, where ~ becomes negligible (viz. classical deterministic mechanics).

In this review, the relevant background theory of black hole mechanics [5],

the thermodynamic properties of Rindler and Schwarzchild horizons [29, 2,

26] and the associated application [22] of the holographic principle [27] are

first examined. The thermodynamic aspects of gravity [14] are then made

clear in light of these findings and the most relevant and recent literature

[30, 21, 23, 19, 20, 25] concerning a formal construction of the laws of gravity

as an entropic force are reviewed. It will be clear from the discussion of

these theories that a top-down approach is being taken, in that gravity is not

recovered from some already well-understood underlying quantum theory, but

rather is shown to follow from purely macroscopic considerations which could,

in principle, apply to any microscopic theory which produced the required form

of the entropy functional for spacetime and matter. The metric signature is

(− + ++) except where otherwise specified and Greek indices range over all

dimensions of spacetime.

1.1 The Notion of an Entropic Force

The application of statistical mechanics can, in some cases, be seen to lead

to forces whose effects are the result of statistical tendancy of a system’s

configuration space to increase (exponentially). The fundamental nature of

statistical methods is that one neglects, to some extent, the precise dynamics

of the system at the fundamental, usually microscopic scale. Definitions of

the thermodynamic quantities, such as temperature, pressure and entropy, all

involve this kind of course-grained analysis, in which some details about the

system have been averaged out, in favour of macroscopic variables. In this

sense, it is obvious that a force defined in terms of entropy changes is not,

unlike electromagnetism and the nuclear forces, a feature of physics at its

most fundamental level, but merely a phenomenon observable at sufficiently

large scales in systems with sufficiently many degrees of freedom.

The thermodynamic aspects of black holes have lead to the idea [30], [23]

that gravitational effects should be analysed as entropic. The interesting ques-

tion is what light, if any, the possibility of this treatment sheds on the tradi-

tional theories of gravity, most importantly, Einstein’s geometrical theory. To

1Possibly not a coincedence, the technical problems could be symptoms of underlying inconsistent as-

sumptions.
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make clear the claim being made in the case of gravitation, it will be instructive

to briefly review an analogy proposed in [30] and [21], namely elasticity.

1.2 Elasticity

Crudely, one might compare macroscopic spacetime to a stretched-out rubber

band or polymer in a heat bath. Such a system has, by definition, the statis-

tical tendency to coil up and reduce its extension x, as there are more ways

it can be coiled up than extended. A basic discussion of the polymer in a

heat bath is given in [30] and several good textbooks (e.g. [18]) on statistical

and thermal physics include a discussion. Thermal “kicks” from particles in

the heat bath encourage state transitions of the elastic material, such that

an external force is required if one wishes to keep the extension from tending

toward a minimum (by sheer chance). The external force acts in opposition to

the entropic force arising due to the material trying to coil up, which is ther-

mal/statistical rather than mechanical2. In that sense, it is not fundamental,

but statistically emergent in the appropriate limit. The work done in extend-

ing a polymer in a thermal bath with temperature T , with the polymer/bath

system in equilibrium, is the differential of the Helmholtz free energy:

dA = dE − TdS − SdT (1.1)

and dE is given by, for an external force F ,

dE = TdS − pdV + Fdx. (1.2)

Since the volume change is cubic in the associated small extension it may be

neglected and from (1.1) we have

dA = −SdT + Fdx. (1.3)

If follows straightforwardly that

F =

(
∂A

∂x

)
T

(1.4)

where the subscript T denotes that temperature remains constant. From (1.1)

we have, with dT = 0,

F =

(
∂E

∂x

)
T

− T
(
∂S

∂x

)
T

. (1.5)

2Although there are electrostatic forces between the molecules in the polymer.
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One finds experimentally [18], that the internal energy is effectively not de-

pendent on x for constant temperature, so we take the first term in (1.5) to

be a vanishing contribution and arrive at

F = −T
(
∂S

∂x

)
T

. (1.6)

Assuming that the external and entropic forces are balanced yields (1.6) as

the expression for the entropic force.

The reasons for thinking that spacetime itself has microstructure and cor-

responding entropy (defined holographically on horizons) are discussed in this

review. It is argued [21] that the appropriate entropy functional is such that

gravitation is a reflection of the tendancy of large systems and the classical

spacetime in which they live to maximise their combined entropy. The proposal

of Verlinde [30] is that the ultimate nature of gravity is seen in an equation of

the form

Fgravity = −T
(
∂S

∂x

)
. (1.7)

Alternatively stated, pulling a mass away from a black hole is less like pulling

an electron away from the nucleus of an atom, and more like stretching out

the unsecured end of a polymer in a heat bath, with the other end secured

inside the bath.

2 Black Holes And Rindler Space

The thermodynamic interpretation of gravity is best understood with reference

to black holes. The reason for this is that black holes, which are an intrin-

sic feature of general relativity, turn out to behave just like thermodynamic

systems. This is initially striking, and constitutes some of the most popular

evidence that gravity is a thermodynamic phenomenon, although it will be

argued in later sections of this review that one must be very careful about

precisely what conclusions are to be drawn from these findings.

2.1 Physics in Accelerating Frames

By the equivalence principle, the physics experienced by observers in a gravi-

tational field is equivalent to the physics experienced by accelerating observers

in flat spacetime. It will therefore be instructive to consider the co-ordinate

systems corresponding to such observers. Many of the arguments concerning
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the thermodynamic nature of black hole horizons can have analogies for an-

other kind of horizon, existing in what is known as the Rindler spacetime.

Let us, for simplicity, consider two-dimensional Minkowski spacetime from the

point of view of an observer in an accelerating frame, using a treatment similar

to chapter 9.5 of [4]. In inertial co-ordinates we have simply

ds2 = −dt2 + dx2. (2.1)

We want to find co-ordinates corresponding to an observer with uniform ac-

celeration

aµ =
d2xµ

dτ 2
(2.2)

where τ is the proper time for the observer. A natural solution for acceleration

in the x-direction is given by

at = a sinh(aτ) (2.3)

ax = a cosh(aτ) (2.4)

t(τ) =
1

a
sinh(aτ) (2.5)

x(τ) =
1

a
cosh(aτ) (2.6)

where xµ(τ) is the trajectory of the accelerating observer in the inertial co-

ordinates and a is the magnitude of the acceleration. It is simple to confirm

that with Minkowski signature, the negative value of g00 means that the re-

quirement √
aµaµ =

√
−a2 sinh2(aτ) + a2 cosh2(aτ)

=

√
a2[cosh2(aτ)− sinh2(aτ)]

= a (2.7)

is satisfied for the hyperbolic functions. The apparent curvature witnessed by

an observer in the Rindler frame, is just described by the Minkowski metric in

Rindler coordinates,

ds2 = e2aξ(−dη2 + dξ2). (2.8)

The scenario is depicted in Fig.(2.1) in which it is easy to see that the Rindler

observer is confined to region outside the hyperbola, which is asymptotic to

the null lines labeled H+ and H−. The observer, or indeed any matter in
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Figure 2.1: Rindler trajectories with inertial axes. The 45◦ lines form the past and future

light cones for an inertial observer at (0,0).

the neighbourhood of the observer, cannot access the region bounded by the

null lines since it takes an infinite amount of inertial coordinate time to reach

the null lines themselves. For this reason, H+ and H− are known as Rindler

horizons.

2.2 Similarity of Rindler and Schwarzchild Spacetimes

It is important to note at this stage, the close resemblance between the Rindler

spacetime (really just Minkowski in alternative coordinates) and the spheri-

cally symmetric vacuum solution to Einstein’s equations, namely the Schwarzchild

spacetime described by3:

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

(1− 2M/r)
+ r2dΩ2. (2.9)

The singularity at r = 2M implies the existence of an event horizon similar to

the horizon experienced by the Rindler observer. In fact the causal structure

of the spacetime near a Schwarzchild black hole closely resembles that of the

3with units such that G=1
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Rindler spacetime. Indeed, in Kruskal coordinates

T =
( r

2M
− 1
)1/2

er/4M sinh(
t

4M
) (2.10)

R =
( r

2M
− 1
)1/2

er/4M cosh(
t

4M
) (2.11)

the metric (2.9) becomes

ds2 =
32M3

r
e−r/2M(−dT 2 + dR2) + r2dΩ2 (2.12)

in close analogy to (2.8). The Schwarzchild spacetime for static4 observers is

basically what Minkowski looks like to Rindler observers. This is unsurprising,

of course, given the equivalence principle. The important difference is that

black holes cannot be transformed away, they are an intrinsic properties of

the manifold; the singularity in (2.9) has been moved to r = 0 in (2.12) but

cannot be eliminated.

2.3 The Four Laws

In order to gain a full appreciation of the thermodynamic nature of black

holes, it is necessary to consider the laws of black hole mechanics which apply,

in addition to the simpler Schwarzchild case, to the Kerr, Reisser-Nordstrom,

and Kerr-Newman families of black holes (which have non-zero angular veloc-

ity, charge and both respectively). The discussion presented here is similar,

in parts, to that given in [24], although the proof of the First law here is for-

mally somewhat different, and borrows a construction used in [14]. A detailed

discussion of [14] is presented in section 5.3 in which the Einstein equations

are seen to arise from thermodynamic considerations. In what follows, we will

concentrate on the nature and origins of the laws themselves and leave the

comparison with thermodynamics to the following section.

Zeroth Law

Surface gravity is constant over the entire horizon for a stationary black hole

The horizon is the union of all points along all of the null generators. To

prove the law, we therefore need to show that the surface gravity is the same

along each of the generators and across the set of generators, such that the

respective derivatives are everywhere vanishing:

4Fixed r
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(1) κ,α ξ
α = 0 and (2) κ,α e

α
A = 0.

where ξα =
(
∂xα

∂v

)
= tα + Ωφα and eαA =

(
∂xα

∂θA

)
are the tangent vectors along

and transverse to (respectively) the geodesics generating the horizon. The

coordinate v is a spacetime coordinate5 on the geodesics (the advanced time)

and θA coordinatise the space orthogonal to the geodesics. The surface gravity

κ may be defined by (see Appendix A.3) ξα;β ξ
β = κξα and we have:

κ2 = −1

2
ξα;βξα;β. (2.13)

Differentiating and using ξα;µν = Rαµνβξ
β (Appendix A.2) yields

2κκ,α = −ξµ;νRµναβξ
β. (2.14)

Multiplying from the right by ξα we obtain condition (1) above. Alternatively,

we can multiply by eαA in which case (2.14) becomes

2κκ,α e
α
A = −ξµ;νRµναβe

α
Aξ

β (2.15)

Since ξµ vanishes on the bifurcation two-sphere6 (if the hole has one) and by

condition (1) we can drag the derivative along the null generators without it

varying, condition (2) must hold for the entire horizon. To see that the law

also applies to black holes without a birurcation two sphere, consider two black

holes, identical for v > 0 but differing by the fact that only one of them has a

bifurcation horizon. Condition (2) is satisfied for the hole with the bifurcation

two-sphere on all surfaces defined by constant v. Since the hole without the

bifurcation two-sphere is identical for v > 0, it must also satisfy condition (2)

since it has just all positive v surfaces of the other hole.

First Law

For a black hole of mass M, surface area A and angular momentum J,

δM =
κ

8π
δA+ ΩδJ (2.16)

5v = t+ r∗ where t and r are from the Schwarzchild metric
6The sphere separating the past and future horizons, where the killing vector vanishes. See [24], chapter

5.1.10
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Consider the general perturbations such that

δM = −
∫
H
Tαβt

βdΣα (2.17)

δJ =

∫
H
Tαβφ

βdΣα. (2.18)

Defining a tangent vector kα such that ξα = −κλkα, we may express the

Horizon surface element as dΣα = kαdλdA, so that

δM = −
∫
H
Tαβt

βkαdλdA (2.19)

δJ =

∫
H
Tαβφ

βkαdλdA, (2.20)

δM − ΩδJ = −
∫
H
Tαβ(tβ + Ωφβ)kαdλdA (2.21)

=

∫
H
Tαβξ

βkαdλdA. (2.22)

Now making the replacement for ξβ we have

δM − ΩδJ = κ

∫
H
λTαβk

βkαdλdA (2.23)

and using the Einstein equation this can be written in terms of the Ricci tensor

as

δM − ΩδJ = − κ

8π

∫
H
λRαβk

βkαdλdA. (2.24)

Considering the Raychaudhuri equation (see Appendix B.4) and neglecting

second order terms in θ and σ, we have

dθ

dλ
= −Rαβk

αkβ, (2.25)

which implies θ = −λRαβk
αkβ up to a constant shift, which can be scaled to

zero. (2.24) then becomes,

δM =
κ

8π

∫
H
θdλdA+ ΩδJ. (2.26)

Finally, recognising that
∫
H θdλdA is just the variation in the area of horizon

in terms of the expansion of the generators, we have, as required,

δM =
κ

8π
δA+ ΩδJ. (2.27)
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Second Law

If the null energy condition is satisfied,

The surface area of a black hole cannot decrease

δA ≥ 0. (2.28)

The law can be equivalently stated by saying that the expansion of the null

generators is everywhere non-negative on the horizon, θ ≥ 0. If θ < 0 for any

non-empty subset of the generators, then according to the focussing theorem

(Appendix B.5), these geodesics must converge at a caustic point, where the

expansion is negative infinity. This contradicts an observation made by Roger

Penrose that null geodesics generating an horizon have no future end-points.

Assuming that holds, we have θ ≥ 0 everywhere on the horizon.

Classically, the second law can also be understood via that fact that matter

cannot leave the black hole but only enter it. Since the radius of the event

horizon increases with the mass of the black hole, one expects that the surface

area could not decrease. As we will see in section 3.3, this does not hold when

quantum effects are considered. The second law also implies that two black

holes may collide to form a larger hole, but one black hole cannot split to form

two smaller black holes.

Third Law

It is impossible to reduce the surface gravity of a black hole to zero via a

finite sequence of operations.

The third law prevents the creation of naked singularities [5], which would

violate the cosmic censorship hypothesis. It was noted in [5] that if matter is

thrown in to a black hole to increase the angular momentum and thus lower

the surface gravity, one finds that the decrease in κ per particle thrown in

diminishes as angular momentum J tends to mass M as κ tends to zero. Any

process for which this does not happen takes an infinite amount of time. It was

shown by Israel [13] in 1986 that this law can be stated and proved precisely.

The proof is very involved and including a explanation here would amount to

digressing too far from the main purpose of our discussion to be worthwhile.
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Law Thermodynamics Black Hole Mechanics

Zeroth Temperature is constant throughout sys-

tem in equilibrium

Surface gravity is constant across entire

horizon of a stationary black hole

First dE = TdS − pdV δM = κ
8π δA+ ΩδJ

Second δS ≥ 0 δA ≥ 0

Third Cannot reach absolute zero (T = 0) Cannot achieve κ = 0

Table 1: Laws of thermodynamics and black holes

2.4 Comparison With Thermodynamics

The striking similarity with thermodynamics is now very clear. At first glance,

it seems appropriate to draw the analogies E ∼ M , T ∼ κ and A ∼ S.

The first of these relations needs little justification, while the other two are

slightly more profound. The association of temperature with surface gravity

will become clear when we derive the Hawking temperature in section 3.3.

The area-entropy relationship was originally postulated by Bekenstein in 1971,

who noted the similarity of the second laws, and an exact formula S = Ac3

4G~
was found by Stephen Hawking in 1974. It is certainly natural to at least

suggest that the secret to quantum gravity might lie in a thermodynamic

analysis, since the archetypal quantum gravitational object (the black hole)

accidentally turned out to work just like a thermodynamic system. However,

when one considers the nature of the method applied to black hole mechanics,

the similarity with thermodynamics is, in fact, not as surprising as it might

initially seem. Essentially the approach is to admit ignorance of the physics

behind the horizon and define the thermodynamic properties on the horizon.

In this sense, the black hole is methodologically treated as a thermodynamic

system to begin with, so one might well expect the form of the laws to resemble

one another.

As such, the laws of thermodynamics are just one instance of some more

general statements about energy and probabilities in complex systems, which

may have myriad applications. An obvious example is the second law, which

is just a fact about statistics. With that considered, the initially striking sim-

ilarity between black holes and thermodynamics might not be the statement
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that there is something intrinsically thermodynamical about black holes and

gravity, but rather an expression of the more trivial fact that similar theo-

retical methodology has been applied in the two contexts. For example, the

correspondence of area and entropy might just be that they have played the

same role in a particular mathematical strategy, applied in two very different

situations.

There is however, further evidence that black holes are truly thermody-

namic. To understand this, let us consider quantum field theory in the Rindler

and Swarzchild spacetimes.

3 Thermodynamics of Horizons

The purpose of the following discussion is two-fold: (1) elucidate and ex-

plain the origin of the thermodynamic properties of horizons and (2) calculate

general expressions for such quantities, for use in the discussion of a thermo-

dynamic interpretation of gravity in section 5.

3.1 Bogoliubov Transformations

The following discussion is similar, in parts, to that given in chapter 9.4 of [4].

Consider the Klein-Gordon equation for a free scalar field:

(�−m2)φ = 0 (3.1)

where for spacetimes of arbitrary curvature the d‘Alembertian is given by

� = ∇µ∇µ = gµν∇µ∇ν . (3.2)

As for QFT in Minkowski spacetime, there exist complete sets {fi(xµ)} and

{f ∗i (xµ)} of solutions to (3.1), which are the field excitation modes and conju-

gate modes respectively. In the flat case, however, the theory enjoys a Lorentz

invariant vacuum state and Fock-Hilbert space, despite the choice of a pre-

ferred quantisation frame (determined by selecting a time coordinate). The

difference here, in the general (not necessarily flat) case when ηµν → gµν as in

(3.2), is that we lose this invariance. Inertial observers can now have differ-

ent vacuum and multiparticle states; the particle number operator will have

different eigenvalues in each frame. The formal demonstration of this involves

what are known as Bogoliubov transformations, which relate alternative sets
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of basis modes. Suppose

φ =
∑
i

(âifi + â†if
∗
i ) (3.3)

φ =
∑
i

(âigi + â†ig
∗
i ) (3.4)

define two non-identical sets of orthonormal basis modes with vacuum states

|0f〉 and |0g〉 satisfying

âi|0f〉 = 0 and b̂i|0g〉 = 0

respectively. Orthonormality is defined by the vanishing of the Klein-Gordon

inner product:

(φi, φj) = −i
∫

Σt

(φi∂tφ
∗
j − φ∗j∂tφi)dn−1x (3.5)

where Σt is a hypersurface of constant t. Let multiparticle states |ni〉 be

defined by successive application of the creation operators:

|ni〉 =
1√
ni!

(
â†i

)ni
|0f〉 (3.6)

|ni〉 =
1√
ni!

(
b̂†i

)ni
|0g〉. (3.7)

The creation and annihilation operators satisfy the usual Clifford algebra

[âi, â
†
j] = δij [b̂i, b̂

†
j] = δij

[âi, âj] = 0 [b̂i, b̂j] = 0

[â†i , â
†
j] = 0 [b̂†i , b̂

†
j] = 0,

such that if the operators

N̂fi = â†i âi and N̂gi = b̂†i b̂i

act on the multiparticle states |ni〉, their eigenvalues are just the number of

particles ni. This can be seen by dragging the annihilation operator to the

right successively through the ni creation operators and applying the Clifford

algebra each time. Now we wish to to relate fi’s and the gi’s so that we may

consider transformations between the two bases. This can be achieved via the

expressions

fi = (α∗jigj − βjig∗j ) (3.8)

gi = (αijfj + βijf
∗
j ) (3.9)
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where the Einstein convention is in place over the repeated j indices. The ma-

trix components αij and βij are known as the Bogoliubov coefficients. Similar

relations hold for the distinct sets of operators:

âi =(αjib̂j + β∗jib̂
†
j) (3.10)

b̂i =(α∗jiâj − β∗jiâ
†
j). (3.11)

The Bogoliubov coefficients are given by

αij = (gi, fj) (3.12)

βij = −(gi, f
∗
j ). (3.13)

One can now see that something very strange is going to happen, since the

expression for each of the annihilation operators have non-zero contributions

from terms depending on the creation operators in the alternative quantisation,

which follows from the fact that the f -modes are not orthonormal to the g-

modes. This already suggests that one might count a different number of

particles depending on which set of operators have been chosen. We can now

consider the effect of the basis mode transformation on the Hilbert space. In

particular let us consider the number of g-basis particles we would expect to

see in the vacuum state associated with the f -modes. The expectation value

of the g-number operator for the state |0f〉 is found to be

〈0f |b†ibi|0f〉 =〈0f |(αij â†j − βij âk)(α∗ikâk − β∗ikâ
†
k)|0f〉

=βijβ
∗
ik〈0f |âj â

†
k|0f〉

=βijβ
∗
ik〈0f |â

†
kâj + δjk|0f〉

=βijβ
∗
ij

=|βij|2 (3.14)

where the Einstein convention once again applies and has been used in the

summation over k. In curved spacetime |βij|2 can be non-zero (see (3.13)) and

so we have seen the important consequence that the particle content of a given

region of a curved spacetime is observer dependent. Since we are ultimately

interested in the thermodynamics of horizons, the importance of the above

result in our discussion obviously has to do with the question of what the

Minkowski vacuum looks like to a Rindler observer. As one might expect

from the equivalence principle, it turns out that this question is more or less

physically equivalent to considering quantum field theory near a Schwarzchild

black hole. What we will find is that black holes are not literally black, and

empty spacetime for a Minkowski observer is in fact a thermal bath of particles

in the Rindler frame!
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3.2 The Unruh Temperature

One vitally important quantity pertaining to objective (2) above is the Unruh

temperature, the temperature associated with the Rindler horizon. It can be

shown [29] that a non-inertial observer in Minkowski spacetime should expe-

rience a non-zero temperature. This temperature is associated with a particle

content expected in the Minkowski vacuum when quantisation is carried out in

Rindler coordinates. In light of our discussion of the Bogoliubov transforma-

tions, one might want to draw the distinction between “Rindler particles” and

“Minkowski particles”. These would be defined as (multi)particle states corre-

sponding to the two distinct sets of excitation modes, which are the solutions

to the field equations of motion in the respective coordinate systems. One

can then make the statement that the Minkowski vacuum contains Rindler

particles, which can be viewed as a thermal system at finite temperature.

One way to calculate the temperature is by considering the power spectrum

of plane waves which are subject to a (time-dependent) redshift in the frame of

an accelerating observer. Such an approach is taken, among others, by Alsing

in [1] and Padmanabhan in [23]. An appropriately Doppler shifted propagating

wave is shown to have a Planckian power spectrum with temperature T = a/2π

in natural units. The calculation presented below, however, is closer to the

method originally used by Unruh [29] and a similar approach is taken in chapter

9.5 of [4] and 4.5 of [3]. Consider the equation of motion for a scalar field

(Klein-Gordon) in two dimensions of flat space-time, expressed in the inertial

(Minkowski) coordinates:

(∂µ∂
µ −m2)φ = (−∂t + ∂x −m2)φ = 0. (3.15)

where it will be convenient for our purposes to set m = 0. (3.15) can then be

expressed in Rindler coordinates using (2.8),

0 = (∂µ∂
µ)φ (3.16)

= (gµν∂
µ∂ν)φ (3.17)

= e−2aξ(−∂2
η + ∂2

ξ )φ. (3.18)

Let us define Minkowski modes fk as solutions to (3.15) by

φ(t, x) =

∫
dk
(
âkfk(t, x) + â†kf

∗
k (t, x)

)
(3.19)

and Rindler modes g
(1)
k as solutions to (3.16) existing in the x > 0 right wedge

in figure(2.1) by

φ(η, ξ) =

∫
dk
(
b̂

(1)
k g

(1)
k (η, ξ) + b̂

(1)†
k g

(1)∗
k (η, ξ)

)
(3.20)
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and g
(2)
k in the x < 0 left wedge,

φ(η, ξ) =

∫
dk
(
b̂

(2)
k g

(2)
k (η, ξ) + b̂

(2)†
k g

(2)∗
k (η, ξ)

)
. (3.21)

The respective vacuum states are determined by

âk|0M〉 = 0 (3.22)

b̂
(2)
k |0R〉 = b̂

(2)
k |0R〉 = 0 (3.23)

It was noted above that the discrepancy concerning the vacuum states in

two distinct second quantisation pictures arises due to the mixing of creation

and annihilation operators in transformations such as (3.10) and (3.11). So we

expect |0M〉 6= |0R〉.The mixing effect can be equivalently stated by saying that

the g-modes contain contributions from both positive and negative frequency

Minkowski modes. Unruh took the approach of finding a new set of Rindler

modes which can be expressed purely in terms of positive-frequency Minkowski

modes. These will come with a set of operators which are unmixed in the

Minkowski operators, such that they share the same vacuum state. In order

to achieve this, combine the g
(1)
k modes with the conjugate modes from the

left wedge with negative k and vice-versa,

h
(1)
k = Z(eπω/2ag

(1)
k + e−πω/2ag

(2)
−k) (3.24)

h
(2)
k = Z(eπω/2ag

(2)
k + e−πω/2ag

(1)
−k) (3.25)

Where Z is a normalisation constant. Using the orthonormality condition(
gk1 , gk2

)
= δ(k1− k2) for of the g-modes and

(
g∗k1 , g

∗
k2

)
= −δ(k1− k2), for the

conjugate modes, we have(
h

(1)
k1
, h

(1)
k2

)
= Z2(eπω/a − e−πω/a)δ(k1 − k2) (3.26)

= Z2[2 sinh(πω/a)]δ(k1 − k2) (3.27)

and since Z must be fixed such that
(
h

(1)
k1
, h

(1)
k2

)
= δ(k1 − k2), one obtains

Z =
1√

2 sinh(πω
a

)
. (3.28)

Unruh found the Bogoliubov transformations:

b̂
(1)
k =

1√
2 sinh(πω

a
)
(eπω/2aĉ

(1)
k + e−πω/2aĉ

(2)†
−k ) (3.29)

b̂
(2)
k =

1√
2 sinh(πω

a
)
(eπω/2aĉ

(2)
k + e−πω/2aĉ

(2)†
−k ) (3.30)

18



with precisely this normalisation. The number of Rindler particles in the

Minkowski vacuum is given by 〈0M |N̂R|0M〉, which we can now express in

terms of the ĉ and ĉ† operators. This gives

〈0M |b̂(1)†
k b̂

(1)
k |0M〉 =

e−πω/2a

2 sinh(πω/a)
〈0M |ĉ(1)

k ĉ
(1)†
k |0M〉

=
e−πω/2a

e(πω/a) − e−(πω/a)
〈kM |kM〉

=
1

e(2πω/a) − 1
δ(0) (3.31)

(we could have chosen a normalisation of the one particle states so that the

delta function would not appear). For a Planck distribution, the average

number of particles per mode with wave number k is given by the Planck

distribution function

N̄(k) =
1

e(~ω(k)/kBT ) − 1
. (3.32)

Comparing this with (3.31) and using dimensional considerations to restore

the hidden factor of c, one obtains

kBT =
~a
2πc

(3.33)

where T is the Unruh temperature, which in natural units is clearly just a/2π.

3.3 The Hawking Temperature

Given the similarity between the Schwarzchild and Rindler spacetimes, one

might expect an analogue of the Unruh effect in the vicinity of a Schwarzchild

Horizon. Indeed, a temperature analogous to (3.33) arises quite naturally

when one considers quantum field theory at the r = 2M surface. In fact one

would expect a temperature anyway given that the black hole has an entropy:

1

T
=
∂S

∂E
. (3.34)

In the classical analysis, energy leaving the black hole in the form of radiation

is forbidden, but in can be shown [26] that quantum field theory provides a

mechanism for the black hole to radiate. Pair creation at the event horizon

leads to matter effectively escaping from the hole, with the corresponding

black hole mass decrease resulting from negative energy falling permanently

inside. A calculation of the corresponding temperature was originally carried
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Figure 3.1: Euclidean Schwarzchild spacetime. The geometry looks like a cigar, tending to

a cylinder infinitely far from the horizon.

out by Hawking for Minkowski spacetime, but it has since been shown that the

same result may be obtained more easily by switching to a Euclidean metric

signature (+,+,+,+). This can be achieved by setting t = iτ so that t2 = −τ 2

and the Schwarzchild metric is now given by

ds2
E = (1− 2M

r
)dτ 2 +

dr2

1− 2M/r
+ r2dΩ2 (3.35)

with the new time coordinate. In plane polars this can be written7

ds2
E = ρ2κ2dθ2 + dρ2 (3.36)

where the coordinate κθ has inherited a periodicity in the Euclidean regime

such that κθ + 2π ∼ κθ and so θ ∼ θ + 2π
κ

. The quantum partition function

will be given by first taking the path integral over fields which are periodic in

Euclidean time (the field returns to an initial configuration ψ after one time-

loop round the cigar in Fig.(3.1)) and then integrating over all possible initial

field configurations ψ. So if Φ(0) = ψ = Φ(2π/κ) then

Z =

∫
dψ

∫
[DΦ]e−SE , (3.37)

where SE is the Euclidean action. Writing this in terms of the evolution

operator we have

Z =

∫
dψ〈ψ|e−(2π/κ~)Ĥ |ψ〉 = Tre−(2π/κ~)Ĥ (3.38)

7Surface gravity for the Swarzchild black hole is κ = 1
4M
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Then comparing this with the thermal partition function

Z = Tre−βĤ (3.39)

where β = (kBT )−1, we now make the identification

β =
2π

κ~
. (3.40)

This determines the Hawking temperature to be

TH =
~κ

2πkB
(3.41)

or TH = κ/2π in natural units, c.f. the Unruh temperature. For alternative

descriptions of a similar approach see [7] or [28]

3.4 Significance of The Thermodynamic Properties of Horizons

We have seen that, when both general relativity and quantum field theory are

taken into account, entropy and temperature are actually intrinsic features

of horizons. In light of these discoveries, the parallels between black hole

mechanics and thermodynamics look less like interesting coincidences and more

like exact identities. Black holes are not just like thermodynamic systems, they

literally are thermodynamic systems. Furthermore, we are now pushed to the

important and surprising conclusion that spacetime has microstructure, to wit

that there are fundamental degrees of freedom giving rise to the temperature

and entropy of horizons. It is open to debate what these degrees of freedom

are, but it seems almost certain that, as macroscopic observers, our knowledge

of them relies on the subject of the next section, namely the holographic

principle.

4 The Holographic Principle

4.1 Information Loss Paradox

Most of the recent work that has been done so far on emergent models of

gravity relies on the holographic principle. The principle, proposed in [27],

allows information in a bounded region V of finite volume to be contained en-

tirely on the boundary of that region ∂V. The suggestion that a fermion field

lattice theory in three spatial dimensions might be projected, without loss of

information, onto a 2-surface is discussed in [16]. So when we have horizons,
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the microscopic degrees of freedom inside the horizon are “projected” onto the

horizon itself. In this sense, the entropy of the horizon can be thought of as

measuring the lack of knowledge an observer has about microscopic degrees of

freedom in a given region, due to the presence of an horizon causally isolating

them from its interior. The analogy is drawn in [27] with a two-dimensional

hologram image, which encodes all the information in a region of three dimen-

sional space. There is necessarily some “blurring” of the image, limited by

the wavelength of the radiation used to create the image, which corresponds

with the fuzziness of quantum uncertainty, itself lower bounded by Planck’s

constant.

While there are numerous known applications of the Holographic principle,

not least the AdS/CFT correspondence, the idea is offered in [27] as a solution

to the black hole information loss paradox, which is the most relevant applica-

tion to the discussion here. The reason is that we would like extend the notion

of holography on the horizon to explain the emergence of classical space and

geometry (explained in detail in section 5). Suppose that an observer sees some

matter flow across an horizon. If we require that all observers can do physics

with the degrees of freedom that are physically accessible to them, entropy has

disappeared from the universe in the frame of this observer. A solution to this

problem comes in the form of holography, and we must attribute a change in

horizon entropy

δS = δE/T (4.1)

when an energy δE flows across an horizon of temperature T. In this way,

the information “lost into oblivion” is actually stored on the boundary of the

causally inaccessible region.

4.2 Holography and The Einstein-Hilbert Action

It is particularly interesting to study the significance of holography in the

context of an action formulation of Einsteinian gravity. A detailed discussion

of this, as well as similar considerations relevant to the more general class

of Lanczos-Lovelock actions, is given in the aptly named paper [22]. The

Einstein-Hilbert action is, in appropriate units,

AEH =

∫
V

dDx
√
−gLEH =

∫
V

dDx
√
−gR (4.2)

and so LEH can be written

LEH =
1

2
(δρµδ

σ
ν − δρνδσµ)Rµν

ρσ =
1

2
(δρµg

νσ − δσµgνρ)Rµ
νρσ. (4.3)
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It is straightforward to decompose LEH into bulk (quadratic in derivatives of

the metric) and surface (total derivative) term [22]:

LEH = 2∂ρ(
√
−gQµ

νρσΓµνσ)︸ ︷︷ ︸
Lsurface

+ 2
√
−gQµ

νρσΓµσλΓ
λ
νρ︸ ︷︷ ︸

Lbulk

(4.4)

where Qµ
νρσ = 1

2
(δρµg

νσ − δσµgνρ). Varying the action∫
V

d4x
√
−g(LEH + Lmatter) (4.5)

with respect to the metric one obtains the usual Einstein field equations. An

interesting fact pointed out by Padmanabhan, is that the relation

Lsurface = −∂i(gab
∂Lbulk
∂(∂igab)

) (4.6)

exposes an holographic relationship manifest in the EH action itself. With this

holographic relation, all the information can be encoded in either the bulk or

surface term alone.

5 Emergent Space and Entropic Gravity

5.1 Emergence of Space and The Newtonian Concepts

If the idea that gravity is an emergent phenomenon is to be taken seriously,

an immediate question one must ask is whether even simpler notions, such as

force, inertia or even space itself might be given an emergent description. This

is precisely the view offered in [30] and the approach, unsurprisingly, involves

holographic screens. For an arbitrary screen bounding an arbitrary region, one

might refer to the interior of the region as unemerged space and the exterior

of the region as emerged space. Consider, for example, a particle behind a

screen moving deeper into the unemerged space along an axis perpendicular

to the screen. The radial co-ordinate corresponding to this axis does not have

a meaningful empirical interpretation as a physical spatial co-ordinate, since

it can only be understood in terms of the holographic image of the particle on

the screen which is spatially fixed. In that sense, dropping the screen radially

inward corresponds to the emergence of physical space, as only outside the

screen do we have the usual physical (rather than holographic) interpretation

of spatial co-ordinates. Macroscopic space can then be thought of as foliated

into two dimensional surfaces, with the radial dimension emergent.

23



Figure 5.1: Image taken from [30]. A particle contributes entropy to the holographic screen.

5.1.1 The Principle of Inertia

Following Verlinde, let us consider moving a particle in the emerged part of

space towards an holographic screen, but let us assume that the screen is

spherical to begin with. As Bekenstein argued, when the particle is a distance

of one Compton wavelength ∆x = ~
mc

from the horizon of a black hole, it

contributes some entropy to the Horizon. Let us take this quantity to be

∆S = 2πkB. Assuming a similar line of reasoning holds for Rindler horizons,

one may use the Unruh temperature to introduce an acceleration a:

kBT =
~a
2πc

. (5.1)

Verlinde’s idea is to consider this as the temperature required to produce the

acceleration a. In that scenario we can define the entropic force by

F = T
∆S

∆x
(5.2)

and substituting for T, ∆x and ∆S we have

F =
1

kB

~a
2πc

2πkBmc

~
= ma (5.3)

as one would hope. Equations (5.2) and (5.3) together should be understood

as the definition of inertia in the thermodynamic paradigm.
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5.1.2 Gravitation and The Inverse Square Law

Let us now proceed in making some additional assumptions. First, it is nat-

ural to assume, given our knowledge of black holes and holography, that the

information stored on an horizon is proportional to the area of the horizon (the

basic idea behind the Bekenstein black hole entropy relation). This is equiv-

alent to saying that the increase in area of an horizon due to matter flowing

across it is linearly related to the mass of the matter. Let us postulate then

that for an horizon storing N bits of information, N ∝ A, i.e. N = αA if α

is a constant. It will be convenient for the following derivation, to define now

another constant G = c3/α~ so that

N =
Ac3

G~
. (5.4)

Second, let us assume an equipartition of energy on the horizon such that the

total energy is given by

E =
1

2
NkBT (5.5)

with the purpose of this assumption being the definition of the temperature

in terms of the information stored on the horizon. Now we can simply write

Fgravity = T
∆S

∆x
(5.6)

and making the appropriate substitutions yields

Fgravity =

(
2E

NkB

)(
2πkBmc

~

)

=
4πGm

A

E

c2

=
GmM

R2
(5.7)

where in the last line the identifications A = 4πR2 and E = Mc2 have been

made. The energy E should thus be considered as the holographic projection

of a mass M at the centre of the spherical screen, evenly distributed over

its surface. As is pointed out in [30], Newtonian principles have played a

part in the realisation of the laws of black hole mechanics and holography

anyway, so what is surprising and interesting here is not that one can arrive

at Newton’s gravity from black holes and holography, but rather that this

particular approach treats gravity as an entropic force.

25



5.1.3 The Newton Potential

It is also suggested in [30] that (5.3) be reformulated in terms of the newton

potential by expressing the acceleration as the gradient a = −∇Φ such that

∆S

n
= −kB

∆Φ

2c2
(5.8)

This relation is crucial in understanding the interplay between emergent space,

thermodynamics and gravity. What (5.8) basically suggests is that gravity

arises due to the loss of information incurred with course graining (parame-

terised by Φ). A negative change in the Newton potential reflects a correspond-

ing positive change in the entropy, so the gravitational field strength is directly

associated with the information available to an observer in the emerged part

of space! As we course grain, we are (virtually) displacing the screen inwards,

more space is considered to have emerged and the area of the holographic

screen has decreased along with the configuration space of the bounded re-

gion. That such a relationship can be shown to lead to the laws of gravitation

is remarkable and profoundly elegant. Although the thermodynamic interpre-

tation of gravity has been known since Jacobson 1995 and clues to that effect

even earlier (Hawking, Bekenstein, Unruh etc.), the full implications of (5.8)

are truly striking and if correct, provide a revolutionary understanding of the

nature of gravity.

It is important to note that Verlinde does not consider this process to be

dynamical [31] although others [25], [17] have suggested it might be. One

might compare the process of emergence described above with the dynamical

process of a black hole consuming more and more of the space around it as its

area increases with its entropy. In such a scenario, space might be considered

as dynamically un-emerging.

5.1.4 Loop Quantum Gravity as a Candidate Microscopic Theory

It should be noted that all of the results above have been arrived at from

large scale phenomenological considerations; the holographic principle has en-

abled such work to be done without knowledge of a fundamental microscopic

theory. For example, it was assumed that N bits of information are stored

on an holographic screen, but no explanation has been given as to how this

information is stored or what the fundamental horizon degrees of freedom ac-

tually are. Answers to these questions have been offered by Smolin [25]. The

basic idea is to consider the holographic boundary as a punctured two-surface

and define a Hilbert space on the boundary by assuming that each puncture
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can be related to the edge of a spin network inside the bounded region by

holography. It is assumed that each spin network is associated with a j = 1/2

(two-dimensional) representation of SU(2), and it is thus possible to define

Hboundary as the direct sum of N two-dimensional Hilbert spaces. So the N

spin states (each one | ↑ 〉 or | ↓ 〉) associated with N punctures store N bits of

information on the boundary. We can thus write the entropy of the boundary

S = ln dimHboundary = N ln 2 (5.9)

5.2 Objections and Replies Concerning The Newtonian Limit

There have already been some notable objections [10, 6] raised against the

model put forward by Verlinde. One line of attack [10] has been to criticise

the causal relationship between ∆x and ∆S. Verlinde postulates a change in

horizon entropy resulting from a change in the radial distance of the particle

from the screen, but then uses that relationship to argue that the change in

entropy results in an attractive force on the particle. The accusation made

by Gao is that there is a contradiction in [30], in that the logic starts out as

∆x → ∆S, then becomes ∆S → ∆x with gravity as entropic. Furthermore,

the causal chain ∆x → ∆S → F would seem to imply that when ∆x = 0 we

have ∆S = 0 and therefore F = 0, which is false by observation because it

would imply a zero force between objects at rest to one another.

The first of these objections is not, however, wholly convincing. There is

no inherent contradiction in [30], since ∆S ↔ ∆x is simply not inconsistent:

this is precisely the scenario one has for the polymer in a heat bath where

an increase in the polymer’s entropy results in a decrease in its extension and

pulling the polymer out straight results in a decrease in the entropy8. There

is a kind of logical equivalence between the two statements. Verlinde has just

calculated the relationship between ∆S and ∆x by considering one of the

causal directions (again similar to the case of the elastic polymer where one

considers the work done in extending the polymer by a given amount and the

corresponding change in entropy, and then expresses the force in terms of those

quantities).

The second objection does point out a more legitimate problem, since it

seems circular to suggest that gravity arises as a result of a change in entropy,

itself a result of particles and objects moving closer to one another. Provided,

however, that there is ultimately some explanation from an underlying micro-

8Although the entropy of the universe as a whole still increases.
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scopic theory of why spacetime spontaneously increases its entropy9, then the

problem is not quite fatal.

Another valid point [10], is that in the case of the polymer, there are elec-

trostatic interactions between the molecules - the entropic force is not magical!

While an expression can be found in terms of change in entropy and extension,

there still needs to be some underlying fundamental force at play. In the case

of gravity it is unclear what this would be, but again one might hope an answer

would come from the theory of spacetime microstructure. Clearly if gravity is

not fundamental, then it must ultimately be reduced to another fundamental

force.

Others have noted [15, 6] that Verlinde’s assumption of a linear dependance

of ∆S on ∆x needs justification for two reasons. First, it is not clear that

one can extend Bekenstein’s argument to particles far away from the screen.

Second, one might expect the entropy to vary with area A (quadratic in x)

according to the Bekenstein-Hawking formula, rather than x. Lee actually

answers this objection by suggesting that Verlinde’s holographic screen be

identified with Rindler horizons10. The Rindler observer measures ∆x = c2/a

for a particle on the horizon, and so using ∆E = T∆S one has:

mc2 = ∆E = TU∆S =
~a

2πckB
∆S (5.10)

and thus

∆S =
2πckBm∆x

~
. (5.11)

as claimed by Verlinde. Further details, and other lines of argument to the

same conclusion are given in [15].

5.3 Einsteinian Gravity From Thermodynamics

It had in fact been shown [14] prior to the work discussed above concern-

ing the Newtonian limit, that the Einstein equations fit naturally into a

thermodynamic interpretation, namely as an equation of state analogous to

p = T (∂S/∂V ). The derivation considers Rindler horizons while assuming the

area-entropy dependence dS ∝ δA, the equation δQ = TdS from thermody-

namics and the Unruh temperature (3.33). As explained already in this review,

it is a fundamental feature of any thermodynamic analysis, that heat is energy

concerned with microscopic degrees of freedom ignored by the macroscopic
9This is what is missing in comparison with the polymer whose entropy increases due to thermal collisions

with other particles in the bath.
10It seems clear from [31] that Verlinde already has this idea in mind. Nevertheless, the explanation in

[15] details why this solves the problem.

28



observer (Boltzmann principle). In the following analysis, Rindler horizons

(null hypersurfaces) play the role of obscuring fundamental degrees of freedom

in the unemerged region of space (the role usually played by some diather-

mic barrier). The “heat” δQ is the energy flowing across the horizon. For

some essential background concerning the structure of geodesic congruences,

see Appendix B.

Consider now the existence of Rindler horizons at every point in spacetime.

One can, of course, in principle, always find a local Rindler frames (LRFs) cor-

responding to any acceleration vector in this scenario simply by considering

an observer with the appropriate acceleration. We would also like to consider

the tangent space of each point on the manifold as a local Minkowski plane,

which we may do by considering a free falling frame (FFF) in the usual way.

If we consider the point P to be the stationary point on the hyperbolic tra-

jectory of the Rindler observer as viewed in the local Minkowski FFF, we can

assume that the expansion θ and shear σ of a past direced null congruence

(see Appendix B) vanish at P11. Now we have a situation which is familiar

from our discussion of the Unruh effect and we may attribute a temperature

to the Horizon given by (3.33). Notice also that, since the Minkowski plane

has Lorentz symmetry, there exist boost generating Killing vectors (see Ap-

pendix). Let χµ be the Killing vector field generating the boost responsible for

the existence of the Rindler horizon. Then the kinetic energy δQ associated

with a Rindler observer is just Tµνχ
µ integrated over the Horizon where Tµν

is the energy-momentum tensor for the “Rindler particles” in the Minkowski

vacuum state. We have12

δQ = TdS = (~κ/2π)dS =

∫
H
Tµνχ

µdΣν (5.12)

where dΣµ are elements of the Horizon generators. Let us now define a tangent

vector kµ such that χµ = −κλkµ. Then we may express dΣµ in terms of this

vector and the Horizon area element dA as dΣµ = kµdλdA. Replacing these

quantities in (5.12) yields

dS = −2π

~

∫
H
λTµνk

µkνdλdA. (5.13)

Now from the proportionality of the horizon area and entropy we can write

dS = ηδA for some unknown constant η so that (5.13) becomes

δA = −2π

η~

∫
H
λTµνk

µkνdλdA. (5.14)

11Jacobson describes this as “local equilibrium” in analogy to traditional thermodynamics.
12with units such that kB = c = 1.
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Now, let us rewrite the area variation in terms of the expansion of the horizon

generators,

δA =

∫
H
θdλdA (5.15)

such that (5.14) becomes∫
H
θdλdA = −2π

η~

∫
H
λTµνk

µkνdλdA. (5.16)

Since the objective is to recover Einstein’s equations, the next step is to in-

troduce the Ricci tensor. In other words, we want to see (in equilibrium) how

spacetime needs to curve so that the horizon area varies with energy flowing

across it, such that the two are proportional. Jacobson considered the Ray-

chaudhuri equation (Appendix B.4) near enough to P that the second order

terms in θ and σ can be neglected. This gives

dθ

dλ
= −Rµνk

µkν , (5.17)

which implies θ = −λRµνk
µkν up to a constant shift, which can be scaled to

zero. Substituting into (5.16) yields

Rµνk
µkν =

2π

η~
Tµνk

µkν . (5.18)

This is required to hold for all null vectors kµ, so we have, for some function f

2π

η~
Tµν = Rµν + fgµν (5.19)

where one recovers (5.18) by multiplying by kµkν from the right and using

the fact that null vectors satisfy gµνk
µkν = 0, by definition. By conservation

of energy and momentum, taking the divergence of (5.19) in any index must

give zero, so ∇µ(fgµν) = ∇µR
µν and similarly for µ↔ ν. Now by the Bianchi

identity for the Ricci tensor and the fact the ∇µg
µν = 0, we have

∇µf = 0. (5.20)

The solution for f must be diffeomorphism invariant and since f is clearly

scalar, we construct a solution in terms of R = Rµ
µ,

f = −R/2 + Λ (5.21)

where Λ is an arbitrary integration constant, whose origin is essentially mys-

terious. Equation (5.19) now reads

Rµν − 1/2Rgµν + Λgµν =
2π

η~
Tµν (5.22)
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which is Einstein’s equation with η = (4G~)−1, the inverse of the square of

twice the Planck length.

We have seen that the celebrated geometrical theory of gravity provided

by general relativity in fact follows from thermodynamic considerations alone,

once quantum field theory is taken into account in the Rindler coordinates.

This remarkable fact has provided the basis for an understanding of Einsteinian

gravity in terms of the foliated emergent space model [30] discussed in the

preceding section. In that case, the reasoning is applied to timelike, rather

than null screens.

5.4 Gravitational Entropy from Horizon Thermodynamics

Cconsider a virtual displacement of an horizon such that it engulfs some matter

in the surrounding region. The change in entropy is δS = δE/T and it natural

to express dE (the energy flux across the horizon) as proportional to the energy

momentum tensor Tµν , and a unit vector normal to the horizon nµ. Specifically,

in the LRF we have:

dE =
√
−gTµνnµnνd3x (5.23)

For an explicit demonstration of Padmanabhan’s approach, the most imme-

diate requirement is a definition of the entropy of a given region of spacetime.

Since we wish to avoid explicit reference to a theory of spacetime microstruc-

ture, let us follow Padmanabhan in the top-down approach and make use of

our knowledge of horizon thermodynamics. In line with traditional thermody-

namics, specifically what is required is an entropy functional. By considering

the virtual displacement of an horizon and the resulting change in entropy, we

can construct such a functional in some parameter nµ (and derivatives ∇νn
µ)

such that the diffeomorphism xµ → xµ +nµ might be thought of as the analog

of elastic deformation of a material. So nµ measures the (virtual) displace-

ment normal to a null surface (our horizon). We will find the gravitational

field equations by the extremisation of the entropy functional. The basic idea

is to assume S = Smatter+Sgrav and postulate the form of each term separately.

If we define β ≡ T−1 = 2π/κ then from (4.1) we have

δSmatter = βδE =

∫ β

0

dtδE

and using (5.23) this can be written∫
dSmatter =

∫ β

0

dt

∫
d3x
√
−gTµνnµnν (5.24)
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which generalises in spacetime dimension D ≥ 4 to:

Smatter =

∫
V

dDx
√
−gTµνnµnν (5.25)

for some spacetime volume V. To determine Sgrav we follow the approach

used in [23] and [21] by first postulating that the general form is quadratic in

derivatives of nµ:

Sgrav = −4

∫
V

dDx
√
−gPµνρσ∇ρn

µ∇σn
ν (5.26)

and then impose constraints to determine Pµν
ρσ. Phadmanabhan points out

the unusual situation that the extremum principle is required to hold for all

vectors nµ even though the entropy will be a functional precisely in the vector

nµ, i.e. S = S[nµ]. We are actually looking for a condition on the background

metric, rather than nµ. To this end, we will require that Pµνρσ has all the

symmetries of the Riemann tensor and that it is divergence free in all indices

i.e. that ∇µP
µνρσ = 0 holds for interchange of any index with µ. The most

general tensor satisfying these constraints can be expressed as a power series:

P µνρσ(gαβ, Rαβγδ) = c1

(1)

P µνρσ(gαβ) + c2

(2)

P µνρσ(gαβ, Rαβγδ) + ... (5.27)

where the third term would be quadratic in Rαβγδ, the fourth would be cubic

and so on. The mth order term is given by:

(m)

P ρσ
µν ∝ δρσµ3...µ2mµνν3...ν2m

Rν3ν4
µ3µ4

...Rν2m−1ν2m
µ2m−1µ2m

(5.28)

and comparing this expression with themth order Lanczos-Lovelock Lagrangian:

L(m) =
1

64π
2−mδµ1µ2...µ2mν1ν2...ν2m

Rν1ν2
µ1µ2

Rν2m−1ν2m
µ2m−1µ2m

(5.29)

we can write
(m)

P ρσ
µν =

∂L(m)

∂Rµν
ρσ
. (5.30)

We are now ready to make sense of an expression for the total entropy.

Using (5.26) and (5.25) we can write:

S[nµ] = Sgrav+Smatter = −
∫
V

dDx
√
−g(4Pµν

ρσ∇ρn
µ∇σn

ν−Tµνnµnν). (5.31)

Einstein’s gravity appears in D=4, where we take P µνρσ as dependent on

the metric alone - i.e. the first order term in (5.27). Setting c1 = 1 and
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using (5.30) and (5.29) to evaluate
(1)

P ρσ
µν , we can write the entropy functional

for Einstein’s theory explicitly as:

S[nµ] = −
∫
V

d4x
√
−g
(

1

8π
(δρµδ

σ
ν − δρνδσµ)∇ρn

µ∇σn
ν − Tµνnµnν

)
(5.32)

It is worth noting at this stage that ultimately one would hope to determine

P µνρσ directly from some underlying microscopic theory. The construction

here is essentially a toy model and this is a limitation which seems to apply to

much of the work on emergent gravity to date. On the other hand, it is easy

to imagine how these ideas could be incorporated into a fundamental quantum

theory (although practically implementing this could be non-trivial). For ex-

ample, one could try to derive (5.31) or equivalent from such a theory (above

we have merely postulated a sensible form which will give the gravitational

field equations when we impose entropy maximisation δS = 0) . It would be

a very important finding if (5.31) or (5.32) was seen to follow from something

like Loop Quantum Gravity or Causal Set theory for example.

5.5 Derivation of the Gravitational Field Equations

We wish now to impose that the entropy is extremal and that this holds for all

null vector fields, so we require that δS = 0 with the additional constraint that

nµδn
µ = 0 is satisfied. To achieve this we use a Lagrange multiplier method.

The variation in (5.31) is thus:

δS = −2

∫
V

dDx
√
−g(4Pµν

ρσ∇ρn
µ(∇σδn

ν)− Tµνnµδnν − λ(x)gµνn
µδnν).

(5.33)

Integrating by parts to move the derivative off the variation in nν we obtain

(ignoring a vanishing boundary term as usual):

δS = 2

∫
V

dDx
√
−g
[
4∇σPµν

ρσ∇ρn
µ + 4Pµν

ρσ∇σ∇ρn
µ + (Tµν +λ(x)gµν)n

µ
]
δnν

and since ∇σPµν
ρσ = 0, the first term vanishes leaving:

δS = 2

∫
V

dDx
√
−g
[
4Pµν

ρσ∇σ∇ρn
µ + (Tµν + λ(x)gµν)n

µ
]
δnν .

Requiring that δS vanish for arbitrary δnν yields:
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0 = 4Pµν
ρσ∇σ∇ρn

µ + (Tµν + λ(x)gµν)n
µ

= 2Pµν
ρσ(∇ρ∇σ −∇σ∇ρ)n

µ − (Tµν + λ(x)gµν)n
µ

Since Pµν
ρσ is antisymmetric in ρ and σ. We can now recognise the commu-

tators of the covariant derivatives and rewrite the equation in terms of the

Riemann tensor using [∇σ,∇ν ]uµ = Rρ
µσνuρ, reducing the last line above to:(

2Pν
αβγRµ

αβγ − T µν + λδµν

)
nµ = 0 (5.34)

By Lorentz invariance, this holds for all nµ, so

2Pν
αβγRµ

αβγ − T µν + λδµν = 0. (5.35)

It can be shown [23] that in the general case one obtains the Lanczos-Lovelock

field equations:

Rµ
ν −

1

2
L =

1

2
T µν + Λδµν (5.36)

where Rµ
ν = Pν

αβγRµ
αβγ. Let us see for ourselves how this works out in

the case of Einstein’s equations. We want the first order Lanczos-Lovelock

Lagrangian and so Pν
αβγ = 1

32π
(δν

βδαγ − δνγδαβ). Then (5.35) becomes

0 =
1

16π
(δν

βδαγ − δνγδαβ)Rµ
αβγ − T µν + λδµν

=
1

8π
Rµ
ν − T µν + λδµν

= Rην − 8πTην + 8πgηνλ (5.37)

where an index has been lowered using gηµ. Now if we introduce a constant13

Λ = 1
2
R + 8πλ, (5.37) becomes

Rην − 8πTην + gην(Λ−
1

2
R) = 0 (5.38)

Rην − gην
1

2
R + gηνΛ = 8πTην (5.39)

as required. So we have seen that Einstein’s geometrical theory of gravity

follows from extremisation of the entropy of spacetime and matter. Further, it

is clear that this is not some strange coincidence, but must hold in general for

any theory of gravity that can be formulated by means of an action constructed

in arbitrary orders of derivatives of the metric and in arbitrary dimensions

(Lanczos-Lovelock class of theories).
13That Λ is constant follows from the fact that the Einstein and stress energy tensors are both divergence

free.
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6 Summary and Conclusions

The mathematical arguments presented in this review show that a thermody-

namic (entropic) description of gravity at least works on a formal level. There

is a deep, a priori connection between the maximisation of entropy and the

fact the matter curves spacetime. Additionally, there is a Newtonian limit in

which one recovers the appropriate equations. Whether we see this as “entropy

change causes gravitation” or “gravitation causes entropy change” remains de-

batable [10]. As explained in section 5.2 there is also the possibilty that gravi-

tation simply is a change in the spacetime-matter entropy functional, i.e. that

each causes the other. There have also been concerns [10] about the role of the

Unruh temperature in the derviations by Jacobson and Verlinde, particularly

concerning its use in the non-relativistic limit. The current situation may be

summarised as follows:

• It is unclear what the microscopic degrees of freedom giving rise to the

entropy and temperature of horizons are. The “smearing out” of the

holographic image serves to obscure the nature of the interior of a black

hole and the argument for the existence of spacetime microstructure is

top-down.

• Most important is an understanding of what the temperature of spacetime

really is; the energy inducing the state transitions of, say, a polymer in a

heat bath, is the heat of the bath. If gravity is entropic, a good (better)

explanation needs to be given as to what is driving the force.

• According to Verlinde’s reasoning, gravity is related to the information

(not)available to observers with a course-grained picture. This is equiv-

alent to stating that the force arises as a result of an entropy gradient,

itself the result of a gradient in the number of degrees of freedom available

to the observer.

• Regardless of whether it is correct to consider gravity as an entropic force,

the holographic mechanism for the emergence of space provided in [30]

is promising. It seems likely that the harmony between quantum field

theory and gravity comes in the form of holograpy.

• In [30], it is explained that the emergent model can be given a string-

theoretic interpretation, with D-branes as the holographic screens, open

strings living on the inside (unemerged region) and closed strings and

gravity on the outside (emerged region). It has been suggested [25] that
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LQG could provide the microscopic theory and it has been shown that

one can run Verlinde’s argument in that scenario. The model is also com-

patible, in principle, with causal set theory, CDT’s and pretty much any

background independent theory that deals with a spacetime microstruc-

ture. Verlinde’s holographic space scenario would allow such a theory to

explain why we live in a classical spacetime, while they fundamentally

deal with something quite different [25].

There is some work to be done then, before the emergent paradigm can be

fitted into a complete theory of everything. Its main strength is that it would

also make sense of the apparent thermodynamic nature of horizons. There are

some very intriguing mathematical results, but precisely what they mean for

the nature of gravity is still contentious and not fully understood.
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A Appendix A

A.1 Flows

For an arbitrary vector field V , there exist integral curves pi(λ), defined by

the condition that their tangent d
dλ
|p at any point p on the manifold is simply

Vp, the vector field evaluated at p. In a coordinate chart such that the curve

can be written xµ(λ) it follows that

dxµ(λ)

dλ
= V µ(x(λ)) (A.1)

where V µ are the components of the vector field V . Solving for xµ with initial

value xµ(0) = xµ0 defines a flow by

xµ(λ) = σµV (λ, x0) (A.2)

such that λ parameterises a map along an integral curve defined by the vector

field V . For a given fixed value of lambda this defines a diffeomorphism σV
mapping points on the integral curve to points a fixed distance “further along”

the integral curve.

A.2 Killing Vectors

If the diffeomorphisms generated by a vector field ξ in the manner described

above are symmetries of the metric (isometries), then ξ is known as a Killing

vector field. Formally, a Killing vector field ξ may be defined by the condition

that the Lie derivative with respect that vector field vanishes acting on the

metric:

£ξgαβ ≡ lim
ε→0

(
σ(ε)∗gαβ|p′ − gαβ|p

ε

)
= 0 (A.3)

where σ(ε)∗gαβ|p′ is the pullback of the metric two form to the tangent space

at p (a diffeomorphism generated by a flow on ξ).

A useful corollary is

ξα;µν + ξα;νµ = 0. (A.4)

Together with the fact that [∇µ,∇ν ]ξα = Rα
µνσξαξ

σ (A.4) implies

2ξα;µν = Rα
µνσξαξ

σ

ξαξα;µν = ξαRαµνσξσ

ξα;µν = Rαµνσξ
σ

for any Killing vector ξ.
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Another important fact is that if the metric is independent of a coordinate in

a spacetime chart, then there necessarily exists a corresponding Killing vector

field defined over that chart. For example, the Schwarzchild spacetime has a

Killing vector field whose components are given by tµ = ∂xµ

∂t
and which satisfies

gµνt
µtν = 1− 2M

r
, i.e. it is timelike in the r > 2M region, null at r = 2M and

spacelike inside the black hole where r < 2M . More generally, if the black hole

is rotating (Kerr) we have a Killing vector with components ξµ = tµ + Ωφµ

where φµ = ∂xµ

∂φ
and φ is the usual polar coordinate.

A.3 Surface Gravity

For a Killing vector ξ we may define a quantity κ by:

ξµ;ν ξ
ν = κξµ. (A.5)

It follows from Frobenius’s theorem [24] that this implies the explicit form of

the surface gravity is

κ2 = −1

2
ξµ;νξα;β. (A.6)

Physically, the surface gravity of a black hole is the force required at infinity to

keep a particle exactly on the horizon, divided by the mass of the particle. The

name comes from the fact that this is precisely the acceleration due to gravity

experienced at the horizon (or surface of, say, a planet). For the Schwarzchild

metric these equations hold for the timelike killing vector t.
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B Appendix B

The following discussion is similar, in parts, to both [4] and [24].

B.1 Geodesic Congruence

Figure B.1: Two neighbouring geodesics whose separation evolves with τ .

A set of non-intersecting geodesic curves, such that any point in a given

region of spacetime lies on exactly one the curves, is known as a geodesic con-

gruence. Consider two members of such a congruence as depicted in Fig.(B.1).

Let us assume, for now, that we are working with timelike geodesics, param-

eterised by the proper time τ . O and P are separated by the displacement

vector with components ξµ at points where τ = τ0 and τ = τ1. The value of

ξµ depends, therefore, on τ such that

ξµ(τ1) = ξµ(τ0) + ∆ξµ(τ0). (B.1)

We may define a tensor Bµ
ν satisfying

∆ξµ = Bµ
ν(τ0)ξν(τ0)∆τ +O(∆τ 2) (B.2)

and
dξµ

dτ
= Bµ

ν(τ)ξν +O(ξ2) (B.3)

if ξµ is sufficiently small. Let us now define a (timelike) tangent vector field

uµ such that uµ = dxµ/dτ everywhere along the curve. ξµ will not, in general,

be parallel transported along the congruence for arbitrary evolution of the

geodesics. The purpose of Bµ
ν then, is to capture the nature of the evolution,

via

ξµ;νu
ν = Bµ

νξ
ν (B.4)
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where the failure of ξµ to be parallel transported is expressed by the non-

triviality of Bµ
ν , i.e. that it is non-vanishing in general.

Let us now consider the decomposition of Bµ
ν into a trace θ = Bµ

µ,

traceless-symmetric and antisymmetric parts respectively:

Bµν =
1

3
θhµν + σµν + ωµν (B.5)

where hµν is the transverse part of the metric, satisfying hµνk
ν = 0 (just the

spatial parts if the geodesics are timelike). The quantity θ, and matrices with

components σµν and ωµν are known as the expansion, shear and rotation

respectively.

B.2 Expansion

One can gain a more intuitive understanding by considering, geometrically, a

two-dimensional cross-section of the congruence (an horizontal slice in Fig.(B.1)).

For simplicity, take the space to be flat so that hµν = δµν and the shear and

rotation to be zero. Then

Bµν =

(
1
2
θ 0

0 1
2
θ

)
. (B.6)

Now imagine turning the displacement vector ξ through 2π about O, to trace

out a circle of radius r0 =
√
ξµξµ, defined by ξµ = r0(cosφ, sinφ), in the

plane orthogonal to the geodesic. Combining (B.2) and (B.6) we see that for

a perturbation of ξ,

∆ξµ =
1

2
θr0∆τ(cosφ, sinφ) (B.7)

so that the resulting change in area, to first order in ∆τ is

∆A = π(r2
1 − r2

0)

= π
(

(r0 +
1

2
θr0∆τ)2 − r2

0

)
= πθr2

0∆τ

= θA0∆τ. (B.8)

From this we understand the name expansion, since θ measures the proper

rate of change in area,

θ =
1

A0

∆A

∆τ
. (B.9)

This can be extended naturally from our heuristic to the case of three spatial

dimensions (one of the spatial dimensions in the diagram has been used to
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represent time). In the case of four-dimensional spacetime, the expansion is

given by

θ =
1

V0

∆V

∆τ
, (B.10)

where V is just the analogous volume.

B.3 Shear

In the case that the expansion and rotation are vanishing,

Bµν = σµν =

(
σ+ σ×
σ× −σ+

)
(B.11)

such that Tr(B) = 0 and Bµν = Bνµ, in accordance with (B.5). This time,

combining with (B.2) we have

∆ξµ = r0∆τ(σ+ cosφ+ σ× sinφ,−σ× + sinφ+ σ cosφ). (B.12)

After the perturbation,

r1(φ) = r0(1 + σ+∆τ cos 2φ+ σ×∆τ sin 2φ), (B.13)

which is an ellipse, with its major axis at angle φ on fig(B.2).

Figure B.2: The effect of shear

B.4 Raychaudhuri’s Equation

We now derive an important result, the differential equation describing the

evolution of the expansion. From (B.4), it follows that Bµ
ν = ∇νu

µ and thus

the evolution equation for Bµν is given by

D(Bµν)

dτ
= uσ∇σBµν = uσ∇σ∇νuµ. (B.14)
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Now using the relation of the commutator of the covariant derivatives to the

Riemann tensor we have

uσ∇σ∇νuµ = uσ(∇ν∇σuµ +Rρ
µνσuρ)

= ∇ν(u
σ∇σuµ)− (∇νu

σ)(∇σuµ)−Rρµνσu
σuρ

D(Bµν)

dτ
= −Bσ

νBµσ −Rρµνσu
σuρ. (B.15)

The trace of this equation is

dθ

dτ
= −BσνBνσ −Rσνu

σuν (B.16)

Recalling that the transverse metric is purely spatial for timelike geodesics,

hµνh
µν = 3, so after canceling several terms, one obtains Bσ

νBνσ = 1
3
θ2 +

σνσσνσ − ωνσωνσ where the signs have been fixed by the respective symme-

try or antisymmetry in the indices. With this substitution, (B.16) becomes

Raychaudhuri’s equation for timelike goedesics:

dθ

dτ
= −1

3
θ2 − σνσσνσ + ωνσωνσ −Rµνu

µuν (B.17)

A similar line of reasoning yields the Raychaudhuri equation for a congruence

of null geodesics. The calculation is practically slightly more complicated, in

that it is less trivial to define the transverse spacetime (in the above case it

was simply the spatial components), but the logic of the derivation and the

result are very similar:

dθ

dλ
= −1

2
θ2 − σνσσνσ + ωνσωνσ −Rµνu

µuν (B.18)

The only differences are the coefficient in the first term on the RHS due to the

fact that the transverse space is two-dimensional and the alternative parame-

terisation such that the LHS is a derivative with respect to an affine parameter

λ rather than the proper time.

B.5 Focusing Theorem

Let us consider an important implication of the Raychauduri equations. For

a null[timelike] congruence which is hypersurface orthogonal (vanishing ro-

tation), given the null[strong] energy condition, we have that Rµνu
µuν =

8πG(Tµν − 1
2
Tgµν)u

µuν ≥ 0 and hence that dθ
dλ
≤ 0 [ dθ

dτ
≤ 0] so the expan-

sion is decreasing with a corresponding increase in the affine parameter. This
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implies an attractive nature of gravity, manifest in the focusing of geodesics.

We find from (B.18) that, in the null case, dθ
dλ
≤ −1

2
θ2 and from (B.17), in the

timelike case, dθ
dτ
≤ −1

3
θ2. These imply θ−1 = θ0 + λ/2 and θ−1 = θ0 + τ/3

respectively. If the congruence is initially converging, then in finite proper

time, the geodesics will necessarily cross at some point, known as a caustic.

43



References

[1] P.M. Alsing and P.W. Milonni. “Simplified derivation of the Hawking-

Unruh temperature for an accelerated observer in vacuum”. arXiv:quant-

ph/0401170v2, Am.J.Phys. 72 1524-1529, (2004).

[2] J.D. Bekenstein. “Black holes and entropy”. Phys. Rev D 7, 2333, (1973).

[3] N.D. Birrell and P.C.W Davies. Quantum Fields in Curved Space. Cam-

bridge, (1982).

[4] S.M. Carroll. Spacetime and Gemometry: An Introduction to General

Relativity. Addison Wesley, (2003).

[5] B. Carter, S. W. Hawking, and J.M. Bardeen. “The Four Laws of Black

Hole Mechanics”. Commun. math. Phys. 31, 161-170, (1973).

[6] H. Culetu. “Comments on “On the Origin of Gravity and the Laws of

Newton”, by Erik Verlinde”. arXiv:1002.3876v2 [hep-th], (2010).

[7] A. Dabholkar. “Quantum Black Holes”. http://www.theorie.physik.uni-

muenchen.de/activities/schools/archiv/sfp10/lectures/dabholkar lectures.pdf,

(2010).

[8] P.C.W Davies. “Scalar particle production in Swarzchild and Rindler

metrics”. Phys. A 8, 609, (1975).

[9] S.A. Fulling. “Nonuniqeness of Canonical Field Quantization in Rieman-

nian Space-Time”. Phys. Rev. D7 #7, 2850-2862, (1973).

[10] S. Gao. “Comment on “On the Origin of Gravity and the Laws of Newton”

by Erik P. Verlinde”. arXiv:1002.2668v1 [physics.gen-ph], (2010).

[11] J.J. Halliwell. “How the Quantum Universe Became Classical”.

arXiv:quant-ph/0501119v1, Contemporary Physics 46, 93-104, (2005).

[12] S. W. Hawking. “Black holes and thermodynamics”. Phys. Rev. D 13,

191197, (1976).

[13] W. Israel. “Third Law of Black-Hole Dynamics: A Formulation and

Proof”. Phys. Rev. Lett. 57, 397399, (1986).

[14] T. Jacobson. “Thermodynamics of space-time: The Einstein equation of

state”. (1995).

44



[15] J. Lee. “On the Origin of Entropic Gravity and Inertia”.

arXiv:1003.4464v2 [hep-th], (2010).

[16] L.Susskind. “The World as a Hologram”. arXiv:hep-th/9409089, (1994).

[17] F. Markopoulou, S. Severini, and T. Konopka. “Quantum Graphity:

a model of emergent locality”. arxiv:0801.0861, Phys.Rev.D77:104029,

(2008).

[18] D.A. McQuarrie. Statistical Mechanics. University Science Books, (2000).

[19] T. Padmanabhan. “Gravity as an emergent phenomenon: A concep-

tual description”. arXiv:0706.1654v1 [gr-qc], AIPConf.Proc.939:114-

123,2007, (2007).

[20] T. Padmanabhan. “Equipartition of energy in the horizon degrees

of freedom and the emergence of gravity”. arXiv:0912.3165v2 [gr-qc],

Mod.Phys.Lett.A25:1129-1136,2010, (2009).

[21] T. Padmanabhan. Gravitation: Foundations and Frontiers. Cambridge,

(2010).

[22] T. Padmanabhan. “Holography in Action”. arXiv:hep-th/0608120v1,

Phys.Rev.D74:124023,2006, (2010).

[23] T. Padmanabhan. “Thermodynamical Aspects of Gravity: New insights”.

arXiv:0911.5004v2 [gr-qc], Rep. Prog. Phys. 73 046901, (2010).

[24] E. Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Me-

chanics. Cambridge, (2004).

[25] L. Smolin. “Newtonian gravity in loop quantum gravity”.

arxiv:1001.3668v2 [gr-qc], (2010).

[26] S.W.Hawking. “Particle Creation by Black Holes”. Commun Math. Phys.

43, 199-220, (1975).

[27] G. ’t Hooft. “Dimensional Reduction in Quantum Gravity”. arXiv:gr-

qc/9310026, (1993).

[28] P.K. Townsend. “Black Holes”. (Cambridge Part III lecture notes)

arXiv:1002.2668v1 [physics.gen-ph], (1997).

[29] W.G. Unruh. “Notes on black hole evaporation”. Phys. Rev. D 14, 870,

(1976).

45



[30] E.P. Verlinde. “On The Origin of Gravity and the Laws of Newton”.

arXiv:1001.0785, (2010).

[31] E.P. Verlinde. “The Emergence of Gravity”. Perimeter Institute Recorded

Archive: http://pirsa.org/10050022, (2010).

46


