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Abstract: In the book of Haag [Ha92] about local quantum field theory the main results are obtained
by the older methods of C*~ and W *-algebra theory. A great advance, especially in the theory of
W*-algebras, is due to Tomita’s discovery of the theory of modular Hilbert algebras [To67]. Because of
the abstract nature of the underlying concepts, this theory became (except for some sporadic results) a
technique for quantum field theory only in the beginning of the nineties. In this review the results obtained
up to this point will be collected and some problems for the future will be discussed at the end.

In the first section the technical tools will be presented. Then in the second section the two concepts,
the half-sided translations and the half—sided modular inclusions, will be explained. These concepts have
revolutionized the handling of quantum field theory. Examples for which the modular groups are explicitly
known are presented in the third section. One of the important results of the new theory is the proof of
the PCT—theorem in the theory of local observables. Questions connected with the proof are discussed
in section four. Section five deals with the structure of local algebras and with questions connected with
symmetry groups. In section six a theory of tensor product decompositions will be presented. In the last
section problems which are closely connected with the modular theory and should be treated in the future

will be discussed.
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1. Introduction

In this section we start with some statements of general interest, and add the main
concepts and notations to be used in this note.

1.1) Some general remarks

Shortly after the invention of quantum mechanics, several scientists tried to generalize this
theory to systems of infinite many degrees of freedom. (See e.g., P.A.M. Dirac [Dir27],
[Dir28], Jordan and Wigner [JW28], Heisenberg and Pauli [HP29], [HP30].) In many of
these attempts the authors wanted to incorporate the principle of special relativity at the
same time. The combination of these two aspects is called relativistic quantum field theory,
for which the term QFT will be used as short form in this note.

Non-relativistic quantum field theory and QFT are usually used in different branches
of physics. The area of application for the first is quantum statistical mechanics, solid
state physics, and liquids. The latter theory is mainly used for elementary particle physics.
Quantum electrodynamics and the standard model are two theories where the concepts of
QFT are used. These examples do not imply that the concepts of one form of the field
theory can not be useful for the other. The investigation of Bros and Buchholz [BB94] on
the relativistic KMS—condition is such a case.

QFT has several different facets:

1. Lagrangean quantum field theory together with perturbation theory.

2. L.S.Z.~theory, which is useful for scattering problems [LSZ55].

3. Wightman’s quantum field theory [Wi56] and its derivative, the Euclidean field theory.
4. The theory of local observables in the sense of Araki, Haag and Kastler [Ha92].

The Lagrangean QFT is closest to the physical intuition. But it has the disadvantage that
the expressions which appear in this theory have only a formal meaning. Up to now there
is no convincing scheme which puts the formal expressions onto a solid and consistent
mathematical basis. The existing perturbation and renormalization theory does not, in
most cases, indicate anything about the quality of the approximation. Therefore, only
comparison with the experiment can indicate the quality of the Lagrange function and
the approximation. Not in all cases is one as lucky as in quantum electrodynamics, where
the agreement between calculations and experiments is excellent. If, as it is the case in
the standard model, the Lagrange function depends on too many parameters, then some
sceptics are not satisfied, since some experimentalists say: “With three parameters one
can fit an elephant and with a fourth parameter one can make him wiggle with his tail.”
Probably the right mathematics has still to be invented in order to make Lagrangean QFT
acceptable for everyone.

Before and during World War II the perturbation and renormalization theory con-
sisted largely of formal manipulations. This led R. Jost to the sarcastic remark: “In the
thirties, under the demoralizing influence of quantum theoretic perturbation theory, the
mathematics required of a theoretical physicist was reduced to a rudimentary knowledge
of the Latin and Greek alphabets”. In the fifties there have been several attempts to put
QFT on an axiomatic basis. This was possible since new mathematics had been developed,
for instance the theory of distributions (see e.g. L. Schwartz [Schw57], [Schwb9]) and the
theory of C*—algebras (see e.g. Naimark [Nai’9]). The theory of distributions is needed
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for the LSZ [LSZ55] and the Wightman [Wi56] approach, and the theory of C*—algebras
for the concept of local observables. While the LSZ— and the Wightman formalisms are
still close to the ideas of Lagrangean QFT, a new road was taken in the theory of local
observables.

Since von Neumann [Neu27], [Neu32] it is known that in quantum mechanics one
can replace the unbounded physical observables by bounded functions of them. This has
the advantage that, for many problems of general nature, the annoying domain questions
disappear. In 1947 Segal [Segd7] proposed to use this method also for QFT. This idea
has been taken up by R. Haag, and it developed between 1959 and 1964 [Hab9], [HS62],
[HK64] into the theory of local observables.

The increase of knowledge in functional analysis led also to a partial progress in
Lagrangean QFT. With the new technique those theories which are superrenormalizable
could be rigorously handled. Glimm and Jaffe (see e.g. [GJ85]) have been the main
promotors of this subject. The number of scientists who have contributed to this field is
enormous, and it is impossible to mention them all.

Reviewing the past, the situation is as follows: The analyticity properties of the
Wightman functions allow one to choose the time coordinates to be purely imaginary. The
functions obtained in this way are called Schwinger functions. These are (real) analytic for
non—coinciding points and, in the case of Bose fields, symmetric in all variables. With help
of the Hahn-Banach theorem one can extend these functions to the coincidence points as
symmetric distributions. It was the idea of Symanzik [Sym69] to identify these symmetric
functions with the vacuum expectation value of a commutative and hence classical field. He
also assumed that the representation of this field is on a Hilbert space with positive metric.
In so doing the Schwinger functions can be considered as the moments of a positive measure
on the space of tempered distributions §. Sinc many approximation theorems exist for
positive measures, one can, in favorable situations, first approximate the dynamics on a
lattice in a box and take the continuum limit and the limit for the box tending to the
whole space.

Unfortunately, the positivity of the Hilbert space for the Wightman theory does not
imply that the Schwinger functions define a positive linear functional (on the symmetrized
test function algebra). The positivity of the Wightman functional implies only the re-
stricted Osterwalder—Schrader positivity [OS73], [OS75] (see also V. Glaser [G174]). This
is the positivity condition for non—overlapping functions. If one uses the Osterwalder—
Schrader condition also for overlapping functions, then one calls it extended positivity. If
a theory fulfils extended Osterwalder—Schrader positivity and Euclidean covariance at the
same time, then, by a result of Yngvason [Yng78], the Schwinger functions define a positive
functional.

It is well known that broken time reversal (which is the case in nature) is not compati-
ble with a positive measure for describing the Schwinger functions. A generalization would
be to work with a signed (complex) measure. Borchers and Yngvason [BY76] have derived
necessary and sufficient conditions implying that the Schwinger functions are moments of
a complex measure. These conditions are closely related to the existence of the Wilson—
Zimmermann [Zi67], [Wil69] decomposition of products of field operators. The restricted
Osterwalder—Schrader positivity still has to hold. In my opinion one has to learn to draw
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conclusions from this condition before one can handle convergence problems for signed
measures. It is not known whether or not the Wilson—Zimmermann product expansion
holds for every Lagrangean QFT. If this is not the case, one has to generalize the measure
theory on Montel spaces (the test function space) as one has generalized the measure the-
ory on IR" to distributions, except, one must find a completely different method to handle
Lagrangean QFT.

In the theory of local observables the theories of von Neumann— and C*-algebras are
the main tools for the investigation. In 1967 the theory of von Neumann algebras made
a big step forward in Tomita’s discovery of the theory of modular von Neumann algebras.
In this paper I will focus my attention on results obtained by this new theory. In the
theory of local observables, abbreviated QFTLO, many results have been obtained with
the standard theory of von Neumann algebras. Most of them are described in the book of
R. Haag [Ha92].

This article is structured into several sections. Each of them is centered around one
concept or idea. The order of these sections does not follow some logical concept, but is
done in such a manner that the number of references to succeeding sections is minimized.
Each section is split into subsections. This is done in order to facilitate the search for
special topics. The last section is reserved to open problems.

1.2) Assumptions of the theory of local observables

The investigations of this paper are based on the following assumptions:
In the theory of local observables one associates to every bounded open region O in
Minkowski space IR? a C*-algebra A(O). For any unbounded open set G the C*-algebra
A(G) is defined as the C* inductive limit of the A(O) with O C G. These algebras are
subject to the following conditions:
(1) They fulfil isotony i.e., if O1 C O3 then A(O1) C A(O2).
(2) They fulfil locality, i.e. if O; and Os are spacelike separated regions then the corre-
sponding algebras commute, i.e.

A€ A(01), B € A(O3) implies [A,B]=0.

(3) They fulfil translational covariance, i.e. the translation group of IR? acts as automor-
phisms on A(Rd). For every a € IR? there exists an automorphism o, € Aut A(Rd)
with

a,A0) = A(O + a).

A representation 7 of A(Rd) is called a particle representation if:

(i) 7 is a non—degenerate representation on a Hilbert space H.
(ii) There exists a strongly continuous unitary representation of the translation group

a— Ula),

such that:
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o) The spectrum of Ula) 1s contained in the forward light—cone.
p g
The representation U(a) implements the automorphism Qg which means that for
Y p p ’

every A € A(Rd) one has
AdU(a)r(A) :=U(a)r(A) U™ (a) = n(aA).

iii) A representation 7 is called a vacuum representation if:
iii) A rep tati is called p tation if
(o) 7 is a particle representation.
(8) In H exists a vector  with

U@ =0  VYae R

In the following we will always deal with vacuum representations and we set
M(0) ==(A(0))".
(v) We require weak additivity, i.e for every O there holds

{ U M(O+a)} = M(RY.

acR?

(4) Very often also the covariance under the whole Poincaré group will be assumed. This
means there shall exist a continuous unitary representation U(A) of the Lorentz group
obeying the correct relations with the translations and

() UAN)Q =0

(8) UMM(O)U(A)* = M(AO).

For the physical interpretation of these assumptions see the book of Haag [Ha92| or
the lecture notes of Borchers [Bch96].

1.3) Tomita-Takesaki theory

As already mentiond this representation is mainly based on the Tomita—Takesaki the-
ory. At the Baton Rouge conference 1967 Tomita [To67] distributed a preprint containing
his theory on the standard form of von Neumann algebras. At the same time Haag, Hugen-
holtz und Winnink [HHW67] published their paper on the description of thermodynamic
equilibrium states using the KMS-condition. Probably N. Hugenholtz and M. Winnink
have been the first realizing the similarity between certain aspects of their approach and
Tomita’s theory and hence the importance of this new mathematical theory for theoretical
physics. (See e.g. the thesis of M. Winnink [Win68].) But general knowledge became
Tomita’s theory only by Takesaki’s [Tak70] treatment, published in the Lecture Notes in
Mathematics. Since then this theory is usually called the Tomita-Takesaki theory.

Let ‘H be a Hilbert space and M be a von Neumann algebra acting on this space with
commutant M’. A vector 2 is cyclic and separating for M if M and M’Q) are dense in
‘H. If these conditions are fulfilled then a modular operator A and a modular conjugation
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J is associated to the pair (M, Q) such that:
(i) A is self-adjoint, positive and invertible

AQ=Q, JQ=Q.
(ii) The unitary group A% defines a group of automorphisms of M
AdA"M =M  VtcRR.
This automorphism group will often be denoted as
AdAYA =: o' (A). (1.3.1)

(iii) For every A € M the vector AQ) belongs to the domain of As.
(iv) The operator J is a conjugation, i.e. J is antilinear and J = J* = J~1 where J
commutes with A*. This implies the relation

AdJA = AT (1.3.2)
(v) J maps M onto its commutant
AdIM =M.
(vi) The operators S := JA2 and S* = JA™32 have the property
SAQ = A*Q)  VAeM,
S*A'Q=A*Q VA e M.

This implies that AQ, A € M is in the domain of A'/2 and B, B € M’ is in the domain
of A71/2,

(vii) From (iii) one concludes that for A € M the vector valued function
t— ATAQ

has an analytic continuation into the strip S(—%, 0) :={z € C; —% < QSmz < 0}.
Property (vi) implies .
A= 40 = ALJA*Q, Ae M. (1.3.3)

For elements B € M’ Eq. (1.3.1) implies that A?B(Q has an analytic continuation into
the strip S(0, ) and one gets by (vi)

AT BO = AUJB*Q, Be M. (1.3.3")

(viii) Using Eq. (1.3.3) and the fact that .J is a conjugation one obtains that for A, B € M
the function (2, Bo'(A)Q) can be analytically continued into the strip S(—1,0). One finds
at the lower boundary the relation

(2, Ba""(4)Q) = (Q,0'(A)BQ) A ,Be M (1.3.4a)
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or equivalently

(2, BAIU"VAQ) = (Q, AATBQ) A,B e M. (1.3.4b)

The last two relations are called the KMS—condition. They characterize the modular group
uniquely. If a unitary group fulfils the KMS—condition for M then it is the modular group
of M. (See [KR86] Thm. 9.2.16.)

For the proofs see Takesaki [Tak70] or textbooks as Bratteli and Robinson [BR79] or
Kadison and Ringrose [KR86] or S. Stratila [St181].

A central role in this theory is played by faithful normal states of von Neumann alge-
bras. As a consequence of the Reeh-Schlieder theorem [RS61] we know that the vacuum-
state has this property for every local algebra in quantum field theory.

Not for every von Neumann algebra exist faithful normal states. The generalization
of this concept are the weights. With so called normal, faithful, semi—finite weights the
Tomita—Takesaki theory can be developed also (see e.g. Haagerup [Hgr75]). The concept
of weights will not be explained in the moment, but only when it has to be used. Also
the mathematical results obtained by the Tomita—Takesaki theory will be mentioned when
needed.

1.4) Remarks on the edge of the wedge problem

In this section we want to collect some results from the theory of analytic functions
of several complex variables. All the results are given without proofs.

The theory of several complex variables is an important tool in quantum field theory
and we assume familiarity with these methods. The situation appearing here (and often
in other physical cases) is the edge of the wedge problem. One deals with two analytic
functions f*(z) and f~(z), z € C" defined in a tube TT and T~ = —T* respectively.
The tube T is based on a convex cone C' C IR" with apex at the origin and defined by:

TC)=T"={2cC"z=a+iy,y € C,x € R"}.

One assumes that f*(z) and f~(z) both have boundary values f*(z), f~ () respectively
(in the sense of distributions) and that these boundary values coincide on some open set
G C IR". In this situation one knows from the edge of the wedge theorem [BOT58] that
both functions are analytic continuations of each other and are analytic also in a complex

neighbourhood of G.

1.4.1 Theorem: (Edge of the Wedge)
Denote by B the ball

B = {z]:ll:=()_l=/)'"* <1}

and define BY, = BNT(C) and B = BNT(—C). Assume f¥(z) and f~(z) are functions
holomorphic in Bg and B, respectively with f+ and f~ having continuous boundary values
at real points ||x|| < 1 and assume that these boundary values coincide. Then there exists
a complex neighbourhood N of R" N B and a function f holomorphic in Bg UBs UN
such that

f=f* ont and f=f" onB,.

8
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In several applications one has functions depending on several real variables. One
knows that one can analytically continue in one variable if the others are fixed. One would
like to know conditions which imply that one can analytically continue in all variables
simultaniously. An important result on this question is the Malgrange—Zerner theorem.
(For details see H. Epstein [Ep66].) Since we need the result only for two variables, we
will formulate it only for this situation. The generalization to more than two variables is
straight forward.

1.4.2 Theorem: (Malgrange—Zerner)

Let f(x1,22) be a continuous function of two variables defined on (—1,1)x(—1,1). Assume
for fized xo the function f(x1,x3) has an analytic continuation f(z1,x2) holomorphic in
21 € DT = {z;]z| < 1,9mz > 0}, and for fized x1 an analytic continuation f(x1,z2)
holomorphic in zo € DY. Assume f(z1,22) and f(x1,22) are bounded and continuous,
i.e. f(z1,22) 1s a continuous function in x2 with values in the bounded analytic functions
on DY, and the same for f(x1,22). Then ezists a function f(z1,z22) holomorphic in some
neighbourhood NNDY x Dt where N is some neighbourhood of Dt x(—1,1)U(—=1,1)xDT.
This function has boundary values on (—1,1) x (=1,1) which coincide with f(x1,x3).

The importance of holomorphic functions of several complex variables is the following
fact: Not every domain G is a natural domain in C". In such a situation every function
holomorphic in G can be analytically continued into a larger domain. The domain into
which every function, holomorphicin G, can be analytically continued is called the envelope
of holomorphy H(G) of G. We will need the tube theorem, the double cone theorem and
the Jost—Lehmann—Dyson theorem. The tube theorem can be found in every text book on
several complex variables.

1.4.3 Theorem: (Tube Theorem)

Let G be a connected domain G CR" and let T(G) = {z € C";Sm =z € G}. Then
H(T(G)) = T(Co G),

where Co G denotes the convex hull of G.

Another result of importance in QFT is the double cone theorem discovered indepen-

dently by Vladimirov [V160] and Borchers [Bch61].

1.4.4 Theorem: (Double Cone Theorem)

Let G be a subdomain of IR?, and let N(G) be some complex neighbourhood of G. Let
I =T(C)UT(—C)UN(G) and H(T') be its envelope of holomorphy. Assume c¢,d € G
such that d —c € C and ¢+ N(d —¢) € G for 0 < A < 1. Then

D..C HT)NIR",

where D, 4 denotes the double cone (¢ + C)N(d—C).
We also need a result of Bros, Epstein, Glaser, and Stora [BEGS75], which deals with

the edge of the wedge theorem in two variables.

9
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1.4.5 Theorem (Bros, Epstein, Glaser, Stora)

Let Tt and T~ be tubes based on the first and third quadrant respectively. Assume the
coincidence domain is the first quadrant. If a real line axy +bry = ¢, a,b, ¢ € IR intersects
intertor of the first quadrant, then all complex, non real points

azy +bzyg =c¢, z1,29 not both in IR

belong to the envelope of holomorphy of the edge of the wedge problem.

Many results in QFT are based on the Jost—Lehmann-Dyson representation. This
characterizes the envelope of holomorphy in case the cone C' is the forward light cone
and the coincidence domain has some special properties. Jost and Lehmann have solved
a special case [JL57]. The general solution is due to Dyson [Dy58]. In this proof one
uses tempered distributions. But that the answer is general has first been shown by Bros,
Messiah and Stora [BMS61]. For more details on the Jost-Lehmann—Dyson representation
see [Bch96] Sect. II1.4.

1.4.6 Theorem: (Jost. Lehmann, Dyson))
Define h(u, m) to be the hyperboloid

h(u,m)={z € C% (z —u)? =m?, ue R, m e R}.

Let G ¢ R? be a domain bounded by two spacelike hypersurfaces. The complement of the
envelope of holomorphy of the edge of the wedge problem for

GUT(VHUT(-VT)

consists of the closure of the union of all real and complex points of the hyperboloids h(u, m)
which do not intersect G.

1.5) Some notations

(i) If O is some open domain in the Minkowski space then O’ denotes the interior of the
spacelike complement of O.

(ii) A domain of special importance is the wedge. Such a domain can be characterized in
two ways:

(o) First characterization: Let t,s be two perpendicular vectors in RY. ie. (t,s) =0,
such that 2 = 1 and ¢ belongs to the forward light-cone and s* = —1 is spacelike. In this
situation one defines

Wi(t,s):={a € R%|(a,t)] < —(a,s)}. (1.5.1)

If, for instance, t is the time direction and s is the 1-direction then this becomes Wr =
{aslao| < a1}

(#) Second characterization: Every two-plane containing a timelike direction must cut the
boundary of the forward light cone in two light rays. Let these light rays be described

10
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by the two lightlike vectors (1, /s belonging to the forwad light—cone. These vectors are
different. Now define:

W(Kl,ﬂg) = {/\161 — Aoly + gl, /\1,/\1‘ > 0, (&,61) = O,Z = 1,2} (152)

It is easy to see that the two definitions result in the same set of wedges. The two definitions
coincide if {¢, s} and {¢;, 5} span the same two-plane and if s = A\ {1 — A3y with positive
coefficients.

The opposite wedge of a wedge W is the negative of W and it is usually denoted by
W'. It is obtained by replacing s by —s in the first description and by interchanging the
two lightlike vectors in the second description.

(iii) Given a wedge W there is exactly a one-parametric subgroup of the Lorentz boosts
which maps this wedge onto itself. In the above example of the zero— and one—direction
the Lorentz transformations are the boosts in the (0,1)-plane. We will write these trans-
formations (in case the wedge is the right wedge Wg in the (0,1)-plane) as

cosh2nt  —sinh2nt

0

—sinh2nxt  cosh2#xt 0

Alt) = 0 0 ) (1.5.3)
0

0 0

_ o o O

(iv) Let A be a C*—algebra and m, 73 be two equally faithful representations. These
representations are called quasi—equivalent if the isomorphism between 71 (A) and m2(A)
extends to an isomorphism of the associated von Neumann algebras

™1 (.A)” = 72 (.A)” .
Two representations w1 and s of a theory of local observables are called locally normal if

11 (A(O)) and m2(A(O)) are quasi-equivalent for every bounded open region O.

(v) Let M be a von Neumann algebra with cyclic and separating vector 2. The operator
S = JAY?

is anti-linear with square 1 (on the domain of definition). Since this operator plays an
important role in the Tomita—Takesaki theory it will be called the Tomita conjugation of

(M, Q).

1.6) Things not treated

It is clear that I am not able to handle all subjects of QFTLO which are not in the
book of Haag. There is the reason of space, and more important, there are others who are
more expert on that particular field than myself.

(i) Low dimensional QFT’s:

11
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If the dimension of the Minkowski space is two, then the set of points spacelike to the
origin is no longer connected. This has for the definition of statistics the consequence that
not only the permutation— but also the braid—group is of importance.

It is well known that in the classical theory the solution of the free wave equation is the
sum of two functions depending only on one light—cone coordinate. A similar phenomenon
appears in two-dimensional conformal QFT’s. This means there exist quantum fields
depending only on one of the light—cone coordinates. These are often called right—or left—
movers. One can map the real line onto the circle and often one finds that such theory has
an additional symmetry, namely the rigid rotation of the circle. Such theories are usually
called chiral field theories.

The braid—group and the additional symmetry of chiral field theories opens a “wonder-
land” of new possibilities. Whether or not it is possible to get some important inspiration
for the four—dimensional QFT from these theories will only be answered in the future.

(ii) General relativistic quantum fields:

It is a dream that one day it will be possible to combine quantum field theory with
general relativity. As a first step it is probably reasonable to treat the QFT of test particles.
These are theories where the quantum fields are influenced by the gravitational field (which
is treated classically), but where the energy of the quantum field does not appear as a source
of the gravitational field.

The main problem of this theory is the replacement of the spectrum condition. At
the moment it is not clear whether or not there exist states describing a finite number of
particles. At least in theories with a horizon the Hawking—Unruh effect [Haw75], [Unr76]
seems to indicate that no such states exist in this situation. Therefore, the main stream
of investigations focus on the aspect that the speed of particles should not be higher than
that of light (defined by the gravitational field). These investigations use extensively the
theory of wavefront sets.

(iii) Renormalization group:

For a long time the renormalization group method has been used mainly in connection
with perturbation theory. This theory is designed in order to understand the physics at
very low or very high energies. Not long ago D. Buchholz and R. Verch [BV95] were
able to transcribe the renormalization group technique to QFTLO. In this scheme there
are no serious obstructions, that means their method uses a sound mathematical basis.
In examples they could show that the limiting theories can be different from the original
theory. In some cases there is even more than one limiting theory. In my opinion this is
an important new aspect of QFT which deserves one’s attention. D. Buchholz will give a
representation of this theory in the same volume.

An appendix to the references will be added containing a list of papers on the subjects
not treated. This incomplete list shall be a help for a start for those interested in some
more details on one or more of these fields. I am obliged to K.H. Rehren and R. Verch for
preparing these lists.
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2. On von Neumann subalgebras

From the axioms of QFTLO there has been extracted a large number of beautiful
results. All of them are in accordance with our physical intuition. Examples are the
collision theory and the theory of superselection sectors described in the book of Haag
[Ha92], or the properties of the spectrum of the translations presented in the lecture notes
by Borchers [Bch96].

However, up to now it is not clear how to distinguish the theories with different
dynamics from eachother. Since for two different theories the local nets as a whole are not
isomorphic to eachother, one should look (as a start) at the embedding of the algebra of
one region O into the algebra of a bigger region Oy. What is known about this question
will be collected in this section.

2.1) Order by inclusion and order of modular operators

Let AV be a von Neumann subalgebra of M acting on the Hilbert space H. Assume that
both algebras have a common cyclic and separating vector Q. Then one has NQ C MQ
and hence the Tomita conjugation Saq of M is an extension of the Tomita conjugation
Sy of V.

Dropping the index M of the Tomita conjugation, the operator S has the following
properties (see 1.3):

(1) S is a densely defined closed anti-linear operator with domain of definition D(S) and
MSQ is a core for S.

(i1) S? = 1 on D(S).
(1i7) Q € D(S) and SQ = Q.

Since S is closed it has a polar decomposition S = JA'2. The modular operator A
is invertible and J is a conjugation. Eq. (1.3.2) reads:

JAT = A~ J=J"=J 1

These properties follow from the condition S* = 1. (See e.g, Bratteli and Robinson [BR79]
Prop.2.5.11.)

Usually a Tomita conjugation will be a densely defined unbounded operator. The best
way of describing an unbounded operator X is by its graph. This is the set {[), X¢] €
HEH; ¢ € D(X)}. If the operator is closed then the graph of X is a closed linear manifold
of H @ H. Therefore, it can be characterized by the projection P(X) onto the graph. The
projection P(X) can be written as a two by two matrix p; x,7,k = 1,2 of operators on H

fulfilling
Pik = Pk Zpi,jpj,k = Pik- (2.1.1)
J

If the operator X is anti-linear then p; » and p;; are anti-linear also. The domain of X is
given by D(X) = p11¢ + p12¢, ¢, ¢ € H and its range ps 19 + p2 2¢p. Therefore, one gets

13
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p2,1 = Xp1,1 and ps o = Xp1 2. From these relations and from Eq. (2.1.1) one can easily
express p; ; in terms of X. Of interest is p; ; which has the form

pra=(1+X*X)"". (2.1.2)

If X; is an extension of X then the graph of X is a subset of the graph of X;. This
implies in particular P(Xy) > P(X). If E; is the projection onto the first Hilbert space
then we get B4 P(X1)E; > E1P(X)E,, and with Eq. (2.1.2)

QI+ XX P>+ X X)L

The matrix representing the projection onto the graph has been introduced by M.H. Stone
[St51]. It is often called the Stone— or characteristic matrix of the operator. More details
can be found in A.E. Nussbaum [Nu64].

If the operator X is anti-linear, then one has to replace the second Hilbert space
by the conjugate complex Hilbert space. In this case the operators p; » and p, ; are anti-
linear. With this change one can deal with the graph in the same manner as if the operator
would be linear. If one feels uneasy with this procedure one can fix a conjugation K on ‘H
and multiply the anti-linear operator X by K. Since KX is a linear operator the usual
arguments can be applied. In the case N' C M one obtains

(T+ AN < (14 Ap)

or
An > Aum. (2.1.3)
This implies in particular that the domain of A}V/’z is contained in the domain of A%tz.

1/2

Since the domain of A" is the range of AX/—I/

2, the expression
—1/2 —1/2

is a densely defined bounded and hence a closable operator, and one gets

—1/2

closure Axfl/zAMAN < 1. (2.1.4)

As an application of this discussion we obtain:

2.1.1 Theorem:
Let M; be an wncreasing family of von Neumann algebras, 1.e. M; C M;y1. Let

M ={UM;}".

Assume Q s cyclic and separating for M, and for M. Denote by (A, J;) and (A, J)
the modular operators and modular conjugations of M; and M respectively. Then A;
converges to A in the resolvent sense and J; converges strongly to J.

14
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A similar result holds for decreasing sequences. This result has first been obtained by

D’Antoni, Doplicher, Fredenhagen and Longo [DDFLS87].

Proof: M; C M4 implies that S;11 is an extension of S;. Hence the projections onto
the graphs are a monotonic family which converges strongly. Hence by Eq. (2.1.3) also
(1 4+ A;)7! is increasing and converges strongly. Therefore, by a slight variation of Thm.
VIIIL.19 in [RSi72] the sequence A; converges in the strong resolvent sense. Let us denote
the limit by A. By repeating the argument with A™!, we see that Ai_l converges to A1
also in the strong resolvent sense. Hence Al! converges strongly to Alf for every t. (See
[RSi72] Thm VIIL.20.) In order to demonstrate, that A is the modular operator of M, we
have to show that it fulfils the KMS—condition. Let A, B € M; C M4, then one knows
for 7 > ¢ that (Q,BA?A@) has an analytic continuation into the strip S(—1,0). These

functions have continuous boundary values at Sm ¢ = —1 with values (€2, AA;”BQ). Since
all these functions are bounded by the value at the boundary and since these converge,
we obtain by Vitali’s theorem that also the analytic functions converge. Hence A fulfils
the KMS—condition for the dense subset UM;. Since this subset is *—strong dense in M
we obtain by Kaplansky’s density theorem that A fulfils the KMS—condition for all of
M. Hence A is the modular operator of M. (See e.g. [KR86] Lemma 9.1.17.) Since

the projection onto the graphs converges we know that S; converges. Because also A}/z
converges in the strong resolvent sense it follows that .J; converges strongly to .J. O

2.2) The first fundamental relation

There are other aspects of the relation (2.1.4) which give some more informations.
Since the result is needed several times, I quote it as in the report at the IAMP conference

in Paris [Bch95]
Theorem A:

Let M, N be two von Neumann algebras with the common cyclic and separating vector €.
Denote the modular operators and conjugations by A s, Jaq and Apar, Jar, respectively. Let
V € B(H) be a unitary operator with

(1) VQ =Q, and

(17) AdVN C M,

then the function V(t) := A/_\jtVAjf/ has the properties:

(a) V(t) is *—strong continuous in t € IR.

(b) V(t) possesses an analytic extension into the strip S(0, %) ={teC;0<3mt< %} as
holomorphic function with values in the normed space B(H).

(¢) In this strip we have the estimate

V(r)| <1 (2.2.1)

d) V(7) has boundary values at ST =0 and at Sm T = L in the x—strong topology.
Y 5 g 1opoiogy
(e) On the upper boundary the value is given by

Vit + @'%) = V() (2.2.9)

hence by (a) also this function is x—strong continuous in t.

15
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2.2.1 Remarks:
(1) With N7 D V*M'V one obtains

Notice that the function V/(2)* is again an analytic function holomorphic in S(—3,0) =
{t € C; —% < Omt < 0}. Therefore, the last relation reads in the complex

Vi(z) = V(=2 (2.2.3)

(ii) Inside the strip S(0, %) the operator function V(¢) is an analytic function with values
in the normed space B(H):

Proof: The continuity properties are shown by standard methods. The interesting
parts are the analyticity properties. Let us identify for a moment VAN'V* wit P C M.
Since A — A%, 0 < a <1 is an operator monotone function on positive operators (see e.g.

G.K. Pedersen [Ped79] Prop. 1.5.8.) we obtain from Eq. (2.1.3)
A >AY, 0<a<l

and hence
closure {A;aAgﬁA;a} <1, 0<a<

This implies
||closure ALALZY| <1, 0<a<

or
||closure A/_\/it(t—i_iT)VAi/E;—i_iT)V*H <1, 0<7r<

Since V is unitary we obtain (2.2.1).
Next choose A’ € N’ then we get by Eq. (1.3.3)

=AY (40

These equations make sense, since Vol (ja(A™*))V* belongs to P and hence to M, and
therefore we get

= ATV ol (Ga(A)VQ = TuA VAR I A'Q.

Since N’ is dense in H we obtain (2.2.2).
It remains to show the analyticity. Because of Eq. (2.2.1) it is sufficient to show the
analyticity for a dense set of matrix elements. If A € M and f(¢) € £ then one can define

ol (A) = /f(t)at(A)dt.
16
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If f(t) has an entire analytic extension the ¢'(0/(A)) is an entire analytic operator val-
ued function. It is easy to show that the set of entire analytic o/(4),A € M is a
strongly dense subset of M. Choose entire analytic O'L(A) € M and o3,(B) € N then
(Q, O'L(A)V(Z)O'.‘;]V—(B)Q) is entire analytic. Therefore, by the density of analytic elements
V(z) is analytic in the strip where it is bounded. 0

This proof has used ideas of M. Florig [Flo98]. There is a different proof which starts
directly from Eqgs. (1.3.3) and (1.3.3"). It can be found in [Bch95].

2.3) Characteristic functions and von Neumann subalgebras
In the special case V = 1 one uses the following notations:

2.3.1 Definition:

Assume A is a von Neumann subalgebra of M and  is cyclic and separating for both
algebras. We set o
Damn(t) = Al AL (2.3.1)

The function D s ar(t) satisfies the following relations:

2.3.2 Lemma:
For the function D(t) := Daq (1) defined in Eq. (2.3.1) the following holds:
(1) D(t) is unitary and strongly continuous in t. Moreover D(0) = 1.
(2) D(t)Q =9, for allt € R.
1

(3) D(t) has a bounded analytic continuation into the strip S(0,5) and has strongly con-

tinwous boundary values at Smt =0 and Imt = %

(4) D(t+ %) is unitary and strongly continuous in t.
(5) D(t) fulfils the following cocycle relation:

D(s+1) = o/ (D(s))D(t). (2.3.2)

(6) For complex values of the arguments one finds

D(t + %)*JMD(t) — D(t)" JuD(t + %)

is independent of t.
(7) Ad{D(t)D(35)*}M C M holds for all t € IR.

Proof: (1) and (2) follow immediately from the definition of D(¢). The statements
(3) and (4) are nothing else than Thm. A. (5) From the definition of D(t) we obtain

o (D(s)D(t) = AR AT ARALATIAY = AGETIAET = D(s 41).
(6) From Thm. A we know

D(t + %) = JuD(t) . (2.3.3)

17
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This implies )
D(t + 5)*TmD(#) = JxD(t) T s D(t) = I

and

D(t)* JmD(t + %) = D(t)* T I D(t) Iy = J.

This shows (6). To prove (7) we use Eqgs. (2.3.1) and (2.3.3) and get
Ad{D(t)D(%)*}M = A {A AL Ty T M.

Because of ' C M we know Ad JyM = M’ C N'. Hence Ad{JnyJm}M C N which
implies Ad {A Ty T} M C N. Since N' C M statement (7) is proved. D

Notice that the properties of D(t) described in Lemma 2.3.2 do not contain any
reference to the algebra N'. Therefore, we introduce the following notation:

2.3.3 Definition:

Let M be a von Neumann algebra acting on ‘H with a cyclic and separating vector €.

1. By Sub(M) we denote the set of von Neumann subalgebras A" of M which have  as
cyclic vector.

2. An operator—valued function D(#) which fulfils the properties (1)—(7) of Lemma 2.3.2
will be called a characteristic function of M.

3. The set of characteristic functions belonging to M will be denoted by Char(M).

2.3.4 Theorem:

Let M be a von Neumann algebra with a cyclic and separating vector ). Then to every
characteristic function D(t) of M exists a von Neumann subalgebra N € Sub(M) such
that D(t) = A Al The correspondence

Sub(M) < Char(M)

18 one to one.
The proof of this theorem will be split into several steps. We start with

2.3.5 Lemma:
Define
U(t) = AlLD(t) and K = JMD(%), (2.3.4)

then there holds:

(1) U(t) is a strongly continuous unitary group.

(2) K is a conjugation i.e. K = K* = K.

(3) K commutes with U(t), which implies that one can write U(t) = A with an invertible
operator A.

18
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(4) The function D(t) can be reconstructed if we know U(t) and K.

D(t) = AGU®), D(t+ %) = JuD(t)K. (2.3.5)

Proof: Since D(t) and Ai/’{/t are both unitary and strongly continuous it follows, that
U(t) is unitary and weakly continuous. The unitarity implies that U(t) is strongly con-
tinuous. From the cocycle relation (2.3.2) it follows that U(t) is a unitary group. The
relation I = K* is a consequence of property Lemma 2.3.2 (6). Using this again we find
KK = D(%)*JMJMD(%) = 1. For proving (3) we reformulate the cocycle relation (2.3.2).
It reads A/_VittD(s)Ai/’{A = D(t + s)D(t)*. If we replace t by —t and s by t we get

AL DAL = D(—1)*. (2.3.6)

By analytic continuation of the last but one equation in s we find A/_\/ittD(%)Ai]{A =
D(t + %)D(t)* Using this equation and Lemma 2.3.2 (6) we obtain:

KU(t) = JMD(%)Ai;{AD(t) = Ju AL D(t + %)D(t)*D(t)
= AL D()D(t)* TmD(t + %) = AiAtAD(t)JMD(%) =U(t)K.

Finally the first relation of Eq. (2.3.5) follows from the definition of U(t). The second
relation will be derived by using the independence property of condition (6) of Lemma

2.3.2

D(t + %) = JuD(#)D(t)* TpD(t + %) - JMD(t)JMD(%) = JuD(t)K.

This shows the lemma. O

Next we want to construct the von Neumann algebra N or better the algebra A
which we define

N = A AdU(HM'. (2.3.7)

This algebra is invariant under AdU(¢). Now we show that € is separating for A''. For
this and the following calculation we set AdU(¢t) = o".

2.3.6 Lemma:

The algebra KJpMJIpm K commutes with o'(M’') and hence with N'. Since KJpq 1s
unitary and maps Q onto itself it follows that Q is cyclic for N.

Proof: Let A € M and B € M'. By using Eqgs. (2.3.4) and (2.3.6) we obtain:

Ut)BU(t)* KJpAJ K = AijAD(t)BD(t)*A;A“D(%)*JMJMAJMJMD(%)
i

2

1

= D(—t)* AL, BA'D(—t)D( :

V*AD(=)D(—t)"D(—t).
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Property (7) of Lemma 2.3.2 and Eq. (2.3.6) leads to
1 1
—)*AD
Ly ap(

= D(%)*JMJMAJMJMD(
= KIMATMKU(H)BU(—t).

= D(—t)*D(—t)D( )D(—t)* Al BA ' D(—t)

DD |

)AL D(t)BD(t)* A

DN |~

This shows the lemma. ]
From the invariance of A’ and the last lemma we notice for later use
[0 (A, Ko™ (AL)K] =0, A}, A, e M'; t1,t; € R. (2.3.8)
This follows from [K, Al!] = 0 and M’ = JyMJpy. Next we want to show that U(¢) is
the modular group of N'. We start with the observation
2.3.7 Lemma:
With U(t) = Al we obtain for A’ € M’

1

A_ﬁat(A’)Q = Kat(A'*)Q.

Proof: Using Eq. (2.3.4) we get ATA’Q = All, D(+)A’Q =
D(—t)*Alt, A’Q. This expression has an analytic continuation into the strip S(0, %) and
we obtain with the adjoints of Eqs. (2.3.4) and (2.3.5)

Ait_l/zA/Q — D(—t + %)*AIL—I/ZAIQ — I&’D(—t)*JMA{]\tAJMA/*Q

= KD(—t)* AL, A"Q = KA D(t)A*Q = KU(t)A™Q,
and the lemma is proved. m]

Next we want to extend Lemma 2.3.7 to all of /. To this end we recall that O'S(O'f(A/))
is entire analytic in s provided f(t) € £L'(IR) is entire analytic in .

2.3.8 Lemma:
Let C" € N then we get

A=500 = KATC™Q.
Proof: Choose A; € M’ and f; € L!(IR) entire analytic, i = 1,...,n. Then
Aah (Ay)ol (4,)Q = o' (67 (A1) ..o’ (o (4,))Q

20



HJB—Apr./99
can be analytically continued and we obtain with Lemma 2.3.7 and Eq. (2.3.8):

NG Al) o (An) (fl(Al) (An)>Q

)..o ( Int(A_q))o't 5(U_f"(A,m,))Q
)05 (0Pt (A ) Kot (o7 (A5)) KQ
)

)
— %( A1)
NI O'H—%(O'fl A1)>...O't+%<0‘f"_1(An_1)>Q.

Il
=~
IL

Repeating this manipulation we find
= Ko'(o/n(A%)..ol1(A1)Q,

Since the set {o/1(4;)...07(4,), n € IN, f € LY(IR) entire analytic} is weakly dense in
N’ and the *—operation is weakly continuous the lemma is proved. ]

Proof of the theorem: In order that U(t) is the modular group of N we have to show
that U(—t) fulfils the KMS-condition for N’/. Let C|,C} € N’ then by Lemma 2.3.8

(Q,C1U(t)C5Q) has an analytic continuation into the strip S(0, ) and we obtain

(Q, CIAITD) C0) = (€10, Ko'(C5)Q) = (0'(C15)2, KC'1Q) =
(Q, C3ATIRCTQ) = (2, C3AT72019).

The last expression can again be analytically continued into S(0, 2) and we obtain at the
upper boundary (Q,CIATHCIQ). This shows the KMS-condition. It remains to show
the uniqueness of the mapping. If D;(¢t) and Ds(t) are different then follows from the
construction used above that the algebras are different. Conversely assume A, Ny €
Sub(M) and D;(t) and D,(t) coincide. Then Al and Alf coincide and also J; and J;
coincide by Eq. (2.3.4). This implies that Aj N A5 is invariant under Alf = Alf. Since
JiM'J; is contained in the intersection it follows that Q is cyclic for N7 N A,. Hence
N1 and also N coincide with N7 N N,. (See [KR86] Thm. 9.2.36.) Hence the map
Sub(M) < Char(M) is one to one. O
The content of this subsection is taken from [Bch98c].

2.4) The second fundamental relation

There is a second fundamental relation wich has to be used several times also. A
special case appeared first in [Bch92]. The present formulation is taken from [Bch95] and
this proof is due to M. Florig [F1o98]. It uses only functions of one variable and not of two
variables as in the original demonstration.

Theorem B:

Let M, N be two von Neumann algebras with the common cyclic and separating vector €.
Let W(s) € B(H) be an operator family fulfilling the following requirements with respect to
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the triple (M, N, Q).
(1) For s € IR the operators W (s) are unitary and strongly continuous and fulfil the equa-
tion W(s)Q2 = Q.
(i) The function W(s) possesses an analytic continuation into the strip S(0,%) with
strongly continuous boundary values.
(1i1) The operators W(% +t) are again unitary.
(1tv) The function W (o) is bounded, hence |[W(o)| < 1.
(v) Fort € R one has W(H) NW(¢)* C M and W(% + t)./\/’W(% +t)* c M.
In this situation the modular operator and the transformations W (s) fulfil the following
transformation rules:
A%W(S)Aﬁt =Wi(s—1),

i

JW (s)JIn = W(§ + s).

2.4.1 Remark:

In some applications one has to face the situation that W (¢ + %) has eventually a discon-
tinuity at one point, but all other properties remain valid. Such singularity is harmless.
The reason is as follows: The proof of Theorem B is based on the continuation across a
line, applied to matrix elements of the operator valued function

(t,5) = AL (s + ) A (2.4.1)

These matrix elements have bounded analytic continuations, which are continuous at the
boundary of their domain with the possible exception of one point with Sm ¢ =1i/2. By the
dominated convergence theorem and the boundedness of (2.4.1), this piece-wise continuity
is sufficient to ensure coincidence of boundary values in the sense of distributions. The
edge-of-the-wedge theorem, Thm.1.4.1, then implies analyticity in the coincidence region,
so continuity in the exceptional point holds a fortiori.

Proof: Choose A € N and B € M’ and define for fixed s the two functions of the

variable t:

Fr(t) = (Q, BAL W (s + t) AT AQ),
F(t) = (Q, AALW*(s + 1) A BQ).

Since B € M’ and A € N and since W (t) has a bounded analytic extension into the strip

S(0, %), also the two functions have bounded extensions, F'*(¢) into the strip S(0, %) and
F~(t) into the strip S(—%, 0). Next we compute the values of FT at the other boundary:

F(t+5) = (ALZB*Q AL W (s +1+ %)A;}tA/%AQ)

= (Q, 0 (jm(B* )W (s +t+ %)ajj(j/v(A*))W(s +t4 %)*Q),

and
Fo(t-3) = (A2 A, AW (s + 1+ %)*A;A“A;fBQ)
T C
= (W (s +1+ 5oy Ga(ANW (s + ¢+ 5) oy (Im(B")9Q).
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By the assumption about the mapping property of W(s+1t) and of W(s+1t+ %) we obtain:

FT(t)=F(t), and F+(t—|—%) = F (t— %).

By these coincidences we obtain a periodic entire analytic function. Since this function is

bounded by max{||B*Q||||AQ||, ||[A*Q||||B||} it is constant. This implies
(Q, BAIL,W (s + 1) AT AQ) = (Q, BW(s)AQ).

Since Q is cyclic for A and for M’ follows the first statement of the theorem. The second
statement is the same as Eq. (2.2.2). O

2.5) Half-sided translations

From the general theory of von Neumann subalgebras described in subsection 2.3 we
turn to special cases. We start with half-sided translations.
2.5.1 Definition:
Let M be a von Neumann algebra acting on ‘H with cyclic and separating vector 2 € H.

1. Hstr(M)T denotes the set of one-parametric continuous unitary groups U(t), t € IR
with the properties:

a. U(t) has a positive generator, i.e. we can write
U(t) =exp{iHt}, with H >0.

. UMR=0 ¥ teRR.
y. AdU(t)M C M for all t > 0.

We call the groups belonging to Hstr(M)T +half-sided translations associated with M.

2. Hstr(M)~ denotes the set of one—parametric continuous unitary groups U(t), t € IR
with ~ replaced by

7' AdU(H)M C M for all £ <O0.
We call the groups belonging to Hstr(M)~ —half-sided translations associated with M.

In the definition of the +half-sided translations it is not possible to replace R™ by IR
because

AdU()M Cc M Vit

implies together with the positivity of the spectrum and the invariance of the vacuum
U(t) = 1for all t € IR.

An example where half-sided translations appear, is the algebra of the wedge M(W).
If W = W(lq,0s), then the translations along the direction ¢; fulfil the assumptions of
+half-sided translations and those along the ¢; direction the assumptions of —half—sided
translations.
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2.5.2 Theorem:

Let M be a von Neumann algebra with cyclic and separating vector  and let U(t) €
Hstr(M)T. Then holds:

AU ($)ATH = U(e™™s),
JU(s)J =U(—s).

This theorem appeared first in [Bch92]. The following proof is based on Thm.B.

Proof: If U(a) fulfils the assumptions of the theorem then it has an analytic con-
tinuation into the upper half plane. By assumption U(a) maps M into itself for positive
arguments and hence U(a) maps M’ into itself for negative arguments. Therefore, we can
apply Thm.B to the family W (s) = U(e?*™) and obtain together with the analyticity of
Ula)

AdAitU(GZﬂ's) Uv(gZﬂ'(s—t))7

AAA"U(a) = Ule ™ a),
AdJU(a) = U(—a).

This shows the theorem. O

2.5.3 Remarks:
(1) HIf U(t) € Hstr(M)™ then one obtains the relations

AU ($)ATH = U(e*™s),
JU(s)J =U(—s).

(ii) For a wedge W (/(1,(3) the two lightlike directions span the characteristic two—plane of
the wedge. If x is in this plane then one finds the transformation formula

AU (x)AT = U(A(t)x)

where A(t) are the Lorentz boosts of the wedge described in Eq. (1.5.3).
(iii) Let U(t) € Hstr(M)T and define N' = A MA ™I then one finds by the last theorem

AUNATTC N for ¢<0.

2.6) Half-sided modular inclusions
The last point of Remark 2.5.3 led H.W. Wiesbrock [Wie93], [Wie97] to introduce the

concept of half-sided modular inclusions.

2.6.1 Definition:

Let M be a von Neumann algebra acting on ‘H with cyclic and separating vector €2 € H.
The modular operator and conjugation of this pair will be denoted by A and J.
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1. By Hsmi(M)~ we denote the set of von Neumann subalgebras N of M with the
properties:

a. Qis cyclic for M. Tt is also separating for A" since N' C M.

B. AUNATE = AdAYN Cc N for ¢ <0.
The elements of Hsmi(M)~ will be called the von Neumann algebras fulfilling the condi-
tion of —half-sided modular inclusion.
2. By Hsmi(M)T we denote the set of von Neumann subalgebras A" of M with the prop-
erties:

a. Qis cyclic for M. Tt is also separating for A" since N' C M.
B. AUNATE = AdAYN Cc N for t>0.
The elements of Hsmi(M)T will be called the von Neumann algebras fulfilling the condi-

tion of +half-sided modular inclusion.

It should be remarked, that one cannot replace IR~ by IR because
AAA"N C N Vit

implies N' = M. The principle of half-sided modular inclusion is closely related to the
half-sided translations by the following result:

2.6.2 Theorem:

Let N € Hsmi(M)~. Then there exists a group U(t) € Hstr(M)T such that the equation

N = Ad U(l)M
holds.

Thm. 2.6.2 is in some sense the converse of Thm. 2.5.2. In some cases where one can
compute the modular group one can find subalgebras fulfilling the conditions of half—sided
modular inclusion. In these cases the corresponding half-sided translations are known only
if they are geometric groups. But this is not always the case.

Proof: Assume the theorem to be true and assume A" = U(1)MU(—1) then one
has AﬂtAjf/ = AﬂtU(l)A%AU(—l) = U(e?*™ — 1). Therefore, one has to show that the
product AﬂtAjf/ =: D(t) commutes for different values of the arguments. For this one
uses Thm.B again. In the situation N' C M one can apply Thm.A with V = 1 and will
find that D(¢) has an analytic continuation into the strip 5(0, 1). On both boundaries the
expression is unitary. By assumption of the modular inclusion one obtains:

D(t)ND(t)* C N, for t>0,
D)N'D(t)* Cc N', for t<0,
D(% + t)N’D(% L)' C AN, for teRR.

The last statements follow from D(% +t) = JmD(t)Jar. Jay maps N onto N, D(¢) maps
this into M and finally Jxq maps this into M’ C N, Consequently one can apply Thm.B
to the expression

W(s) = D(5—log(e*™ + 1)),
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which leads to the relation
AD( Tog(¢™ + 1) AT = D(=log(*™=9 4 1)),
27 27

Multiplying this equation from the left with A/_Vft and from the right with AY then we get
with 2™ = 27 1
1

—1 7 —1x A IT 1 m(s—
AR AYATIEAR = D log(e) 1 1) + 1) = DL

1Og(€2ﬂ'8 _I_ eZﬂ't))
1
= D(% log(ezm 4oe?mt 1)).

Since this expression is symmetric in z and ¢ we obtain the commutativity of the operator
family D(t). If we set U(e*™ — 1) = D(t) then the above equation reads

U(€2ﬂ't o 1)U(€27r1: o 1) — U(€27r1: + eZﬂ't o 2)

This shows that U(a) is additive for positive arguments and by analytic continuation it
follows that it is an additive unitary group with positive generator. It remains to show

that A is of the form U(1)MU(—1). To this end we introduce:
2.6.3 Definition:

Let AN be a —modular inclusion then we set

N(e™2™) = ARN ALY,
N (=™ = {AL TN T AT
N(0) = {{JN (™))",
1

Next we will show that this is a good definition.

2.6.4 Lemma:
The von Neumann algebras N (t), defined above, fulfil the following relations:

t1 <ty implies N(t1) D N(tz2),
N(0) =M,
t <0 implies N(t) D M,
t>0 implies N(t) C M.

Proof: Because of modular inclusion we have A (t) C N(1) for ¢ > 1. Since unitary
transformations preserve order we obtain the first statement for positive arguments. More-
over, N' C M implies N (t) C M for positive t. For negative t we obtain the corresponding
statements by the properties of Jaq. Finally, the algebra A/(0) is a subalgebra of M which
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is invariant under the modular group of M, has 2 as cyclic vector and hence coincides

with M. (See [KR86] Thm. 9.2.36.) D

Proof of the theorem, continuation: From the observation that U(a) is a continuous
group it follows that the family A (#) is also continuous at zero. Hence we obtain

M =U(-1)NTU(1).

This shows the theorem. O

We end this subsection with some uniqueness result which is taken from [Bch93].

2.6.5 Theorem:

Let M, and N, a € IR be two families of von Neumann algebras on the Hilbert spaces
Hom, Hyp with the cyclic and separating vector €., , €, respectively. Assume there are con-
tinuous unitary one—parametric groups Up(a), Un(a) both fulfil spectrum condition and
leave ., 2, unchanged and assume

My =Upm(a)MoUps(—a), No = Un(a)NoUn(—a).
Let moreover
M, C My, N, C Ny for a>b.
If there exists a unitary map W with WH,, = Hpn and W, = Q,, and n addition

Mo = WN()W*, and Ml = Wle*,

then follows
My, =WNW* vV a€lR,
Um(a) = WUpr(a)W*.

The same is true if we require that Mo and My as well as Ny and Ny both fulfil modular

inclusion for negative arquments of the modular groups.

Proof: The relation M; = AdUm(1) Mg implies Ai]{/tl = Ad UM(l)Ai/’{AO. From this
one finds with help of Thm. 2.5.2 the relation

AEAY =Um(e®™ —1), teRR.
By similar arguments one gets

AGAY, =Un(e®™ —1), teRR
The assumption AdWN; = M;, 1 = 0,1 implies Ad WAijffi = Ai/’{/ti, 1 = 0,1 and hence
we find AdWUpr(e?™ — 1) = Upq(e*™ — 1), t € IR. Since both groups fulfil the spectrum

condition we obtain by analytic continuation Ad WUas(a) = Up(a), a € IR. This implies
the statement of the theorem. ]
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2.7) Remarks, additions and problems

(I) For the definition of half-sided translations one has used that the group U(s) maps the
cyclic and separating vector onto itself and that U(s) has a positive generator. From this
one concluded Thm. 2.5.2. The arguments can be reversed and one finds

2.7.1 Theorem:

Let U(s) be a continuous unitary group fulfilling U(s)MU(—s) C M for s > 0. Then any
two of the three conditions imply the third
a. U(s) =efs with H > 0.
b. U(s)Q =Q for all s € R.
c. AdAY(U(s)) = U(e™?7ts),
JU(s)J =U(—s).

The implication b + ¢ — a has been shown by H.W. Wiesbrock [Wie92] and
a+ ¢ —» b can be found in [Bch98a).

2.7.2 Remark: The conditions a., b., and c¢. of Thm. 2.7.1 do not imply the relation
AdU(s)M C M for s > 0. This is due to the fact that the modular group Alf does not
determine the algebra M. But if we know Ad U(sg) M C M for one sg # 0 then one finds
s9 > 0 and AdU(s)M C M for all s > 0. The first line of c¢. implies the inclusion for a
half-line, and the conditions a. and b. imply, together with the proof of Thm. 2.5.2, that
this is the positive half-line.

(IT) Let M be a von Neumann algebra with cyclic and separating vector . Assume there
exists a unitary group Ut (z) € Hstr(M)T and a unitary group U~ (27) € Hstr(M)~. If
these groups commute, then one can construct a two—dimensional theory, which eventually
does not fulfil the weak additivity property.

We set:

() U(x) = Ut(2t)U~(27) where x € IR? and z+, 2~ are the light—cone coordinates.
This U(x) fulfils the spectrum condition since Ut and U~ are half-sided translations.
(B) M(Wg) = M and M(Wp) = M’'. The algebras of the shifted wedges are defined by
the translations M(Wpg 4+ x) = AdU (x)M(Wgr) and MWy, + x) = AdU(x)M(Wp).

(7) Notice that in the two—dimensional Minkowski space a double cone is the intersection
of a shifted right-wedge with a shifted left-wedge. For a — b € Wg we put Dy =
(Wr+b)N (W +a) and

M(Db,a) = M(WR + b) N M(WL + a).

It is easy to check that this defines a Poincaré covariant net on the two-dimensional
Minkowski space. We only do not know whether or not § is cyclic for M(Dp ).

2.7.3 Problem: Can one characterize those algebras M which fulfil the assumption
described under (II) and for which € is also cyclic for M(Dyp )T

(ITI) The space Char(M) can easily be furnished with a topology.
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2.7.4 Definition:

Let M be a von Neumann algebra with a cyclic and separating vector 2. We introduce
on Char(M) the topology 7 of simultanious *—strong convergence of Do (t) and Dg(t+ 1),
and this uniformly on every compact K of the real line. The neighbourhoods of an element
D(t) are given by

U(t1,.ythn, I, D(t)) = {D'(t) € Char(M); ||(D(t) — D'(t))dbs]|+

(D(1)* = D' (4 )l + (DG + 3) = DI+ )+

1 1 ) .
(DGt + )" = D'+ )l <1, i =1,.m; £ € K}

With this topology one obtains:

2.7.5 Theorem:
The space Char(M) is T complete.

For details see [Bch98c].

(IV) Using the modular automorphisms of M one sees that Sub(M) contains a continuous
family of different elements if it contains a non-trivial element. With help of the Longo
endomorphism one can construct a decreasing family (by inclusion) of elements. (For
N € Sub(M) the Longo endomorphism applied to N is Ad (JyJ )N )

If V'€ Sub(M), then there is a natural injection of Sub(N) into Sub(M). Hence if

Sub(M) is non—trivial it must have a rich structure.

2.7.6 Problems: («) Since finite algebras have a trace it follows that the set Sub(M)
consists of only one point, namely M itself. That this is not the case for local algebras
first has been shown by Kadison [Ka63] and by Guenin and Misra [GM63]. If the von
Neumann algebra is infinite, does then Sub(M) contain non—trivial points’

() The definition of Sub(M) (Def. 2.3.3) depends on the cyclic and separating vector
Q. If © and U are two different cyclic and separating vectors of M, does this imply that
Charg (M) and Chary (M) are homeomorphicl’

(V) 2.7.7 Problem: If the algebra A" € Sub(M) is connected with a half-sided translation
(or a half-sided inclusion) then the characteristic function D(t) is abelian. Assume D(t)
is abelian, do then exist two commuting half-sided translations Uy € Hstr(M)T. Uy €
Hstr(M)~, such that N' = Ad(Uy(1)U2(—1))M holdsT" (One of the factors could be

trivial.)

3. On local modular action, examples

Since the modular group of the pair (M(0),Q) is defined but not very concrete,
one would like to have examples where this group can be computed explicitely. These
are those where the modular group of the algebra, associated with some domain in the
Minkowski space, defines a geometric transformation. We start with the result of Bisognano
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and Wichmann [BW75], [BW76] at which we look in some detail. Afterwards the other
examples known up to now will be discussed. Since it promotes the feeling for the modular
groups, if they act local, it is interesting to look for other possibilities. As the result of
Trebels [Tre97] shows there are no other cases in the vacuum sector.

3.1) The result of Bisognano and Wichmann for the wedge
domain
The first explicite determination of a modular group is due to Bisognano and Wich-
mann. They assumed that the local algebras are generated by Wightman fields, and that

the Lorentz transformations act on the indices of the fields by finite dimensional represen-
tations of the Lorentz group, i.e.

UM Ai(2)U"(A) = Z D}(A)A,(Ax),

where D‘Z(A) is the direct sum of finite dimensional representations. In this situation the
theory is also PCT invariant (Jost [Jo57]). Here the case of only one scalar field will be
treated. For the general case see [BW76]. All our calculations use the IR*.

3.1.1 Remark:

(1) Let A(t) as in Eq. (1.5.3) and let the forward tube TT be defined by
Tt ={2;3mzeVT}

Then we have:
For « € Wg one has A(t)z € T in the range —3 < Smt < 0, and
if # € Wy, one has A(t)z € T~ for 0 < Smt < 3.

For Smt =0, or &1, the vector A(¢)z belongs again to R*.
(2) Let A(x) be the field operator, then

Uliy) A(z)2 = Az +1y)Q

is defined for y € VT,
(3) Let @ = (w0, x1,22,23) € Wg then

1
A(—3) (w0, 21,22, 73) = (—20, =21, 22, ¥3),

2

and hence )
U(A(=5)A@)Q = A(—=z0, —a1, 22, 25)0.

(4) On the other hand the PCT-operator © gives
OA(x)Q = A(—x).
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This suggests for the modular conjugation the representation
J=0U(r,e1)=U(m, e1)0,

where U(7, e1) represents the rotation around the x;—axis and 7 is the angle of rotation.
(5) If U(A(—73)) is the square root of the modular operator of the wedge-algebra then this
leads for any testfunction to the relation

JU(A(+im)A(F)Q = A(F)Q.

To show that all the remarks are true we need some notations from the theory of the
tensor—algebra.

3.1.2 Notations:

1) S denotes the tensor-algebra generated by S(IR*).
a) f € § is a terminating sequence

i = {fo,fl(l’),fz(l‘l,l‘z), ...,fn(l'l, ,l’n)},

where fo € C, f; € S(IR4i).
b) Addition is defined component—wise.
¢) The product is as usual in tensor products, i.e.

(f9)i= Y fign,

i+h=j

where (fi.gn)(T1, s Titn) = filTr, oy 2)GR(Tit1s ooy Tien)-
d) The conjugation is defined by

filer, e x) = filag, . ).
2) For f € S we set

and
A(f) = A7)
As domain of definition for the field operators we choose

D={A(f) f e S}

3) If G is a domain, then we denote by P(G) the algebra generated by elements A(f),
where f has its support in G.
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4) We call a point y right of «, if y € @ + Wg. If G1,G3 are two domains, then we say Gy
is right of G5 if this is true for all pairs of points in GG; and Gs.

3.1.3 Lemma:

Assume G; C Wg, 1 = 1..n are open sets such that G;41 1s right of G;, then the vector-
valued distribution, defined on Gy x Ga X ... X Gy,

AAB) ) AA(#)22). A(A(H)20) O,

has an analytic continuation in t into the strip S(—%,O). Moreover, the boundary values
exist for Smt — 0 and Smt — —% and 1t holds

lim AA(t+im)x1). AN +im)x,) = A(A(t)x{)...A(A(t)xj )

1 n
T—o—1

with ¥/ = (—xg, —x1, T2, T3).

Proof: The spectrum condition implies that
Ay 4 iy1) Az +iy2)... Az, + iy, ) (3.1.1)
has an analytic continuation into the domain
i €V o —y €V Ly —yia €V

This implies the first statement by the choice of the G; and Remark 3.1.1.(2). Since the
vectorvalued function Eq. (3.1.1) converges if the imaginary parts converge to zero we
obtain the second statement by Remark 3.1.1.(1) and (3). o

From this we obtain:

3.1.4 Corollary:
Let Gy,...,G,, as in Lemma 3.1.3 and

support  f C Gy X Gg X ... X G,

then one has

1) A(f)Q € DU(A(t —1/2)) and it holds

2) UAM=i/2))A(f)2 = JA(f)* 9.

Here J denotes the operator introduced in Remark 3.1.1.(4).

Proof: Since the product—functions generate D(G; X ... x G,), it is sufficient to show
the corollary for such functions. With f/ = f(27) we obtain from the lemma and the

definition of J

U(AG/2)A(f1)-A(fa)Q = A(F]). . A(FHQ
=JAR) AT = JAFn) - A(F)Q = J{A(f1)... A(fa) }F 2.
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The first statement has been schown in the last lemma. D

One remark: Since U(A(¢)) is a one—parametric group we obtain by Stone’s represen-
tation U(A(t)) = €1, and hence U(A(—i%)) = N2, K and X3 are selfadjoint operators.
Next we formulate the main result of Bisognano und Wichmann.

3.1.5 Theorem:

Let A(x) be a scalar quantum field. Set A = U(A(—1/2)) and J = OU(x,e1), as introduced
in 3.1.1.(4). Then holds:

(a) JP(Wg)J = P(Wy),

(b) A'"P(Wg )AT =P(Wg), teR,

(c) JATXQ =X*Q V X e P(Wg)

JATIYQ=Y*Q VYV Y eP(Wp)

(d) P(Wgr)Q is a core for Az,

Statement (a) is Jost’s PCT-theorem. Statement (b) is nothing else but the Lorentz
covariance of the theory. We have added (d) because this is an important aspect of the
Tomita-Takesaki theory. For proving (¢) we need some preparation.

3.1.6 Lemma:

Let us denote by Q the set of operators A(f) where the f’s have the following properties:
(a) To f exists a sequence of domains Gi,i=1,....,n such that G; € Wg and Giyq is right
of Gi.

(b) f is a product—function with support of f C Gy x ... x Gy.

Suppose, Q€Y is a core for U(A(—i%)), then for every X € P(Wg) there holds

JU(A(—i%))XQ = X*Q.

Proof: Assume @) € Q and X € P(Wg), then by Corollary 3.1.4 and by part (a) of
Thm. 3.1.5 we obtain with (U(—i) = U(A(—ii)):

2 2

(XQ, U(—i%)QQ) = (XQJQ*Q) = (XQJIQ*JQ) =
(JQQ,X*Q) = (JX*Q, QQ).

Since by assumption Qf) is a core for U(—i%) and since this is a selfadjoint operator it

follows for XQ € D(U(—il)) and

2
1
U(-i5)XQ = JX"Q.

This is equivalent to statement (c) of the theorem. o

Since @ is a subset of P it remains to show that Q€ is a core for U(—i%).
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3.1.7 Lemma:
QQ s a core for U(—i%).

Proof: First we show that Q€2 is dense in H. Suppose this is not true then exists
a vector v € H such that v — QQ. Let @, be the set of polynomials of degree n, then
(1, QQ) = 0 implies that the distribution (¢, A(x1)...A(2,)Q) vanishes. For xq,...,z, €
G1 X ... X G, the above expression is zero and hence by analytic continuation this holds
for all #1, ..., x,. Since this holds for all n we get Q) is dense in H.

We know in addition that QS is invariant under the Lorentz boosts U(A(t)). There-
fore, by Nelsons theorem Qf) is a core for the generator of the Lorentz boosts K. From
this one concludes that it is also a core for 2. This completes the proof of the theorem.
O

3.1.8 Definition:

A representation of a QFTLO fulfils the Bisognano—Wichmann property if the modular
group of every wedge acts local, like the associated group of Lorentz boosts, on the under-
lying space.

3.2) Other examples

(i) In a field theory of massless, non—interacting particles every influence travels along the
boundary of the light—cone. Therefore, there holds not only spacelike, but also timelike
commutativity. This implies that the vector €2 is cyclic and separating also for the algebra
of the forward light—cone V. 1978 D. Buchholz [Bu78] has determined the modular group
for this situation. It coincides with the dilatations.

3.2.1 Theorem:

In a field theory of non—interacting massless particles the modular group of the algebra of
the forward light-cone VT acts as follows:

ALy =V(e™?™)  where

VA V) = AAz), A>0

holds. This means V() implements the dilatations.

Since the calculation is similar to that of the Bisognano—-Wichmann case, it will not
be repeated here.

(ii) If the theory is conformally covariant then the algebra of the double cone can be trans-
formed onto the algebra of the wedge or the forward light—cone. Since the modular groups
are known for the last two algebras, the modular group for the algebra of the double cone
can be obtained by transformation. The result is:
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3.2.2 Theorem:

Assume we are dealing with a conformal covariant theory. Let D be the double cone
D = {u: [eol + 7] < 1}

and denote by
et =9 £ 12|

Then the modular group of the pair (M(D), ) induces on D a geometric transforma-
tion given by the formula:

_(1 _ xi) + 6—271')\(1 + xi)

xi(/\) - (1 —a®)+e 2701+ a%)

The modular group of the double cone has first been computed by Hislop and Longo
[HL82].

(iii) The examples treated before and those of the next subsection are based on the vacuum
representation. There are also situations where one can compute the modular groups for
thermal representations. These investigations are due to Borchers and Yngvason [BY98].
In these cases the domain is the forward light—cone or the wedge in two—dimensional
models that factorize in light—cone coordinates. In order that one obtains local action
for the modular groups one has to deal with Wightman fields of scale-dimension 1. The
results are as follows:

3.2.3 Theorem:

Assume we are dealing with a Weyl system over the two—dimensional Minkowsk: space
that factorize in light—cone coordinates. Let w be the quasi free KMS state and w the
corresponding representation of the Weyl algebra for a field of scale-dimension 1. Then
the modular groups of the forward light—cone and the wedge act local on the corresponding
algebras. The transformations are:

For the forward light—cone:
x5 oy+(t,x), xeVT.

For the wedge:
XH@W(tvx)v x e W.

Here t 1s the element of the modular group and the functions ¢ are given by:

@V"‘(uv X) = (99-1-(”7 xL)v 99-1-(”7 xR))v

©
=
B
x
Il
©
|
=
=
jun
=
=
iy

with
S‘Q—(uv l’) - _S‘Q-l-(_u? —l’),

/8 —ZTTU T
c,o+(u,:1;):ﬁlog{1—l—e 2T (o2 /ﬁ—l)}.
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3.3) The counterexamples of Yngvason

The examples of Yngvason [Yng94] are treated separately, because they show examples
of theories with special properties. From the result on half-sided translations (Section
2.5.) we know, that the modular group of the wedge acts on the translations as the
Lorentz boosts of the wedge. This might give the impression that the modular group of
this algebra acts local. That this is not true in general is shown by the first example. If one
defines the algebras of the double cones by intersection then the modular group acts local
in the characteristic two—plane of the wedge, but not necessarily local in the perpendicular
direction, as shown by the last example.

Suppose @ is a hermitean Wightman field which transforms covariantly under space-
time translations, but not necessarily under Lorentz transformations, and depends only on
one light cone coordinate, say @*. Locality implies that the commutator [®(a™), ®(y™)]
has support only for T = yT. Moreover, from the spectrum condition it follows that
the generator for translations in the z'-direction is positive semi-definite. This implies
that the Fourier transform of the two—point function, Wy, defined by (2, ®(21)®(y™)Q) =
(1/27) [explip(zt — y"')]Wg(p)dp has the form

Wa(p) = 0(p)pQ(p*) + ¢8(p).

In this formula © is the vacuum vector, Q(p*) is a positive, even polynomial in p € IR and
6(s) =1 for s > 0 and zero else, and ¢ = (Q, ®(z7)Q)? > 0 is a constant. Subtracting ¢'/?
from @ if necessary, we may drop the §(p)-term. For simplicity of notation from now on
we write z,y instead of T, y™.

The models we consider are generalized free fields with the two point function given
above (without the d-term). They are characterized by the commutation relations

[@(z), ®(y)] = D Q(D*)é(z — y)1.,

where for convenience we have denoted id/dx by D. Let Hg 1 be the Hilbert space of
functions f(p) such that fooo |f(p)lpQ(p)dp < oco. Define for f € Hg 1 the unitary Weyl
operators as usual by

W(f) = e,

The Weyl relations are )
W(f)W(g) = e HID2W(f + g)

with
K(f.g) = (2,[2(f), 2(9)]) Z/_ pQ(p*) f(—p)d(p)dp.

It follows that W(f) commutes with W(g) if and only if K(f,g) = 0, in particular if f and
¢ have disjoint supports. The Weyl operators are defined on the Fock space Hg. For our
future investigations we can restrict our attention to the one-particle Hilbert space Hq 1.

We know that the modular group of the half line acts as a delatation by the factor
e™2™  This amounts in momentum space to a dilatation by the factor A = e*™. If we
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denote the restriction of the modular group of the positive half line Afﬁ to the one—particle
Hilbert space Hg 1 by V4 (A) we must get

(Ve (\))(p) = —)e“%@p),

where the phasefactor e X(?) has to be determined. If (p) is analytic in the upper half plane
then the same must be true for (Vi (A)¢)(p). This condition can be solved by remembering
the structure of Q(p) which permits us to write

Q(p) = L(p)L(—p),  with  L(—p) = L(p)".

The polynomial L(p) is fixed up to a sign by the requirement that its zeros lie in the closed
upper half plane. Hence we find:

L(—=Ap)
L(-p)

That this is the correct expression for the modular group can be checked by showing that
the KMS—condition is fulfilled. For this one uses the analyticity property as well in p as
in A.

In the same manner we obtain for the left half-line

(VE(M)Y)(p) = A U(Ap).

(Vo(N¥)(p) = A" (\p).

Since the algebra and its commutant have the same modular group we see that wedge

duality is fulfilled iff L(p) has only real zeros.
The duality condition for bounded intervals is a little more difficult. Yngvason has shown:
The duality condition is violated if L(p) and hence Q(p) is not a constant.

Finally we consider fields in n—dimensional Minkowski space. Guided by the low-dimensio-
nal examples considered above we shall compute the modular groups of the wedge algebras
for generalized free fields on IR". We treat the special case where the two—point function
has in Fourier space the form

Wa(p) = M(p)du(p),

where du is a positive Lorentz invariant measure with support in the forward light cone
and M is a polynomial that is positive on the support of du. The polynomial M allows a
factorization,

M(p) = F(p)F(—p),

where F(p) is a function (in general not a polynomial) with certain analyticity properties
to be specified below.

37



HJB—Apr./99

To describe the properties of F' we use the light cone coordinates #+ = 2% + 2! for
z = (2% ...,2") € R" and denote (22,...,2") by #. The Minkowski scalar product is

1. .
<$,y>=§($+y +ayt) -2 4.

The right wedge, Wg, is characterized by ™ > 0, 2~ < 0; hence the Fourier transform,
f(p) = [exp(—i(p,z))f(z)d"x of a test function f with support in W has for fixed
p € IR"? an analytic continuation in pt and p~ into the half planes Im pt > 0, Im p~ < 0.
We require for F' that F(+p) is analytic and that F(—p) is without zeros in this domain,
with F(—p) = F(p)* for p € IR". There is no lack of polynomials M allowing such a
factorization; one example is

with )
~ A . ~ =~ 1 —
F(p) = Vp-p+m? +ip' =vVp-p+m?+ 5" —p).
If du(p) = 6(p°)S({p, p) — m?) we can replace the polynomial by (p%)?.
sponding generalized free field is nothing but the time derivative (d/dz°)®,,(x), where ®,,
is the free field of mass m.

Hence the corre-

By analogy with the first example we define for A > 0 the unitary operators Vz(\) on
the Fock space H over the one-particle space Hy = L*(IR", M (p)du(p)) by

F(—/\p—i_, _/\_1]9_7 _ﬁ)
F(—p'i', -r, _ﬁ)

for ¢ € H; and canonical extension to H. Then we define by means of Vr(\) a one
parameter group of automorphisms of the von Neumann algebra M(Wg) on H generated
by the Weyl operators W ( f) with supp f C Wg. By essentially the same computation that
verified the example of the half line one shows that (3.3.1) satisfies the KMS condition and
that it is therefore, the modular group defined by the vacuum state on M(Wg).

For the left wedge Wy, = {z | 27 < 0,2~ > 0} the corresponding operators are

Vr(M)e(p) = e(Apt A "1p7, p) (3.3.1)

F(pt, A" 'p™,p)
F(pt,p=.p)

By comparing the two modular groups we see that the field satisfies the wedge duality
condition M(Wg) = M(Wp) if and only if F(p) = F(—p) on the support of du. This
condition is, e.g., violated in the above mentioned example.

This example demonstrates also that the modular group of M(Wx) may act non-local
in the z-directions. In fact, let f be a test function with compact support in Wx. Under
the transformation (7.7) the Fourier transform f i1s mapped into

Vi(Ne(p) = e(ApT, AT pT, ).

X pp+m?—Li(ApT —A7lp7) . .
= 2 FOpT ATp,p).
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This is no longer the Fourier transform of a function of compact support in the z-directions,
because it is not analytic in p. From this lack of analyticity it is not difficult to deduce
that W(fx) does not belong to any wedge algebra generated by the field unless the wedge
is a translate of Wgr or Wy, but we refrain from presenting a formal proof. The operator
W (fx) is still localized in the 2%, z!-directions in the sense that it is contained in

M(Wgr + a) N M(Wg 4+ b)’ for some a,b € Wg.

3.4) The result of Trebels on local modular action

In the last subsections we saw that under special assumptions the modular groups of
algebras, belonging to definite domains, can be computed. In many of these examples the
modular transformations led to geometric transformations of the underlying sets. There-
fore, it is natural to ask whether or not there might exist other cases where the modular
group of the algebra of a set acts as geometric transformations on the underlying set. It is
impossible to answer this question for arbitrary sets. Therefore we restrict the sets to the
family of double cones and their limits, i.e., to wedges, forward and backward lightcones.
The following results are taken from the thesis of S. Trebels [Tre97].

3.4.1 Definition:

A unitary transformation V' which maps M(G) (G open) onto itself and which maps §2
onto itself is called geometric, causal and order preserving if there exists a one to one map
g : G — G with the properties:

(i) x € G implies x4 € G, z,-1 € G.

(17) x,y € G and x —y are spacelike, then 2, — y, and z,-1 — y,-1 are spacelike.

(¢i1) x —y € VT implies vy — y, and x,~1 — y,—1 belong to V.

(iv) For every G' C G one has

AdVM(G) = M(G;), with G; = {z,;2 € G}.

Notice that ¢ — x, maps double cones onto double cones. Since double cones form
a base of the topology of IR? we see that z —» r4 1s continuous. Our first observation is
the following

3.4.2 Lemma:

Let g be a geometric causal and order preserving map of the domain G. If v,y € G and
v — vy are lightlike then v, —y, are lightlike. (The same holds for g='.)

Proof: Without loss of generality we might assume y € x + V+ . Hence we get by
continuity y, € v, + V. From ¢ € y — VT we find z, € y, — V*. Both inclusions can
only be true if x, — y, are lightlike. ]

It is our intention to look at the possible geometric, causal and order preserving
maps of the double cone. But, by an order preserving conformal transformation v we
can send the double cone onto the forward light cone. Then vgy~! is a geometric, causal
and order preserving map of V. These are much easier to handle. If we denote by ¢
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a lightray belonging to the boundary of V't then a general lightray in VT has the form
aly +pl, a>0,0<p<oo. Weshow next:

3.4.3 Proposition:

Let g be a geometric, causal and order preserving map of V¥. Then g maps parallel
lightrays onto parallel lightrays.

Proof: Let al; + pl be a lightray then we associate to it a half—space

H(aly + pl) = closure{ go aly + pl+ V™1
p

It is easy to check that an element x € V1 belongs to H(aly + pl) iff
({,x —aly) <0. (3.4.1)

Next we claim that two lightrays aly + pl and bl + /,Lg are parallel, i.e., { = M iff either
(H(aly +p0) N VT) C (H(bly + M@)) N VT or vice versa. The first case happens if al; €
H(bly + M@) and the second if bly € H(aly + pl). Let us look at the first case. By the
characterization (3.4.1) we obtain for all p > 0 the relation (, pl + aly — bly) < 0. This
implies (5,6) < %(g, bly — aly). Taking the limit p — oo we obtain (5,6) < 0. But since /¢
and ¢ both belong to the boundary of V1 we have (K,EA) > 0. Both inequalities together
imply (K,EA) = 0or { = M. Let g be a geometric, causal and order preserving map then ¢
maps a lightray aly + pl onto a lightray a,(, 4+ pl,. Since g maps subsets onto subsets it
follows that the image of bly + pl is parallel to ayly 4 + ply. O

As a consequence of the last construction we obtain the following result, which requires
that the dimension of the Minkowski space is larger than two.

3.4.4 Theorem:

Assume d > 2 and let g be a geometric, causal and order preserving map of V*. Then g
maps every straight line of V¥ onto a straight line in V.

Proof: In the proof of Prop. 3.4.3 we have introduced the closed half-spaces H(al; +
pl) associated with the lightray al; + pl. The boundary of this half-space is an affine
linear manifold of codimension one. By continuity of ¢ this boundary is mapped onto the
boundary of the image. The intersection of such affine manifolds is mapped by ¢ onto
the intersection of the images, and hence onto the intersection of affine manifolds. Since
every spacelike straight line in VT is the intersection of d — 1 affine surfaces, we obtain
that ¢ maps spacelike straight lines onto spacelike straight lines. Since ¢! has the same
property we conclude that every spacelike straight line is also the image of such line. Next
we want to show that every two—plane containing a timelike direction is mapped onto a
two—plane of the same kind. In order to construct such two—plane we take two different
lightlike vectors ¢ and { and define the two—plane by:

{aly + pt + plyafixed, y1>0,p > po(p)}

40



HJB—Apr./99

where po(y) is defined by the condition aly + pl + po(p)l € dVT. This family of points
defines a two-plane intersected with V. Since by Prop. 3.4.3 g maps parallel lightrays
onto parallel lightrays it follows that g maps the two—plane into a two—plane of the same
kind. Since g~! has the same properties it follows that the map surjective. Since every
timelike line is the intersection of two such two-planes we see that g maps also timelike
straight lines onto timelike straight lines. Since we know by 3.4.2 that ¢ maps also lightlike
straight lines onto lightlike straight lines the theorem is proved. O

A straight line L = {\e,\ > 0,e € VT} through the origin of VT is characterized
by the fact, that for every @ € V* the set L N (VT Nz — V1) is not empty. Hence in
d > 2 every geometric, causal and order preserving map sends straight lines through the
origin onto straight lines through the origin. For simplifying the further calculation we
introduce a fixed coordinate system and assume that a lightlike vector ¢ has the form
(1,5_)) with HZH = 1. In the following we will denote the set of geometric, causal and order
preserving maps of VT by 7 and the elements of 7 by T'. The vector (1, 6) will be denoted
by t. If T € T then it maps the line {\t} onto another line through the origin. By a
suitable Lorentz transformation A(T') we can send this line back to the multiples of ¢, i.e.
A(T)TMt = f(M\)t where f()\) is a monotone increasing function with f(0) = 0. By 7o we
will denote the set of elements in 7 which maps the straight line characterized by ¢ onto
itself. We show next:

3.4.5 Lemma:

Let T € To then T maps every straight line perpendicular to t onto a straight line perpen-
dicular to t.

Proof: Let e be perpendicular to t. Then a straight line perpendicular to ¢ and in
direction of ¢ is of the form L = z + Ae where € VT and )\ belongs to an appropriate
interval. Let 7 = (,t) and p = V72 — 2? then L lies in the hyperplane through 7t
which is perpendicular to t. This hyperplane is also characterized by the sphere § =
(@ +ovtyn (w — OVT'). Every straight line passing through two points of this
sphere lies in the hyperplane in question. Now T' € 7o maps the points *¢ and Wt onto
two points on the t—axis. Therefore the sphere S is mapped onto a sphere characterized by
the two points. Since a straight line through two of the points is mapped onto the straight
line through the corresponding points it follows that 7' maps straight lines perpendicular
to t onto straight lines perpendicular to ¢. ]

Notice that the (0,1)-plane is spanned by the t—axis and the lightrays in the (0,1)-
plane passing through the t-axis. Therefore, this plane is mapped by elements in Ty onto
a two—plane containing the t—axis. Choosing a suitabte rotation R(T) we can transform
this plane into the (0,1)-plane. Hence R(T)T maps the t—axis and the (0, 1)-plane onto
itself. The set of elements with this property will be denoted by 7;. Next we show:

3.4.6 Lemma:
The restriction of elements in Ty to the (0,1)-plane define dilatations.

Proof: Define the vector e := (0,1,0,..,0). Choose 8 < « and look at the triangle
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with the corners

ﬁt,a;ﬁt—l—a;ﬁe,at.

These points are mapped by T € 7 onto

a+ 3
2

f(B)t, f( )t +g(a, Be, fla)t.
Since the lines between Gt and %ﬁt + azie and between ot and %ﬁt + azie are lightlike
and the same is true after translation we obtain f(«) —f(#) = f(#) —f(0) = g(e, B).

From this we find f(#) = %(f(oz) + f(3)). Since f is continuous and monotone this

equation has only one solution namely

Hence we get g(a, ) = azif(l) Therefore, T restricted to the (0, 1)—plane is a dilatation.
O

Let T € 7Ty then we can find a dilatation D(T') such that D(T)T is the identity on
the (0,1)—plane. The elements with this property will be denoted by &;. They have the
following property:

3.4.7 Lemma:
The elements of S1 map the subspace perpendicular to the (0,1)-plane onto itself.

Proof: Since every sphere with center on the t—axis is mapped onto the sphere with
the same center and the same radius it follows that T does not change the distance from the
t—axis. Since T is the identity on the (0,1)-plane we can make a Lorentz transformation
on this two—plane without changing the arguments. Hence the distance from any axis

through zero of the (0, 1)-plane remains unchanged. But this can only hold if T maps the
subspace perpendicular to the (0, 1)-plane onto itself. ]

Combining all the arguments we find:

3.4.8 Theorem:

Every geometric, causal and order preserving map of the forward lightcone 1s an element
of the Lorentz group extended by the dilatation.

Proof: If d = 3 then T' € & is in the 2—direction either the identity or the reflection
at the (0.1)—plane. If d > 3 then there exists a rotation R(T') such that R(T)T does not
change the 2—axis. This implies also that R(T)T is the idendity on the (0,1,2)-space.
Repeating this argument we end up with either the identity or a reflection. This means if
T is the orginal transformation then

RnDRlAlT: 1 or P
where P is a reflection. This shows the theorem. O

42



HJB—Apr./99

The modular group is a one—parametric group. This implies that every element is
the square of another element. Hence if the group acts geometric and causal on the
underlying domain, then it acts automatically order preserving. If the modular group
induces a geometric and causal action on the underlying domain then we know from the
last theorem that it is a one—parametric subgroup of the (@ + 1)—dimensional Lie group
generated by the Lorentz group and the dilatations. In order to restrict the possibilities
we have to use the following properties:

1. The group ¢(t) is induced by the modular group of M(D), where D is a double cone.
This implies that for A € M(D) the expression

ATAQ

has an analytic continuation into the strip S(—%, 0).
2. We are dealing with a quantum field theory in the vacuum sector. This implies in
particular that the translations fulfil spectrum condition.

We want to compare the geometric modular action with the action of the translations.
As technical tool we need the following result which can easily be proved with help of the
double cone theorem, Thm. 1.4.4. Here we will not present the proof.

3.4.9 Theorem:

Assume we are dealing with a quantum field theory in the vacuum sector, and that the
dimension of the Minkowsk: space s larger than two. Let Dy, Dy be two double cones with
center x1,x9 respectively. If x4 — xo 1s lightlike and if M(Dy) and M(D3) commute then
the whole quantum field theory is abelian.

We want to look at the modular group of the double cone D. Let x € D and if Alf
acts geometric and causal on D then ¢(¢)x can be differentiated with respect to ¢ since
g(t) is a subgroup of a Lie group. We want to investigate the direction of ¢'(t)x.

3.4.10 Theorem

Assume we are dealing with a quantum field theory in the vacuum sector, and that the
dimension of the Minkowski space is larger than two. Let D be a double cone and let Al
be the modular group of M(D). Assume this group acts geometric and causal on D. Then
for x € D one has

g (0)z e V-.

Proof: If ¢'(0)a = 0 then the statement holds. If ¢'(0)x # 0 let ¢ be a fixed timelike
vector in VT and choose a lightlike vector ¢ € 9V such that (¢, ¢'(0)x) # 0 where 2 € D.
Let E be the two—plane spanned by t and ¢. Let s be a spacelike vector in E such that
(¢,5) = 0 and (¢, s) < 0. Denote the second vector in E NIV by ¢'. Let y be such that
x —y is a positive multiple of ¢ and such that DNy + W (¢, () = (). Choose a small double
cone D, such that x is the upper tip of D, and such that D, + a C D for a in some
neighbourhood of zero.
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WL +y

Fig.1: Position of the double cones D, D, and the wedge W ({', () 4+ y
Choose B € M(W(l',0) 4+ y) and A € M(D,). Define the two functions
YO T) = (Q, BU)AITAQ),
Fm(\7) = (Q,AATTU(=At)BQ),

where U(z) is the representation of the translations. These two functions have the following
properties:

(i) By the modular theory f* (A, 7) hasin 7 an analytic continuation into the strip S(—%, 0).
(ii) The spectrum condition implies that (), 7) has in A an analytic continuation into
the upper complex half plane C7.

(iii) f~(A,7) can in 7 be analytically continued into S(0, 1)
(iv) and in A into C™.

Using the Malgrange-Zerner theorem, Thm. 1.4.2; and the tube theorem, Thm. 1.4.3,
we see that f*(\,7) has an analytic continuation in both variables into the tube domain
¢t x S(—%, 0). Correspondingly f~ (A, 7) has a simultanious continuation into €~ x.5(0, %)
Now we want to look at the coincidence domain of f(\, 7) with f~(\, 7). With help of
the edge of the wedge theorem, Thm. 1.4.1, we can analytically continue through the
coincidence domain. For its definition we set:

(a) R={7; g(7)D, 1is spacelike to W({', () + y}.

(b) For 7 € R define \o(7) = sup{); g(7)D, + At 1is spacelike to W (', () + y}.

(c¢) For 7 € R define \i(7) = inf{)\; g(7)D, + At is spacelike to W (', () + y}.

Because of locality we get ft(\,7) = f~(\,7) for 7 € R and A\ (7) < A < A\g(7). In order
to simplify the calculation assume t? = —s? = 1. The vector ¢'(0)z has the form

9'(0)z = pt + ps +v

where v is perpendicular to ¢ and s. The assumption (¢'(0)x,¢) # 0 implies p — u # 0. For
small 7 we obtain:

g(t)e = a4+ 7(pt + ps + v) + o(7).
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This implies for small 7:

TeR for 7>0, if p—p<O0;
TeR for 7<0, if p—p>0.

From this we obtain for Ag(7) the following estimate:

Ao(7) =7(p—p)+o(r) for (p—p) <0,
Ao(7) =I|7l(p —p) +ofr) for (p—p)>0.

From the coincidence of the functions f¥(\,7) and f~(\,7) we get an opposite edge of
the wedge problem, where the local cones are the second and fourth quadrant. Therefore,
by the double cone theorem 1.4.4 the tangents at the boundary of the coincidence domain
must lie in the first or third quadrant. Now we can compute the tangent at 7 = 0 because
we have an estimate for A\o(7).

For (p —u) < 0 we see that the tangent vector at 7 = 0 lies in the first quadrant. But,
for (p — p) > 0 this tangent lies in the fourth quadrant.

TP

A A

a b.

Fig.2: The coincidence domain in the (A, 7)—plane.
a. (p—p) <0, b.(p—p)>0.

Since the case (p—u) > 0 leads to a non—stable situation we conclude that the condition
(p—p) < 0 must be fulfilled. This implies that ¢'(0)a belongs to the half-space (p—p) < 0.
Changing now the vector ¢ (There are only a few vectors ¢ for which (¢,¢'(0)x) = 0 can
hold.) we see that ¢’(0)z must lie in the intersection of these half-spaces, i.e. in V=. D

As a consequence of this result we find:

3.4.11 Theorem:

With the same assumptions as in the last theorem the group {g(t)} coincides with the
group of Hislop—Longo transformations (up to a positive scale transformation of the group
parameter).

Proof: Since the properties of the last theorem are stable under conformal transfor-
mations, we will transform the double cone onto the forward lightcone. In this setting we
have to show that the group g(t) coincides with the dilatations. If we write g(t) = exp{Mt}
then ¢'(t)z € V— implies (y, Mz) is smaller zero for all ,y € V*. By means of the struc-
ture of the Lorentz group we find that M is diagonal and hence M = —ml, m € R™.
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Therefore, the transformed ¢(t) coincides with the scaled dilatations and consequently the
original group coincides with the scaled Hislop—Longo transformations. O

If G 1s the generator of the Hislop—Longo transformation then we have shown that
g(t) is of the form ¢(t) = exp{mGt} where m is a positive constant. One would like to
prove that m = 1. To this end one has to use the KMS—condition. (See Sect.1.3.) With
the methods available up to now we are not able to give a general proof for the statement
m = 1. However, if we would deal with a finite number of Wightman fields then the
modular transformation would be A¥®y(x)A™ = D7 (#)®;(g(t)x). Here Di(t) is a finite
dimensional representation of the dilatations. In this situation one can at least show that
m 1s bounded by one. We do not want to give the calculations.

3.4.12 Remark: The case m = 0 can be excluded. This case would mean that the algebra
of every subdomain Dy C D is invariant under the modular group of D. But this implies

by the cyclicity of  that M(Dy) and M(D) coincide. (See [KR86] Thm. 9.2.36.) Such

situation is only possible if the theory is abelian.
3.5) Remarks, additions and problems

(I) The result of Trebels deals only with double cones. Therefore, it is not possible to argue
that the factor m has to be 1. This is due to the fact that the Hislop—Longo transformation
g(t—i%) maps D to real points but they are not all spacelike with respect to D. If, however,
we replace the double cone by the wedge then one can argue that m must be 1.

3.5.1 Problem: Does there exist a convincing argument showing, that m must be 1T’

(IT) In the Trebels situation, the algebra of a sub—double cone with either the same upper
or lower tip fulfils the condition of —half-sided 4+half-sided modular inclusion respectively.
If one is dealing with a conformally covariant theory, then the corresponding half—sided
translations map, for a proper choosen (finite) group element, the algebra of the double
cone onto the algebra of the backward respectively forward light cone.

(ITI) If the Bisognano—Wichmann property (Def. 3.1.8) is fulfilled only for the subsets of
the wedge, then the modular group of the wedge define geometric transformations only for
this wedge. This can be extended to geometric transformations of the whole IRY. (See D.

Guido [Gui95].)

(IV) As shown by Kuckert [Ku98] the assumptions can be changed. If one replaces the
Bisognano—Wichmann property for the wedge by other symmetry conditions, with some
locality property, but for the whole space, then one finds that Jy and Al act local as
in the Bisognano—Wichmann situation. A similar result holds for the forward light—cone,
provided Q is cyclic and separating for M(V ). In these cases the assumptions are: The
symmetry shall map the local net into the local net. The associated modular groups shall
transform the local algebras in the corresponding manner.

One can replace the transformation property of the local net by transformation prop-
erties of localized operators. In this case one has to make more restrictive assumptions on
the transformations and the net. For details see [Ku98].
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4. The PCT-theorem and connected questions

The PCT-theorem tells us that the product of time reversal, space reflection, and
charge conjugation is always a symmetry. Reading the paper of Pauli [Paub5] on this
subject one gets the impression that a precurser of the PCT—theorem has been discovered
by Schwinger [Schg51]. But it was a mysterious transformation containing the interchange
of operators. The first development of the PCT—theorem in the frame of Lagrangean field
theory is due to Liiders [Lii54]. This result has triggered the clarification of the connection
between spin and statistics and the role of the positive energy. (See W. Pauli [Paub5] and
also G. Liiders and B. Zumino [LZ58].)

1957 R. Jost [Jo57] gave a proof of the PCT—theorem in the frame of Wightman’s field
theory. The beauty of this proof is the clarification of the role of the different conditions
one has to impose. These are

1. Covariance of the theory under the (connected part of the) Poincaré group.

2. Positivity of the energy.

3. There are only fields, which transform with respect to finite dimensional representa-
tions of the Lorentz group. (Transformation of the index space.)

4. Locality, which means that for spacelike distances the Bose fields commute with all
other fields and the Fermi fields anti—commute with eachother.

5. The Minkowski space has even dimensions.

6. To every field in the theory appears its conjugate complex partner.

From the spectrum condition it follows that the Wightman functions have an analytic
continuation into the forward tube T}

T;L" ={z1,..., 20 € @4;%771 (zi — zig1) € V+}-

Using locality, Poincaré covariance of the theory, and the appearence of only finite di-
mensional representation of the Lorentz group in the index space, Hall and Wightman
[HW57] could show that the analytically continued Wightman functions can be considered
as functions on the complex Lorentz group. If the index space transforms under infinite
dimensional representation of the Lorentz group then the Hall-Wightman theorem fails
because of lack of analyticity. Examples are given by Streater [Str67] and by Oksak and
Todorov [OT68]. The Hall-Wightman theorem was the starting point of Jost’s investiga-
tion. If the Minkowski space has even dimensions then the complex Lorentz group contains
the element —1. This transformation is the product of time reversal and space reflection.
But there is the time translation e'®! with the positive energy operator. In order to keep
the energy positive one has to change i into —i. Therefore, the time reversal has to be an
antiunitary operator. If © is an antiunitary total reflection one obtains for a scalar field

OP(2)0 = " (—x).

The passage to the conjugate complex is closely related to the charge conjugation. There-
fore, one has to look at the product of C' and PT. One remark more to the role of locality:
The transition to the conjugate complex interchanges the order of an operator product.
At totally spacelike points the original order can be restored. Putting things together one
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gets the PCT—theorem for scalar fields. The general case needs in addition the handling
of finite dimensional matrices which appear with fields of higher spin.

For a long time it was impossible to show the PCT—theorem in the theory of local
observables because one did not know the meaning of condition 3 and 6 in the setting of
local observables.

A good candidate for the CPT—operator is

O = JwU(Rw(r)) (4.0.1)

provided the origin is contained in the edge of the wedge. Ry («a) denotes the rotation
in the two—plane perpendicular to the characteristic two—plane of the wedge, and Jyy the
modular conjugation of the algebra of the wedge.

If the Ansatz (4.0.1) is correct, then the representation of the Lorentz group and the
modular groups of the wedges have to fit together. Since on the vacuum sector O is a geo-
metric transformation, also Jyy has to act local. Moreover the transformation OU (R (7))
maps the algebra of the wedge onto the algebra of the opposite wedge. Therefore, the the-
ory has to fulfil wedge duality. First we treat the question of wedge duality and afterwards
that of the locality of Jyy.

4.1)The wedge duality

The problem of this subsection is: When does a Lorentz covariant theory fulfil wedge
dualityl’

The result we present here is essentially a two-dimensional statement. In the proof we
can think of sets which are cylindrical in all directions perpendicular to the characteristic
two—plane of the wedge. Hence all the expressions depend only on two variables. In this
situation we only have two wedges which we call the right wedge W and the left wedge W',
The wedges obtained by applying a shift by a will be denoted by W and W/ respectively.
If we denote the double-cones by K then this can be characterized by the intersection of
two wedges.

Kop =WInWy,, b—acW".

Let MY, be the given von Neumann algebra associated with I, j fulfilling the mentioned
assumption. Starting from this we obtain for the wedges the algebras:

Mi={ U M%),

KCwWy

(4.1.1)
Ml — U MO "
a {I(CW(ZI Ix}
Moreover, we set
My ={MY
! oy (4.1.1")
Without loss of generality we can construct a net which might be slightly larger:
Map = M(Kqp) = M2 QM. (4.1.2)
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This net fulfils again all requirements listed in the beginning. Moreover, the wedge—algebra
constructed with M(K) coincides with the wedge—algebra constructed with the M°(K).
In what follows we only will work with the algebras M (). Besides M, one can define
rpi=MEn MY ML= M Mg, (4.1.2")

In Wightman field theory one is dealing with quantities ®, () localized at a point. If
x belongs to the right wedge one can analytically continue the expression U(A(t))®,(x)$2
into the strip S(—%, 0). This is due to the fact that the representation of the Lorentz group
in the index—space is defined for complex Lorentz transformations. The result which one
obtains is an element belonging to the left wedge namely U(A(¢))®, (—x)Q (for entire spin).
There are two problems if one wants to generalize this:

First our objects are not localized at a point but in bounded domains. Here we will
find a natural generalization of the description.

The second problem consists of understanding the exchange of the left and the right
wedge by the complex Lorentz transformations because of the following

4.1.1 Remark:

If we are dealing with a von Neumann algebra M and a one—parametric, strongly continu-
ous group of automorphisms a; then one can define the analytic elements M "% for which
a¢A has an entire analytic extension. The set M%7 is a *—strong dense subalgebra of M
and the elements a. A4, A € M also belong to M.

Therefore, it is not easy to understand why for an element A, localized in the right
wedge, the expression U(A(—%))AQ can be written as AQ with an element A localized in
the left wedge.

First we look at the localization problem. Let A € M be a local operator then we
denote by Ko the smallest double—cone such that A € M(Ky). By K we denote the
translate of Ky such that the center of K coincides with the origin. Let Ko = K + x then
we can write every localized operator in the form

A= AK, 2). (4.1.3)

The second problem is much harder and a large part of this subsection is needed to
cope with it. The main part of the difficulty is due to the fact that we must start from
the assumption that wedge duality is not present. Therefore, to every wedge there are
associated two algebras namely the algebra defined in equation (4.1.1) and the commutant
of the algebra belonging to the opposite wedge.

In order to get to the opposite wedge one has to look at the analytic extension in the
Lorentz transformations. Here we have to cope with a new problem namely we cannot
conclude that for sufficiently many elements the analytic extension of the expressions
AdU(A(#))A(K, ) are bounded. This difficulty is again a consequence of the fact that we
do not know the wedge—duality. In order to overcome this problem we have to introduce
unbounded operators X (K, x) which are affiliated with the algebra M(K + x). But with
this generalization it will be possible to show that for suitable elements X (K +x), satisfying
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K + 2 C W, the following holds: To X (I, x) there exists an element X(K, —x) located
in K — 2 C W! such that the relation

1

U(A(=5) X (K, 2)Q = X(K,—2)Q

holds.

From Remark 2.5.3(ii) we know that A’ and Al? act on the translations as the Lorentz
transformations. Moreover, the construction of the algebra M"! (Eq. (4.1.2")) imply the
following transformation rules.

ATME AT = MYy (haacoys
A MG AT = MY (haa(op
JTMZJ)JT — Mib7_a7
JM T =My .

(4.1.4)

These equations permit to compare the Lorentz transformations with the two modular
groups. First notice that U(A) maps the four algebras of the two wedges into themselves
and hence U(A) commutes with the modular groups and the modular conjugations (see
e.g. [BR79]). Therefore, we obtain the following representations of the Lorentz group:

R(t)A) = U(A(t))

o (4.1.5)

L{t)A" = U(A(#)).
Here A’ denotes the modular operator of (M})’. Since U(A) commutes with the modular
groups and acts on the translations in the same manner as the modular goups we obtain
the following commutations:

[R(s), A)'] = [R(s), U(A)] = [R(5),T(a)] = [R(s), J,] = 0,

it (4.1.6)
[L(s), A" ] = [L(s), U(A)] = [L(s), T(a)] = [L(s), J)] = 0.

Using the inclusion M 5 M” and M'™ > M! we obtain with Thm. A:

4.1.2 Lemma:

As a consequence of Eq. (4.1.5) we obtain:
(a) If A € B(H) (the set of bounded linear operators on H) and if L(t)AQ has a bounded
analytic continuation into the strip S(—%,O) then the same is true for R(t)AQ. If A €
B(H) is such that R(t)AQ has a bounded analytic extension into the strip S(0, %) then the
same holds for L(t)AQ.
(b) Moreover, we obtain the following identities:

5 on D(L(-3)

5) on 5)):
)= J:R(5) on D(R(3)).

i
JL(~3) = J.R(
i

JIL(;
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where D(X) denotes the domain of definition of the operator X.
Proof: Using Eq. (4.1.5) and Thm. A we obtain that the operator valued function

D(t) := ATAI = L(H)R(—t)

has a bounded analytic continuation into the strip S(0, %) At the upper boundary we have
D(t+ %) = J;D(t)J,. So we obtain R(t) = D*(¢)L(t) and L(t) = D(t)R(t). Since D(t) can
be continued into S(0, 1), its adjoint can be continued into S(—1,0). This implies that
i i i i

D(L(-1) C D(R-1),  D(R(L) cD(E(-1)) (4.17)

Therefore,
R(t)AQ = D*(t)L(t)AQ
has an analytic extension into the strip S(—4,0) whenever this holds for L(t)AQ. By the
corresponding arguments we obtain the second relation of (a).
We know the relation D(5) = J;J, and obtain

1 1

B = L(5)R(=3)

and thus with the statements about the domains of definition (4.1.7)

1

JIL(

i
)= TR,
For the left wedge we have MY C M’ and since the modular operator of the commutant
is the inverse of the modular operator of the algebra we obtain the other statements. For

later use we retain the relation between the domains which follows from the interchange
of right with left. This shows the lemma. O

If A(K, x) is alocalized operator such that K42 C W and such that U(A(¢))A(K, 2)Q
can in t be analytically continued into the strip S(—%, 0) then we expect that we can write
U(A(—%))A(K, 2)§) in the form A(K, —2)Q. This operator should be localized in I — x.
Since K was a symmetric domain we see that I — x belongs to the left wedge. This
shall be shown next. There is however, one problem: At the beginning we do not know
wedge—duality. Hence we cannot conclude that there exist elements A(K,x) such that
the corresponding operator A(K, —x) is bounded. Therefore, we will include unbounded
operators in our investigation.

We write X (I, z) for unbounded operators which shall imply that this operator is
closable and affiliated with the algebra M(K + x). Without further mentioning, the
domain of definition of X (K, x) and of its adjoint shall contain M'(K + 2)Q2. We always
identify X (K, x) with the restriction of X to the domain M'(K + x)2. This has the

advantage that we have the transformation
T(y)U(M)X (K, 2)U(A)T(~y) = X(Kx, Az +y).
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The restriction of the adjoint of X (K, ) to this domain will be denoted by XJ[(K, x). This
definition implies that X (I, 2)Q belongs for I + & C W to the domain of the Tomita
conjugation Sg 4, of the algebra M(K + x), which leads to the relation

Skt X (K, 2)Q = XT(K, 2)Q.

Next we look at analytic extensions in the Lorentz group. To this end notice that
every operator X (I, x) is defined on the vector 2 and we can look at possible analytic
extensions of the vector function U(A(#))X (K, 2)2. As main tool for the investigation of
these expressions we use the groups R(t) and L(t) introduced in Eq.(4.1.5)

4.1.3 Proposition:
(1) Let X(K,0) be such that for one x with I + x C W7 the vector function

UA)X (K, 2)Q

has a bounded analytic continuation into the strip S(—%, 0) and continuous boundary values

at Smt = —%. Then

L) XT(K,000  and
R(t)J,XT(K,0)0Q

have bounded analytic continuations into the strip S(—%, 0) and continuous boundary values
at Smt = —%

(2) If for one y with K +y C W' the vector function
UA()X(K,2)Q

has a bounded analytic continuation into the strip S(0, %) and continuous boundary values

at Smt = % then

L LXT(K,000  and
R(t)J,XT(K,0)0

have bounded analytic continuations into the strip S(0, %) and continuous boundary values
at Smt = %

Proof: It is sufficient to show the first statement. The second follows by symmetry.
Let us look at the vector functions

B!
3
N
\'Cn
o~
S’
I

R(s)A'X (K, 2)Q,
L(s)AY X (K, 2)9.

s
~
—~
\'Cn
o~
~—
I

For real s these functions can be analytically continued in ¢ into the strip S(—%, 0). For
t = s+t we obtain by Eq. (4.1.5) F#(s,s +1) = A%U(A(S))X(IX’,J})Q and since the

modular groups commute with the Lorentz transformations we obtain analyticity along
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the diagonal. Using the Malgrange Zerner theorem, Thm. 1.4.2, we obtain an analytic
continuation into the tube with triangular base

b (0, -2}

Sm (s,1) = {(0,0), (—%,—5 :

This shows by the relation U(A(t)) = R(t)All and the transformation

AZX(K, )0 = J,XT (K, 2)0

that F#(s,t— %) has in s an extension into the strip S(—%, 0). This extension is bounded,
since analytic completion does not change the norm of the vector—function. This shows
that the expression

R(r)J,XT(K, 2)0

is defined for 7 € S(—%, 0) and has continuous boundary values coinciding with those of

ROU(A(— 1) X (K, 2)Q.

2
The arguments for L(t) are the same and dont need to be repeated. O

4.1.4 Lemma:
Assume that for one x with K + ax C W7 the vector function U(A(t)X(K,z)Q has a

bounded analytic extension into the strip S(—%, 0) and this function has continuous bound-

ary values at ISmt = —%. Then the same is true for all x satisfying K +x C W.

The same result is obtained if K 4+ x belongs to the left wedge W' and if we have an
analytic extension into the strip S(0, %) with continuous boundary values.

Proof: It is sufficient to show the first statement. The other follows by symmetry.
By Prop. 4.1.3 we know that R(t)J,,XJ[(K,O)Q has an analytic extension into the strip
S(—%,O). Since R(t) commutes with the translations we get the analytic extension also
for the expression R(t)J,,XJ[(K, y)Q2. Choosing now y such that I +y C W" we can use
the modular conjugation of the right wedge and obtain

R(r)J,XT(K, y)Q = R(r)AZ X (K, y)Q2.
Notice that R(t) and A, commute so that by Prop. 4.1.3 R(¢)Al! X (K, y)Q has an analytic
extension into S(—%, 0) with continuous boundary values. ]

After this preparation we introduce the following sets:

4.1.5 Definition:

(a) By A" we denote the set of all bounded or unbounded operators X (I,0) with the
properties:
(i) For every « with K 4+ a2 C W the vector function

UA)X (K, 2)Q
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has a bounded analytic extension into the strip S(—%, 0) and continuous boundary values
at Smt = —%.

(ii) For every x with K + « C W the vector function

UA#)XT (K, 2)0

has a bounded analytic extension into the strip S(0, %) and continuous boundary values
at Smt = %

(b) By A} we denote the set of all bounded or unbounded operators X (K, 0) such that
XT(K,0) € A,

A consequence of the definition is the result

4.1.6 Lemma:
(1) If X(K,0) € AY then the vector functions

R(HX(K,000 and L(H)X(K,0)Q

can both be analytically continued into the strip S(—%, 0) and they have continuous bound-

ary values at ISmt = —%.

(17) If X(K,0) € A} then the vector functions
R(t)X(K,0)Q and L(t)X(K,0)Q

can both be analytically continued into the strip S(0, %) and they have continuous boundary

values at Smt = %

Proof: Using the fact that XJ[(K,O) belongs to Aj' we obtain by Prop. 4.1.3 that
R(t)J, X (I,0) can analytically be extended into S(0, %) and has continuous boundary
values. Since R(t) commutes with J, for real ¢ it follows that X (K ,0)Q belongs to the
domain of R(—%). This is equivalent with the statement. The other three cases are shown
in the same manner. O

Now we are prepared for the main result of this section.

4.1.7 Theorem:
(1) For every X(IK,0) € A¥ and every x with K + x C W7 there exists an element

~

X(K,0) € A} such that the following relation holds

1

U(A(=5) X (K, 2)Q = X(K,—2)Q.

(i1) For every y with K +y € W' and X(K,0) € AY there ezists an element X(K,0) € A"
fulfilling the relation ‘
i

U(A(G )X (K, y)2 = X(K,—y)Q.
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Proof: It is sufficient to show (i). The second statement follows by symmetry. Let
K be the double—cone K_, , with a € W7". Choose an element B, € M”  __ such that
Ad R(t)B!. is analytic and an element B] € M _ such that Ad L(¢)B] is analytic. These
elements are *—strongly dense in the respective algebras. For X (K, 0) € A¥ we look at the
expression
(B;B;Q,U(A(—%))X(K,x)g) = (B;B;Q,R(—%)JTXT(K,@Q).
By Lemma 4.1.2 R(¢)B;{ is analytic in S(—%, 0). Hence we obtain

= ({Ad R( )BQ}R(—%)B{Q,J,,XJ[(K,:I;)J,,Q).

1
2

The operator JTXJ[(I&’, x)J, is affiliated with M"(K — x). Together with the Remark 4.1.1

this implies
- (R(—%)B{Q, J,,XJ[(K,:I;)J,,R(%)B;*Q) - (XJ[(K,:I;)J,,R(%)B;*Q, J,,R(—%)B;Q).
The vector B/*Q belongs to the domain of R(%) by choice of Bl. Hence by Eq. (4.1.7)

this vector belongs also to the domain of L(%) The other vector belongs by choice of B
to the domain of L(—%). Hence Lemma 4.1.2 applies and we obtain

1

S)BiS) = (AdL(

1

= (XT(K,x)J,L(%)B;*Q, JiL( S)BIL. J,XT(K,x)J,L(%)B;*Q).

By the Remark 4.1.1 we find
= (9, J,XT(K,x)J,L(%)B;*B;*Q) = (J,X(K,x)Q,L(%)B;*B;*Q).

Since the translations commute with L(¢) it follows by Prop. 4.1.3 and by the definition
of A} that the vector JX (K, )2 belongs to the domain of definition of L(5) and hence

1

= (L(3) X (K, @)@ By Bi*Q) = (JL(=5)X(K,2)Q By BIS).

From this transformation we obtain

1

(> BB, U(A(—%))X(K, )Q) = (JIL(= )X (K,2),{)_ BI'B{'}*Q).

Since the two vectors U(A(—%))X(K, ) and JIL(—%)X(K, 2)§) are well defined we can

pass to the x—strong closure of the sums and obtain
i i

(AQ U= )X (K, 2)Q) = (JiL(=5) X (K, )2, A*Q), ¥A € M/(K —a).
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From this we conclude that the two vectors U(A(—%))X(K,x)@ and JIL(—%)(K,:L')Q

belong to the domain of definition of the Tomita conjugation Sy _, and satisfy

1

Si—oU(A(=5)) X (K, 2)2 = JIL(—%)X(K,:I;)Q.

Hence there exists an operator X(K, —x) affiliated with M(K — ) such that (see e.g.
[BR79] Prop. 2.5.9)

U(A(—%))X(K, 2)Q = X (K, —2)Q (4.1.8)
holds. It only remains to show that this operator belongs to A}. From equation (4.1.8)
we see that U(A(t))X(K, —2)Q has a bounded analytic extension into S(0, %) From the
relation

XNEK, —2)0 = L(%)JIX(K,:I;)Q (4.1.9)

we see that the vector XT(K, —2)Q belongs to the domain of definition of L(—%) and

hence, as in the proof of Lemma 4.1.4, we conclude that X(K, 2)§) belongs to the domain
of U(A(—%)). This shows that X (K, —x) belongs to Aj. O

Before showing the wedge—duality we need an analysis of the map established in Thm.
4.1.7. We start with some notations.

4.1.8 Definition:
For K+« € W" and X € AY define p"(X)(K, —x) by the formula

1

PO (K, =) = U(A(=3)) X (K. 2)9

where the left side is defined by the operator introduced in Thm. 4.1.7. This implies that
p" maps A into Aj.
The map p' is defined correspondingly on the set A¥ and it maps it into AY.

In the definition of the operation X (K, z) — X(K, —x) appears the vector = such
that K +x C W". First we have to show that the definition of p” is independent of the
choice of z.

4.1.9 Lemma:

The map
pI(X)K,0) := AdT(x){p"(X)(K,—2)}, K+azCW"

is independent of the choice of x (provided K 4+ x C W7).
The corresponding result holds for pl.

Proof: Assume xy,x9 are such that x; + K C W7". Then we can find x3 such that
zs + K C W™ and x; € 5 + W™ ¢ = 1,2. In this situation we obtain X (K, z;) =
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AdT(x; — x3)X (K, xs). Writing pl, if we apply p” to an element X (K, x;), we obtain by
using the commutation relations between the translations and the Lorentz transformations
T(wi)o} (X)(K, —2:)Q = T()U(A(= 5 ) X (K, )9
= T(:z:i)U(A(—%))T(:z;i — 23)X (K, 23)Q

1

= T(as) U(A(—5 )X (K, 25) = T30} (X) (I, —as).

This calculation shows that p] and p} coincide. The same transformation holds if we
interchange right and left. O

4.1.10 Remark:

The map p” is linear and interchanges the order of factors provided the products appearing
in the formulas are defined. The same result is true for p'.

Since this result will not be used later we will not give the proof. It has only been
stated in order to show that we do not conflict with the algebraic structure. The operation
p is closely related with the CPT—operation but we will not introduce such operation.
Next we want to look at the adjoint and the inverse.

4.1.11 Lemma:

1) p! is the inverse of p” i.e.:
(P (X))(K.0) = X(K.0)
2) pl is the adjoint of p” i.e.:

{p"(X)(K, 0} = p'(xXT)(K,0).

Proof: Choose ,y in such a way that t + K C W and y+ K C W!and z4+y € W".
Take X (K,0) € A" and using the fact that p! X(K,0) belongs to A" we obtain

1

p" (P'(X)) (], 002 = T(2)U(A(—))T(x)p (X)(K,0)92

2
= T(x)U(A(=5 )T (@) T ()T (A DT ()X (K, 0)2
= T(=y)U(A(=5 DUA(G )T (y) X (k. 002 = X (K,0)%.

Since the first and the last expression is affiliated with M(K) we obtain for By, By €
M/(K) the relation

(B, p" <,ol(X)> (K,0)B29) = (B1Q, X(K,0)B,9).
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For the left wedge the result is obtained in the same manner. This shows the first statement.
For the second statement let us choose x such that z + K € W7". Then we obtain

{p"(X)(K,0}1Q = Ad T(2){p" (X)(K, —2)}1Q = T(2) {p" (X)(K, ~x)} .

Using Eq. (4.1.9) this can be written as

- T(:z;)L(%)JlX(K,x)Q - T(:z;)L(%)JlT(Qx)X(K, 1) = T(—:z;)L(%)J,X(K, —2)Q.

From Def. 4.1.5 we know that XJ[(K, —x) belongs to A}'. Hence we obtain

= T(-@L(%)A',‘%XT(K, —2)Q = T(—:z;)U(A(%))XT(K, —2)Q
= T(—2)p'(XT)(K, )0 = p'(XT)(K, 0)Q.

Since the first and the last expression are affiliated with M(K) we obtain for By, By €
M/(K) the relation

(B1Q, {p" (X)(K, 01T BoQ) = (B1Q, p'(XT)(K,0)B,Q).

This shows the lemma. O

We have established a map from a family of operators affiliated with My to a family
of operators affiliated with M} and also the inverse of this map. From this result one
could derive the wedge—duality if one would know the invariance of these families under
the modular automorphism groups ol and o} repsectively. We do not know this because
ol maps elements affiliated with the algebra M(K), K C W7 to an element affiliated with
M"(K4)). But for elements belonging to the latter algebra Thm. 4.1.7 has not been
proved.

For this reason we will try to "dualize” Thm. 4.1.7 and establish a map from a dense
set of./\/l’(l) to M'y. If these sets are invariant under the modular action of the corresponding
algebras it will be possible to show that the modular groups are the same. This program
can only work with some density requirements. We start with some notation.

4.1.12 Definition:

We introduce the following sets:
Dy ={X(K,2)Q; X(K,0) ¢ A}, K+ax CW,}

DI = {XT(K,2)Q X(K,0) € A", K+« C W,}
Dy:= {X(K,2)Q X(K,0) € A, K + 2 C W}

Dl = (XTI, )0 X(K,0) € AV K 42 C W)

In the sequel we will need the sets D, and D; to define the modular groups uniquely.
We put this in the form of a
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4.1.13 Requirement:
We introduce the following conditions:

(a) The sets D, and Di are both a core for A,.
(b) The sets D; and D;[ are both a core for A1,

Before coming to the duality result we need to introduce two more sets. They will be
the objects of the investigations.

4.1.14 Definition:

a) By BY we denote the set of linear operators X affiliated with ./\/l’l fulfilling the prop-
Yy O p 0 g prop
erties
1) L(#)XQ has in # an analytic continuation into the strip S(—1.0) with continuous boun-
Yy b 3
dary-values at Smt = —% and
1) L(t XJ[Q has in # an analytic continuation into the strip S(0. 1) with continuous boun-
Yy b )5
dary-values at Smt = %
b) By B% we denote the set of linear operators X affiliated with M’} fulfilling the prop-
Y O p 0 g prop
erties
1) R(#) X has in # an analytic continuation into the strip S(0. ) with continuous boun-
Yy b )5

dary-values at Smt = —% and

(i) R(t)XJ[Q has in ¢ an analytic continuation into the strip S(—%,O) with continuous

boundary-values at Smt = %
Note that M’ is invariant under the action of R(¢) and hence there are many elements

in B}'. First we look at the action of the Lorentz group.

4.1.15 Lemma:
Suppose X € B! then the vector—function

U(A(H)XQ

can be analytically continued into S(—%,O) and has continuous boundary values at

ISmt = —%.

If X € B}' then we obtain an analytic continuation into S(0
boundary values.

Proof: We look at the function

1

,5) again with continuous

F(t,s) = A" L(s)XQ.
By definition of B;' this function has in s an analytic continuation into the strip S(—%, 0)
and we obtain )
i
3)
Since XTQ is in the domain of L(%) ie., JIXJ[Q in the domain of L(—%) this function has

in ¢t an analytic continuation into S(—%, 0) and we find

Flt,s — =) =L(s — %)A’i,tXQ.

1 1

1 i
F(t— 55— 5)=L(s - §)AltJlXJfQ.
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Because of Eq. (4.1.5) we obtain by Lemma 4.1.2 the stated result. If X belongs to B}

then the result follows by symmetry. ]
Before coming to the duality result we need one more preparation.

4.1.16 Lemma:

Let My, My be two commuting algebras with common cyclic and separating vector §1.

Assume Xy s affiliated with My and Xo with My then one finds

xTo,x,0) = (xl 0, x,0).

Proof: Let X be the closure of X; it can be written as
X, = V[T = v/ \IE)
0

with V and Ey belonging to M. The requirement that {2 is in the domain of X and of

xT implies that both Q and V*Q belong to the domain of |X;|. Hence to a given € > 0
exists a Ag such that

I - VIEEQ <e. (X - Ex KV < e

Since |X|E), belongs to M we obtain the estimate
(6] %192) - (X[, X)) < el x] 0 + X201,

Since X5€2 and XQJ[Q are fixed vectors we obtain the lemma. D
A similar result is the following

4.1.17 Proposition:

Assume X s affiliated with ./\/l’(l) such that L(1)XQ has an analytic continuation into

S(—%,O) with continuous boundary values and L(t)XJ[Q can be continued into S(0, %)

again with continuous boundary values then for B € M} one finds:

1

(L(=5)X92, B*Q) = (BQ,L(%)XTQ).

A corresponding relation holds if we interchange left with right.

Proof: Since M} is invariant under the action of L(#) there exists a *strong subal-
gebra of M} of analytic elements. Let B belong to this set then we find

1

)9) =

(L(—%)XQ,B*Q) - (XQ,L(—%)B*L(

(L(%)BQ,X*Q) - (BQ,L(§)XTQ).
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Since the two vectors L(—%)XQ and L(%)XJ[Q are fixed we can go to the x—strong closure
of the B’s and obtain the stated result. The second statement follows by symmetry. ]

Using these preparations we obtain

4.1.18 Proposition:

Assume that the Requirement 4.1.13 holds then
(a) to every X € BY exists an element p,(X) affiliated with M'{ such that the following

relation holds: )
i

U(A(=3

NXQ = 1 (X)Q,

(b) To every Y € B} exists an element ((Y) affiliated with ./\/l’(l), so that
1
UG YR = ()

holds.

Proof: By symmetry it is sufficient to show (a). Let X(K,0) € A, v+ K C W and
Y € B! and look at the expression

(U(A(=5 )Y X (K, 2)Q) = (L(—2)AFYQ, X (K, 2)9)
(L(—%)J,YTQ,X(K,@Q) = (J,X(K,@Q,L(%)YTQ).
Combining Lemma 4.1.16 with Prop 4.1.17 we can commute the operators and we get

(L(—%)YQ,J,XT(K,@Q) = (XT(K,x)Q,J,L(%)m).

Since by Requirement 4.1.13 both D, and Di are a core for A,% we see that the two vectors
U(A(=1)YQ and JL()YQ are in the domain of the Tomita conjugation of M’y and
fulfil SU(A(—$))YQ = JiL(—1)XQ. This implies (see [BR79] Prop. 2.5.9) that there
exists an operator ,(Y") affiliated with M'] fulfilling the stated relation. [

Next we look at the properties of the maps p, and py.

4.1.19 Lemma:

(a) For X € B} we obtain p.(X) € B}'.

(b) ForY € B}' we have (YY) € B.

(¢) The maps p, and py are the inverse of each other and hence pi, maps By onto B}' and
vice Versa.

Proof: (a) The relations

1

o (X9 = U(A(=5) X2 = L(—%)J,XTQ
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show that (X ) is in the domain of L(%) Next we get that
(X Q = JL(- 2)XQ L( ) XQ

belongs to the domain of L(—%) and hence (X)) belongs to B}*. Statement (b) is shown in
the same way. From U(A(L))u, (X)Q = U(A(L))U(A(—2))XQ we see that y (1, (X)) = X
holds, which shows (c). i

As further preparation we need

4.1.20 Lemma:

Let N C M be two von Neumann algebras with common cyclic and separating vector €.
If Ay and Apq commute then the two von Neumann algebras coincide.

Proof: We look at the expression D(t) = A/_\/ittAi/ff. By Lemma 2.3.2 this can be
analytically continued into S(0, 2) as a bounded operator—valued function. At the upper
boundary one gets

D(3) = ALAY = Ty

5)
Since, by assumption, the two modular operators commute it follows that also the two
modular conjugations commute. Next we look at the functions

Fr(t) = (2, AA AL BQ)

F~(t) = (2, BA' AL AQ)

with A € M’ and B € N. By choice of A and B the two functions coincide for real ¢.
Next we look at the boundaries and obtain by the commutativity of the J's

Fr(t42) = (. AN ATIAILA L BO)
= (JMALBQ, Iy AYB* Q)
= (JMmALAQ, I AL B* Q).
Notice that Ad Ja(c’((A)) belongs to N and Ad Ja(oh(B*)) belongs to M’ so that these

operators commute. On the other hand we get

Fo(t-1)= (9, BA? AGIAZ AL BQ)

= (Jy AL BQ, T AL B*Q)

= (JMALA*Q, Iy AL BQ).
From this computation we obtain that FT (t+ %) and F~(t— %) coincide. Hence we obtain
a bounded periodic function which, therefore, is constant. This implies by the cyclicity of

Q that Al and Al coincide. But this implies ' = M (see e.g. [KR86] Theorem 9.2.36)
O
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After all these preparations we are ready for the main result of this subsection.

4.1.21 Theorem:
Assume that the Requirement 4.1.13 is satisfied. Then the theory fulfils wedge—duality.

Proof: Since the modular group Ailt commutes with the Lorentz transformations and
with L(¢) it follows that B is invariant under the modular group of. Therefore, we look
at the expressions

polof(X)Q = U(A— S DAIXD = AJU(A(~ ) XQ = Al (X)0
and

1

(oo (X0 = RL(=5)ATXQ = AV IL(=5)XQ = A (D)} €.

1
2

The operator 1, maps B} onto B}, so that we obtain
A7 ZAY (X9 = AYATZ 5 (X)Q.

Since the algebra M/'( is invariant under L(¢) we see that the elements, which are
analytic with respect to the action of L(t), are *—strongly dense in M’;. But this implies
that B}'Q) is dense in H and is a core for the generator of AY. The same holds if we

1

2

interchange right and left. Since it is also invariant under the action of A’; 2 we conclude

1 1
that the operators A, > and A’; > commute and the theorem is a consequence of Lemma

4.1.20. O
Now we are prepared to show the main result.

4.1.22 Theorem:

Gwen a Lorentz covariant QFTLO wn the vacuum sector. Then the following conditions

are equivalent:

(1) The theory fulfils wedge—duality.
(2) The set {A(K,2)}, such that
(o) K+a CWT,
(8) UA@R)A(K, 2)82 has a bounded analytic continuation into the strip S(—%, 0) with
continuous boundary values,
(v) UA())A* (K, —2)Q has a bounded analytic continuation into the strip S(0, %)
with continuous boundary value,
15 *—strong dense n M.

Proof: Assume first that we have wedge—duality. Then we have only one modular
group and we can write U(A(t)) = F(t)Al where F(t) is a continuous representation of
the one—parametric group mapping every M (LK) into itself. Hence there exists a *—strong
dense subalgebra M"%(K) C M(K) of elements entire analytic in the action of F(¢).
Let now K +a C W7 and A(K, x) be such an analytic element. Then U(A(t))A(K, 2)Q2 =
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F(t)A"A(K, 2)Q can be analytically continued into S(—%, 0). If we look at the operator
A*(K, —x) we obtain the corresponding result for the opposite wedge. Hence (2) is fulfilled.
Conversely if (2) is satisfied then also the Requirement 4.1.13 is satisfied because the

1
set A, is Lorentz invariant and *—strong dense in My and hence also a core for A?. From

this follows by Thm. 4.1.21 that the wedge—duality is fulfilled. m]
The content of this subsection is taken from [Bch96].

4.2) The reality condition and the Bisognano—Wichmann
property

In the discussion at the beginning of this section we saw that we must solve two
problems before we can prove the PCT—theorem. The first was the wedge—duality, cor-
responding to the properties of the index space of Wightman fields. The second was the
reality condition implying that every Wightman field has its conjugate complex partner.
In analogy we pose:

4.2.1 Reality condition:

We say a Poincaré covariant theory of local observables in the vacuum sector, which sat-
1sfies the wedge duality, fulfils the reality condition if:

(1) Every A(K,0) € A N Ay and every « such that K 4+« C W7 fulfils the relation
A*(K, Pwz) = {A(K, Pwa)}*.
(12) Q us cyclic for the set

{A(K,2); A(K,0) e A, N Ay and K+« C W™

With this notation we obtain:
4.2.2 Theorem:

In a representation of a Poincaré covariant theory of local observables in the vacuum sector
the modular group associated with the algebra of any wedge coincides with the corresponding
Lorentz boosts iff the theory fulfils wedge duality and the above reality condition with respect
to the Lorentz transformations.

Proof: If we know that U(A(t)) and All, coincide then by Thm. 4.1.21 one has wedge
duality. Moreover, the reality condition is fulfilled because for every A(K,z) € M(W™)
one has

AH(E, 2) = U(A(-5))A"Q = AZAYQ = JAJQ,
and

AK,2)Q = JA*JQ = {JAT}*Q.

%wh—‘

A
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Hence the reality condition is fulfilled.
Next assume wedge duality and the reality condition. Let A(I,0) € A, N A; and
A(K,z) € M(WT). Take an element B € M(W') and look at the matrix elements

Ft(s,t) = (2, BAPU(A(1)A(K,2)Q)
F~(s,t) = (Q A(K, 2)U(A(—))AT* BQ)

Bringing B and Al® to the left side we see that F¥(s,t) can be analytically continued into
the tube domain (s,t) € S(0, %) X S(—%,O). Correspondingly F~(s,t) has an analytic
continuation into the domain (s,t) € S(—%, 0) x S(0, %) Next we look at the coincidence
domains. Since A(K,z) € M(W") and B € M(W!) we have by wedge duality FT(s,t) =
F~(s,t) for all (s,t) € IR®*. Next we look at F¥(s + %,t — %) The modular theory

yields <QBA;S_% = (QJ,B*J,.Al*. By the above result about the analytic continuation
of U(A(t))A(K,z)Q we know that there exists an element A(K, Pwz) € MW with
U(A(=3))A(K, 2)Q2 = A(K, Pywx)S2. Hence we find:

Ft(s+ %,t - %) = (Q, J,B* JU(A(t)A(K, Pyz)Q).

Next we want to compute F~ (s — %,t + %) We start with

F~(s,t) = (U(A(t)A* (K, 2)Q, A BQ).
From this we obtain:

F(s— ~t 4 5y = (U(A(t — %)A*(K,@Q,AZ”‘%BQ)

!
2 2

= (U(A(t))A* (K, Pwx)Q, A7 J,B* J,Q).
Because of the reality condition we find:

= (Q, A(K, Py a)U(A(—1))A T, B* J,Q).

By the wedge duality we obtain .J,B*.J, € M(W7). Since A(K, Py ) belongs to M(W!)

we obtain

1 1 1 1
Fr(s+-t—=)=F (s— = t+ ).
(8+27 2) (8 27 —|_2)

By both coincidences and the edge of the wedge theorem, Thm. 1.4.1, we obtain a bounded
periodic function F(s,t) = F(s —i,t +1). Since bounded entire functions are constant we

find
F(s,—s) = const = F(0,0),

(Q, BAFU(A(—5)A(K,2)Q) = (Q, BA(K, 2)RQ).

Since M(WHQ and {A(K,2)Q} are dense in H, where A(K,0) fulfils the reality condition,
we obtain ASU(A(—s)) = 1. D
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4.3) The PCT—theorem

Now we are prepared for the proof of the PCT-theorem under the assumption that
the wedge—duality and the reality condition are fulfilled. Starting from the Ansatz Eq.
(4.0.1) one has to solve two problems:

1) Since O shall be a local transformation, also Jy must be local. Since the map AQ —

A*Q is local, and since by Thm. 4.2.2 A%/‘//z and U(AW(—%) coincide, we know that the
product ‘

Sw = JwAl? = JWU(AW(—%)) (4.3.1)
acts local. Therefore, Jy and U(AW(—%)) must act local at the same time. The answer

to this question is closely related to the next one.

2) The operator product JywU(Rw(r)) shall be independent of the choice of the wedge
W. Using Eq. (4.3.1) we obtain Jyw = U(AW(—%))SW and consequently

JwU(Rw () = U(AW(—%))U(RW(w))SW, (4.3.2)
where we have used the fact that U(Rw (7)) maps the algebra M(W) onto itself, which
implies, that Sy and U(Rw (7)) commute. We will apply the expression (4.3.2) to vectors
of the form A(K, z)Q? with K 4+« C W. Therefore, problem 2) is solved if
U(AW(—%))U(RW(W))A* (K, 2)Q is independent of W. (As long as X +a C W.) The
product U(Aw(—%))U(Rw(ﬂ')) is nothing else but the element —1. Since we get to
U(AW(—%))U(RW(W))A(K, 2)§2 by analytic continuation, we have to make sure that for
different W the continuation gives a unique answer.

We start with the uniqueness problem because its answer is needed for the solu-
tion of the locality—question. For simplicity of notation we restrict ourselves to the four—
dimensional Minkowski space. In this case the Lorentz group is six—dimensional. First,
with help of the Malgrange—Zerner theorem 1.4.2 we will construct a function on the com-
plex Lorentz group. The points U(AW(—%)) will be points on the boundary of the domain
which we construct. Therefore, we must convince ourselves that U(A) is single valued on
that domain.

Let D be a double cone such that its closure does not contain the origin. We choose
a wedge with D C W. Let G be the (connected) Lorentz group and set

N(D)={ge G; D C gW}. (4.3.3)

Since W is open, N(D) is open and contains the identity of the group.

4.3.1 Lemma:
There exist g1 = 1,92,...,96 € N(D) and T1,...Ts > 0 such that

D C Ag6W(t6)...A91W(t1)W

for |t;| < T;, 1 = 1,...,6. The elements ga,...,g6 can be chosen in such a way that the
generators of the groups Ag,w(t;) are linearly independent.
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Proof: Let the neigbourhood of the identity Ni(D) be a subset of N(D) such that
1,96 € N1(D) implies ¢1...g6 € N(D). Since N1(D) is a neighbourhood of the identity
exists g1 = 1,92, ...,96 € N1(D) such that the generators of Ay, w(¢) are linearly indepen-
dent. Choosing T; such that Ay w(t;) € Ni(D) for |t;| < T; then the statements of the
lemma are fulfilled. m]

With help of the last lemma we can construct an analytic function on parts of the
whole complex Lorentz group G.

4.3.2 Proposition:

With the assumptions and notations of the last lemma, the function
UAgw(te)).. UAw(t:1))AQ, AeM(D), DCW (4.3.4)

has an analytic continuation into all t—variables. The function Eq. (4.3.4) is the boundary
value of an analytic function holomorphic in some domain n G.

Proof: For tg,...,t;41,ti—1,...,t1 real and in their proper domain the above function
can in the variable ¢; be analytically extended into the strip S(—%,O). Therefore, the
Malgrange—Zerner theorem, Thm. 1.4.2, implies that the product Eq. (4.3.4) has an
analytic continuation in all ¢ variables into some domain which still has to be determined.
It is clear from the construction that the real function is the boundary value of the analytic
continuation. ]

Next we want to determine the domain of holomorphy of this function. This calcula-
tion will be done by mapping the strip S(—%, 0) bi-holomorphic onto itself in such a way
that the interval || < T is mapped onto IR and the rest of the boundary onto —;— + IR.
This is achieved by the transformation

1 1 — 27T 27T _ =27z
(= - log 3T ] a2 3T (4.3.5)
In this new variables we obtain as domain of holomorphy
: 1
0> ; SmGi> 5. (4.3.6)
If the elements ¢o,..., g6 are properly chosen then an interior point of the ( variables

corresponds to an interior point in the g variables.

In the (—variable the domain (4.3.6) is convex and hence simply connected. Since the
transformation (4.3.5) is bi-holomorphic, it follows that also the image in the t—variables is
simply connected. Hence there are no monodromy problems in these variables. Therefore,
we have to show that the inverse transformation of (4.3.5) sends the boundary points
: 1

Sm(; = —3 and Re(; =0 (4.3.7)
=1

7

67



HJB—Apr./99

to some set where the inverse map is unique. To this end we need the inverse transformation

of (4.3.5), which is

1 1 — —27T 27T 1 2n¢
po Ligg Lo ) (e — e (4.3.8)
A7t (e2ﬂ'T _ 1) + (1 —e 27TT)627TC
For t; =17, —% < 7 < 0 we obtain with 2, ..., 2% the basis in the W -frame
Agw (i) = giz°) cos 2r7(gix° — ig;a®) sin 277 (g;2!
— igix0> sin 277T<gi:1;1 + gix1> cos 277T<gi:1;1 (4.3.9)

+ gie®Mgix® + gia®)(gia®.

As long as we restrict ourselves to the set —% < 7 <0, the representation (4.3.9) is one to
one. Because of the additivity theorems of the spherical functions this statement remains

true for the domain (4.3.7). Hence we obtain U(Agw(—1/2))AQ = U(—R,w (7)) AQ with

a unique representation of the element —1. ]
Collecting the result of the discussion we obtain:

4.3.3 Proposition:

Let D be a double cone such that the closure of D does not contain the origin. Then for
A e M(D) and g such that D C gW

i
U(Agw (=) U(Rgw (7)) AQ
18 independent of g.

Proof: From the above discussion we know that the statement is true for g in a
sufficiently small neighbourhood of the identity in G. But this implies that it is true for
all g € N(D). 0

Next we turn to the locality problem.

4.3.4 Proposition:
Let D be a double cone and let closure D C W, then for A € M(D) one finds

JwAJw € M(PwD),

where Py, denotes the reflection in the characteristic two—plane of W.

Proof: Let Kw (D) be the cylindrical set generated from D by applying the trans-
lations in the directions perpendicular to the characteristic two—plane. Then Thm. 4.1.7

implies U(AW(—%))AQ — AQ with A € M(PwKw(D)). Hence we obtain

U(Rw(w))U(AW(—%))AQ — U(Rw(x))AQ.

68



HJB—Apr./99
Since by Prop. 4.3.3 the operator on the left side is independent of W we get

AdU(Rw(r))A € EJQ(D)M(—I&’gW(D)).

Using Lemma 4.1.9 we are allowed to shift D inside the wedge, then doing the reflection,
and afterwards shift back without changing the result. So we get

AdURw(m)Ae 0 0 M=Ew(D)=M-D).

From this we obtain as mentioned before Jy AQ = BQ with B € M(PwD). Since Q is
separating for M(W') we obtain JwAJw € M(Pw D). This shows the proposition. O

From this we obtain with Eq. (4.0.1)

4.3.5 Theorem:
Every QFTLO which fulfils wedge duality and the reality condition 1s PCT convariant.

4.4) The Bisognano—Wichmann property and the construction
of the Poincaré group

We saw that the PCT-theorem is closely connected with the Bisognano—Wichmann
property (see Def. 3.1.8) i.e., the modular group of every wedge acts like the associated
group of Lorentz boosts. If we assume that the theory fulfils the Bisognano—Wichmann
property, then one can ask wether or not all these modular groups fit together and give rise
to a representation of the Poincaré group. If the dimension of the Minkowski space is two
then one has only the right and the left wedge and their translates. Since the Bisognano—
Wichmann property implies that the translates of the wedge along the lightlike vectors
fulfil the condition of half-sided modular inclusion, the translations are obtained by the
construction of Wiesbrock [Wie93],[Wie97a] (see 2.6) which together with the modular
group of the wedge give rise to a representation of the Poincaré group [Bch92]. Hence the
construction procedure contains new aspects if the dimension of the Minkowski space is at
least three.

A first treatment of this problem is due to Brunetti, Guido, and Longo [BGL94].
They used the first and the second cohomology of the Poincaré group and showed that the
modular groups of all wedges give rise to a representation of the covering of the Poincaré
group. In a second paper Guido and Longo [GL95| generalized their method to charged
fields and showed that in this frame the connection between spin and statistics is fulfilled.

Here we will use a construction which is based entirely on the principle of half-sided
modular inclusions. It has the advantage that it gives directly a representation of the
Poincaré group and not of its covering [Bch98b]. In order to avoid index manipulation
we represent the result for the four-dimensional Minkowski space. The construction is in
three steps. First we construct the translations by using the half—sided modular inclusions
of wedges and their translates. Then we show that the algebra of the intersection of two
wedges with a common lightlike vector fulfil the condition of half—sided modular inclusion
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with respect to the algebras of the wedges. This will allow us to construct the translational
part of the stabilizer group of the common lightlike vector. Since this group connects the
modular groups of different wedges we can, in the third step, construct the whole Poincaré

group.
First step: Construction of the translations

We start our investigation by looking at the family of wedges W[l, (', a] where ¢ and
(" are fixed and a is of the form a = A + pl’. Therefore, we suppress in the first part the
indices [¢, '] and write simply Wla], A[a]'!, and so on.

Let Wla] and Wla + A] be two wedges and A > 0. Then by Bisognano—Wichmann
property the algebra M (W{a 4+ A(]) fulfils the condition of — half-sided modular inclusion
with respect to the algebra M(W/a]). Hence by Thm. 2.6.2 a unitary group Ula, A\](t)
exists with positive generator fulfilling

AdU[a, MJ(1)M(W[a]) = M(W]a + M]). (4.4.1)

Furthermore, this group satisfies the following properties (e(t) = e™2™):

[a Az](t Q

)
A

AdUla, AK]( ) (W[a]) = M( [a+s/\€]) -
Ula, MJ(1 —e(t)) = Ala+ M) Ala] ™!

These formulas follow from Thm. 2.6.2. together with Eq. (4.4.1). Because of Thm. 2.6.5
the group Ula, Al](s) is uniquely defined by the properties listed in the first and third line
together with the positivity of the spectrum. From the last line of (4.4.2) we obtain

Ula, M)(1) = lim Ala + M Ala] ™. (4.4.3)

Notice that by the last line of (4.4.2) the limit converges in the weak and hence in the
strong topology. Moreover, from representation (4.4.3) we see that Ula, AM](s) acts like the
translation in the ¢ direction. Hence by the uniqueness Thm. 2.6.5 we find that this is
independent of a, i.e.

Ula, M(t) = U[b, \](¢). (4.4.4)
The mentioned uniqueness of the groups Ula, AMl](t) implies for A, ;1 # 0 the identity

Ula, M](s) = Ula, /M](%s). (4.4.4")

Hence we only have to deal with groups U[(](s).

Using the wedge Wa] again we can construct a group Ula, ('](s) in the same manner.
By proper definition, this group satisfies again the spectrum condition and the relations
similar to (4.4.2)-(4.4.4). The only change is

AdA[d]'Ula,l'](s) = Ula, '](e(—t)s). (4.4.2")
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Also here we obtain a group U[¢'](s) which does not depend on the first parameter.

It remains to show that the groups U[(](s) and U[{'](s) commute. To this end we
notice that we can map M(Wa]) onto M(W{a + t¢ — sl']) in two different ways, namely
using either M(Wla + t{]) or M(W{a — sl']) as intermediate algebra. This yields

é\
B
_|_
~~
(9
|
VS
>
=
I
=
o,
3
o
—~
o~
~—
3
=
—
|
VS
~—

We want to show that the product of translation operators coincide. Therefore, we compute

with help of (4.4.2) and (4.4.2") and obtain

Ula + 0, 0)(=s(1 — e(—p)))Ula, ((t(1 — e(p))) =
Ala +t0 — sl'" Ala + t0]7# Ala + t0)'# Ala] 7,
Ula — st', 0)(¢(1 — e(p)))Ula, £'](—s(1 — e(—p))) =
Ala+t0 — sl'* Ala — '] Ala — st']* Ala] 7.

Using the independence of the first parameter we obtain
UlJ(a)U(b) = U0)U[](a). (4.4.5)

Having constructed the Poincaré group in two dimensions we have to go to higher
dimensions. First we want to show that the translations defined in different two-planes
also commute. To this end we fix a lightlike direction ¢ and look at the family of wedges
defined by ¢ and another lightlike vector {W¢,¢'];¢' # ¢}. Using the —half-sided modu-
lar inclusions M(Wl, (1, \]) C M(W]l,(1,0]) and M(W[l,l3, \]) C M(W[(,(5,0]) we
obtain two different translation groups U[(, (1, ()(t) and U[(, s, (](t) respectively. Both
groups act like translations on every double cone and hence on every wedge. Therefore,
by Thm. 2.6.5 they have to coincide. Hence the groups depend only on the direction of
the translations and not on the two—plane which has been used for constructing them.
Consequently we obtain groups U[(](¢). From this it follows that all these groups U[(](s)
commute for different ¢, since for every two different ¢’s there exists a wedge which is
defined by these two vectors. Since all these unitary groups fulfil the spectrum condition
there exists a group V(a),a € IR* such that U[¢](s) coincides with V(s¢). Hence we have
constructed the translation group of IR* which transforms by the modular groups in the
expected way.

We collect the results obtained so far:

4.4.1 Lemma:

Assume all modular groups of the wedge algebras act like their associated Lorentz groups.
Then a unique continuous representation of the translation—group V(a) exists which fulfils
spectrum—condition and acts geometrically on the local algebras

AdV(a)M(D) = M(D + a),
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where D denotes a double cone. (It is assumed, that M(D) coincides with the intersection
of the wedge algebras of all wedges containing D.) This representation V(a) is contained
in the algebra generated by the modular groups.

Moreover, the modular groups of the wedges and the translations transform each other
as if they were members of a unitary representation of the Poincaré group.

Proof. We know that V(a) transforms the algebras of the wedges in the geometric
manner. This implies the correct action on M(D) by passing to the intersection. The rest
follows from (4.4.2) and (4.4.2") and the fact that every translation can be decomposed
into translations in lightlike directions. O

From this result we obtain

4.4.2 Proposition:

Let a representation of a theory of local observables fulfil the above—mentioned conditions.
Then this representation fulfils wedge duality, 1.e.

MWL, ) = MW, 0)).

Proof. Since in every two—dimensional subspace associated with a wedge we have a
representation of the Poincaré group which acts local and since the Lorentz boosts coincide
with the modular group it follows that for every localized operator A belonging to the
right wedge the expression U(A(t))AQ has a bounded analytic continuation into the strip
—% < Imt < 0 with continuous boundary values. This follows from the fact that A2 is in

the domain of A%. Hence the conditions of Thm. 4.1.22 are fulfilled and the theory obeys
wedge duality. O

Since an algebra and its commutant has up to a sign the same modular group we
obtain the following symmetry:

AL = A, 07 (4.4.6)

Second step: The stabilizer group of a light ray

Next we want to construct the translational part of the stabilizer group of any light
ray { € OV T. To this end we look at the family of wedges having one light ray in common,

{WTe, 2]; ¢ fixed}. (4.4.7)

It is well known that the stabilizer S(¢) of a lightlike vector is isomorphic to the euclidean
transformation of IR?. (See e.g. Gelfand, Minlos and Shapiro [GMS63].) The rotations are
the transformations around the space—direction of the light ray. In order to understand
the translations let us introduce a second lightlike vector ¢ which we choose in such a
way that (,¢, (5 lie in one two—plane. Let T'(¢) be the tangent hyperplane at the forward
lightcone VT containing the vector £. Then the affine hyperplane (5 + T({) intersects VT
in a two-dimensional set (parabola) homeomorphic to IR*. The translations of S(¢) have
this set as orbit.
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In the concrete example ¢ = (1,1,0,0),¢, = (1,—1,0,0), these translations become

(a = (a1,a2) € IRZ)

a> a>
1 + 5 -5 aq as
2 2
May=| T 17 @ a], (4.4.8)
aq —daq 1 0
ag —dag 0 1

(See also R. Jost [Jo65] Appendix.) It is easy to check that this is a representation of the
two—dimensional translation group,

AYa)A(b) = A%a +b).
Setting (2(a) = A‘(a)ly then one finds
AJC, L2(a)](t) = A(a) AL, 6] (1A (—a). (4.4.9)
Using Egs. (1.5.3) and (4.4.8) then simple calculations imply
AJC, 6] (A (a)A[E, L] (=) = Al(e(t)a), (4.4.9")
or more general

AL ()AL C(D))(—t) = AL, 2(a)] (A (b — @) A[L, L2 ()] (—1)A" (a — b)

4.4.10
= AY((1 —e(t)(a ).

From this we obtain:

Alla —b) = Tim A[L, ly(a)] ()AL, L (B)](—1). (4.4.11)

t—o0

In order to show that the corresponding limits of products of modular operators exist
and define a commutative group we need once more the principle of half—sided modular
inclusion. The crucial result is:

4.4.3 Theorem:
Let the theory fulfil the Bisognano—Wichmann property. Then the algebra M(W[ﬁ,ﬁl] N

W[£,£2]> fulfils the condition of —half-sided modular inclusion with respect to both algebras
Proof: By Def. 1.5.2 of the wedge one has

W[Kl,ﬂg] = {l’, (61,1’) < 0,(62,1’) > 0}

This implies
W[zvzl] N W[&KZ] = {l‘; (l,l’) <0, (6“1') > Ovl = 172}
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With 0y = ol + 30, + (7, o, > 0 and A[0,0](t)0 = e(t)l, A[0, (1](t)l(1 = e(—t)l1 we
obtailn:
t A0 0] ()l = e(t)al + e(—t) B0, + (7,
(l’, A[zvzl](t)£2) = e(t)a(xvz) + 6(-t>ﬁ($,£1) + (:1;,6_)
= (1},62) + a(e(t) - 1)(1'76) + ﬁ(e(_t) - 1)(1?761)

This expression is positive for ¢ < 0. This implies that the algebra of the intersection fulfils
the condition of —half-sided modular inclusion with respect to the algebra of the wedge
W1l,¢1]. By symmetry we obtain the statement of the theorem. ]

4.4.4 Remark: If we look at three wedges with one common lightlike vector ¢, i.e.

W, 0], W[l, l5], W[l, 3] then the algebra of the intersection
M <W[£,£1] AL, 6] N W[£,£3]> (4.4.12)

also fulfils the condition of —half-sided modular inclusion with respect to all three algebras
W1, t;], i =1,2,3. This is a consequence of the identity

M <W[€,€1]OW[£,£2] N W[z,zg])
=M <W[£,£1] NWI[e, ¢ [) nm (W[Ml] N W[&&;])

and the fact that both algebras on the right side fulfil the condition of —half—sided modular
inclusion with respect to M(W|[(,(1]) and hence also for the intersection. For the other
two algebras the statement follows by symmetry.

Looking at Eq. (4.4.11) we see that we have to show that the corresponding product
AL, o (a)]TA[C, £2(b)] 7 converges for t — oo strongly to a unitary operator U¢(a,b) and
that this operator acts local on every double cone, i.e.,

AdU (a,0)M(0) = M(A\(a)O).

4.4.5 Lemma:

The product . .
A ()] AL ()

converges for t — oo strongly to an operator U*(a,b). This operator acts geometrically on
local algebras, 1.e.

AdUa,b)M(D) = M(A(a — b)D). (4.4.13)

Proof . Since by Thm.4.4.3 M(W [, l3(a)|NWl, (2 (b)]) fulfils the condition of — half-
sided modular inclusion with respect to the algebras M(W[(,l5(b)]) and M(W[l,l3(a)])
there exist by Theorem 2.6.2 two one-parametric unitary groups U'[a, b; a](t), U*[a, b; b](t)
with the properties

Ad U a, b; a)(1)M (WL, ly(a)]),

AdT [, b B)(1) M (WL, L2 (b)]). (4.4.14)

M(W[e,zz(a)] N W[E,Ez(b)]> _ {
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Both these groups fulfil similar properties as listed in (4.4.2). From this we derive
Ad U a,b;a) (1) U a, b; b (1) M (WL, L2(b)]) = M(WL, lo(a)]). (4.4.14")

These operators are connected with the modular operators of the algebras and their inter-
sections by the formulas

where A[N] denotes the modular operator of the intersection. We find
U'la,byal(1 = e(t)) ™' U'[a, b B(1 = e(t)) = Al Lo(a) AL, L2(D)] 7.

This shows that for ¢ — oo the product on the left converges weakly and hence also
strongly. Therefore, also the right side converges strongly. Since the approximations
ALl Ly (a)]TA[C, £2(b)] 7 act geometrically we see that this is also true for the limit

U(a,b) = tlim Utla,b;a](1 —e(t)) " U a, b; b](1 — e(t)). (4.4.15)
—00
Equation (4.4.10) shows that the limit acts as stated in the lemma. ]

Next we have to show that the operators U(a,b) depend only on the difference (a — b)
and that the operators V(a — b) = U(a,b) define a representation of the two dimensional
translation group.

4.4.6 Lemma:
The operators Ut(a,b) depend only on the difference of the arguments

Ua,b) = Via —b).
Tézese operators define a continuous representation of the two-dimensional abelian group
e Vi) Vi) =Via+Db),  abecTR.
Proof: From the relation U*(a,b) = U[a,b;a)(1) "' U[a, b; b](1) we conclude
Ua,b)U" (b, a) = 1. (4.4.16)
Since the subalgebras

M(W[z,zz(a)mww,zz(b)}) and M(W[z,ez(a)]mW[z,zz(c)D

fulfil both the condition of — half-sided modular inclusion with respect to the two algebras
MW, l5(a)]) and by Remark 4.4.4 the triple intersection M <W[€,€2(a)] NWI (b)) N
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=

[K,KQ(C)D fulfils also the condition of — half-sided modular inclusion with respect to

MW, l3(a)]). By symmetry the same holds with respect to the algebras
MW, l5(b)]), M(Wl,l5(c)]). Hence we obtain, as in the last lemma, three groups

Ulla,b,c;al(t), U'la,b,e;b)(t), U'la,b,c;c(t).
Now we can represent U¢(a,b) with help of these operators
Ufa,b) = Ua,b,c;a](1) " U a, b, ¢; b)(1).
This leads to the relation

Ul a,0)U (b, e)U (¢, a) = 1,

. . . (4.4.16)
U(a,b)U"(b,c) = U"(a,c).

Since Eq. (4.4.13) holds for every double cone D we conclude that U‘(a,b) and
Ul(a + c,b+ ¢) differ only by a phasefactor. If we set U’(a,b) = V¥(a — b)f(a,b) where
f(a,b) is the phasefactor, then the second equation of (4.4.16’) implies that V*(a) is a
representation of the central extension of the group A‘(a). This implies by Eq. (4.4.9)

AdU (a, b)A[L, C2(c)]'® = A[L, La(c + a — b)]*,

4.4.17
AdU a,0)U (e, d) = U c+a—b,d+a—b). ( )

The second line follows from the first by inserting a product and taking the limit. Now we
start from the last equation of (4.4.16°) and use the last line of (4.4.17),

Ua,b)U (e, d) = U'a,b)U" (¢, b)U (b, d)
=U'c+a—b,a)U a,b)U(b,d) = U"(a+c—b,d).

Taking the inverse of this relation we obtain with (4.4.16)
Ué(a,b)Ué(C,d) = Ué(avd_ (C—b)), (*)

whereby the arguments have been renamed. Comparing the last two equations, we get
with f = ¢ — d the equation

Ula+ f,b) = U a,b— f).
This shows that U’(a,b) depends only on the difference-variable. We set
Via —b) =U"a,b) = U'(a —b,0). (4.4.18)
Inserting this into () we find
Via =0V (c—d) =V a—d+c—b).
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Hence the V¥(a) define an abelian representation of the two-dimensional translation group.
It remains to show that this is a continuous representation. Knowing that V*(a) is a
representation of Af(a) we conclude from Eqs. (4.4.12),(4.4.9") and Lemma 4.4.5

Ad A 0]V (a) = Vie(t)a). (4.4.19)

Since the modular group is continuous we see that V*(a) is continuous in radial direction.
Multiplying this expression with V(b) we see that V(e(t)a + b) is continuous in ¢ for every
value of a and b. Hence V(a) is continuous. O

Third step: construction of the rotations

Our aim is to show that the operators A[(, (5]"" generate a representation of the
Lorentz group. Therefore, we have to show that

[T, e =1 (4.4.20)

holds in case the equation

[T A, 691@) =1 (4.4.21)

is fulfilled. To show this we are only allowed to make transformations which do not change
the conclusion, i.e. the transformations implied by the Bisognano—Wichmann property
and those derived from this. We will find other transformations by looking at half—sided
modular inclusions.

We say two expressions containing elements of the Lorentz group are equivalent, if the
corresponding products of operators A[(q, (2]if and V*(a) fulfil the same equation.

4.4.7 Lemma:
Every element A[l1,05](t) is equivalent to a product of the form

Ad{A (@) A" (B)FAL, 0)(#)
where t' is either t or —t.

Proof. We look at the transformation A[ly,(5](t). If ¢; = ¢ and (3 = (' then we get
the lemma with a = b = 0. If (1 = (' and {3 = ( then we use (4.4.6) for transforming the
element to the previous situation. If one of the two vectors ¢, {5 coincides with ¢ we can
assume that this is ¢;. Then there is a transformation A‘(a) mapping ¢, onto a multiple
of {'. Therefore, A[(,l5](t) is equivalent to Ad A‘(a)A[¢,¢'](t). If one of the two vectors
(1,05 coincides with ¢/ we can assume that this is /3. By the same argument we find that
A[C,05](t) is equivalent to Ad AL (B)A[C, ('](2).

Assume next that /1 and (5 are not multiples of £ or ¢. Then there is a transformation
A(a) mapping (5 onto a multiple of (. By this transformation ¢; is mapped onto (3.
Hence we get a transformation Aél(b) which maps 3 onto a multiple of ¢. Since this
transformation does not change ¢’ the original transformation is mapped onto A[(, ¢'](¢).
If one of the vectors is already in the right position then we need only one transformation.
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If necessary we can change the order of vectors because of (4.4.6). Hence every element
Afl1,05]() is equivalent to an element of the form

Ad{A (@)A (B)JA[L, C)(#)

where t' is either t or —t. O

Using this lemma we show:

4.4.8 Lemma:
Every product

7

T AL, 6571

=1

18 equivalent to the product

A[C, € (#9) ﬁ AY (BN (alD). (4.4.22)

=1

Proof . Using the last lemma we replace every A[Kgi),ﬁgi)](t(i)) by an element of the
form

Ad {A (a’ (3))AY (B (1)) YAL, €')(#'(i)). Using (4.4.19) in the form

AA AL (A (@) = Al(e(t)a),

, , (4.4.19")
AdA[C (1A (a) = AT (e(—t)a)

we can commute all A[0,('](¢' (7)) to the front and multiply them. Therefore, we end up
with an expression listed in the lemma. Since the Af(a) and the Aél(a) are groups all
arguments are unequal to zero except perhaps for the first Aél(b) or the last Af(a). i

Using this lemma we have to investigate expressions of the form (4.4.22). For further
simplification of this expression we must investigate the rotations.

Let o be a timelike vector in the two-plane spanned by ¢ and ¢/, and let A’(a) be
an element in the stabilizer group of £. Then A‘(a)xg is a vector on which we can apply
AY(b). There will be an element b(a) such that A (b(a))A!(a)ze belongs to the two—plane
containing ¢, ¢’ and xo. In this situation s(a) exists such that A[(, ¢'](s(a)) maps this vector
back to xg. Therefore, the product represents a rotation

AL, (s(a))AY (b(a))A (a) = R((, a). (4.4.23)
In the same manner we obtain a second rotation if we start with Aél(a),
AL 0)(s"(a))A (B (a))A” (a) = R(C, a). (4.4.23")
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First we need to determine b(a), s(a) and the element R((,a) and b'(a), s'(a) and R({(', a)
respectively. This we do in our standard coordinate system. Af(a) maps the vector zg

onto Al(a)zy = (1 + “2—2, “2—2,611,@2) and hence we get

/ b? a? b? a?
A A (a)ao = (14 )1+ 5) + 55 + (bea).
bZ 2 bZ 2
- S+ S+ (1= 5T — (ha)bi(1+ @) +anba(l+a?) +ay).

This vector belongs to the plane spanned by ¢ and ¢ for

a

ba) = — (4.4.24)
Tnserting this we find
, 2 4 2 4
A (b(a)) A (a)o = (2 ;(121 :2)“ , 22(“1 ja“z),o,()).
This implies
2+ 232 + Z‘* —(2a22+ a‘i)l 0 0
A[L, )(s(a)) = m _(2“0“‘ ) R e ) (4.4.24/)
0 0 0 1
from which follows
e(s(a)) = — (4.4.24")

(1+a?)

In order to compute the rotation R({,a) notice first that Af(a) leaves the vector

(1,0,0) x (0,a1,az) unchanged. The same holds for Aél(— ¢ ) and A[(,0'](s(a)) so that
1

1+a2
mr(1,0,0) x (0, a1, az) is the axis of rotation. (The multiplication is the vector—product in

llall
IR*.) The angle of rotation can be computed by applying R({,a) to the vector (0,1,0,0).
One finds

AL, 0 (s(a))AY (b(a))A  (a)(0,1,0,0) =
1 1— a2 242

a ap dz
0,1—a* —2ay,—2a3) = ——(0,1,0,0) — 0,0 :
1_|_a2(7 a, ap, GZ) 1_|_a2(7 s Yy ) 1_|_a2(7 7HGH7HGH)
This implies the following characterization of R({, a)
axis of rotation :  1(1,0,0) x (0,a,az),
R((,a) : - e . )2 ( ' 2)2,|a” (4.4.24")
angle of rotation : cos = {7i5,8inp = — 5.
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By similar computation one finds

a

b(a) = —— 4.4.2
24+ 2a% + at (2@2 + a4) 0 0
1 (2@2 + a4) 2422 +a* 0 0
"Nyt _ '
AU (8 (a)) = 72(1 ey 0 0 Lol (4.4.25")
0 0 0 1
e(s'(a) = (14 a?), (4.4.25")
axis of rotation : A(1,0,0) x (0,ay,as),
R((',a): , et o ) - (0, 2”22” (4.4.25")
angle of rotation : cosy = {7z, sinp = 5.

Fixing the axis of rotation and replacing in (4.4.23) and (4.4.23") the Lorentz trans-
formations by its representants then we obtain a family of representations

1+7@2)1/4(61). (4.4.26)

U(R((,d,¢)) = A[(, 0]V (—
In this formula d means the normalized rotation axis. The angle ¢ does not admit the
value 7. In the original definition ¢ was non—negative, but we can drop this restriction by

identifying R((,d, —¢) with R({,—d, ).
Next we investigate the rotations defined in (4.4.26). First we show:

4.4.9 Lemma:
The operators U(R((,d,¢)) defined in Eq. (4.4.26) do not depend on the argument (. They

are continuous in the direction d and in the angle provided —mw < p < .

Proof. First we show that U(R((,d,)) is continuous in . Notice first that

Vél(—l_fﬁ)vé(a) is weakly continuous in ¢ and by the unitarity of the product also

strongly continuous. Repeating this argument we find that the expression A[L, ¢/]'*(®)
Vél(—l_faQ)Vé(a) is continuous in a. If we keep the direction of @ fixed then we obtain
that U(R((,d,v)) is continuous in ).

Next we show that the expression U(R({,d,y)) depends continuously on ¢. Notice

first that the definition of U(R((,d,)) implies the relation

AAU(R(L,d, ) Al (] = A[R(L, d, )y, R(L d, )]
Consequently (4.4.26) implies
AAU(R(,d, 0))U(R(0y, d ) = U (R(R(C,d,0)0,dy0) ) (4.4.26')

in case {y is perpendicular to d. From this we obtain continuity in ¢ since we know the

continuity of U(R((,d,v)) in .
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Let now ¢ be an irrational multiple of 2x. Then {ny mod 27; n € Z} is dense in
the open interval (—n, 7). Choosing 1) = ¢ in (4.4.26°) and ¢; = ( then we obtain

U(R(l,d,¢)) = U(R(R((,d,)l, d,0)).
Iterating this equation we get:

U(R(l,d,¢)) = U(R(R"((,d,¢)l,d, ¢))
= U(R(R(L,d,np)l,d,¢)), ne Z.

Using the continuity in ¢ we find that U(R((,d,¢)) is independent of ¢, provided ¢ /27 is

irrational. Since U(R(/,d,¢)) is continuous in ¢ it follows the independence of ¢ for all ¢.
Since U(R(d, ¢)) is continuous in ¢ we conclude from

AdU(R(d", 9))U(R(d,¥)) = U(R(R(d',¢)d, ))
that U(R(d,¥)) is also continuous at d in any direction. Since this is true for any point d

on the unit—sphere we obtain continuity in d. ]

Knowing the identity of the different representations of the rotations we can make a
further transformation of the expression (4.4.22).

4.4.10 Lemma:

The expression (4.4.22) is equivalent to one of the expressions

s

ALC, C)(to) A (ao) | | R(€,d(i). ¢(1)),

7

(4.4.27)

s L

AL (1) A (ao) [T R(E (i) (1)),

1

=

Proof . Assume that at the end of (4.4.22) there is an element A(a). We can replace
it by AY( HfGQ)A[E,K’](—s(a))/\[ﬁ,E’](s(a))/\él (— HfaQ)Aé(a). The last three factors give rise
to an element R(¢,d(a),p(a)). By using (4.4.19’) the A—factor can be commuted to the left.
The remaining A “factor can be combined with the factor of the same kind which was to
the left of A’(a). Therefore, at the end we find after these manipulations an expression of
the form Aél(b)R(ﬂ, d(a),¢(a)). Now we can perform with Aél(b) the similar manipulation
and obtain a factor R(¢',d(b),»(b)). This can be replaced by R({,d(b),—p(b)). So we
obtained for the last two factors of (4.4.22) the factors R((,d(b), —¢(b))R((,d(a), ¢ (a)).
Repeating this procedure we end up with one of the expressions (4.4.27). If there is an

element Aél(b) at the end of (4.4.22) the procedure is the same. O

We are interested in the situation where the expression (4.4.27) is of the value 1. In
this situation (4.4.27) can be simplified.
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4.4.11 Lemma:

Assume (4.4.27) has the value 1. Then one finds A[(,{'](ty) = 1 and A%ag) = 1 and
A (ag) = 1.

Proof. We consider the first line of (4.4.27). Since the product has the value 1 it
follows that ¢ is mapped onto itself. Since the first two factors leave the direction of ¢
unchanged the same must be true for the product of the rotations. But this implies that
the product of the rotations, which does not change ¢, maps ¢ onto itself. Hence we get
A[0,U')(to)¢ = ¢ which implies to = 0. Since the product of the rotations maps ¢ onto itself
it also keeps ¢’ fixed, which must be true also for A’(ap) = 1. This implies ag = 0. The
second line of (4.4.27) can be handled in the same manner. O

Knowing that U(R(d,y)) depends only on the direction of the axis of rotation and
the rotation angle we have to show that these operators form for fixed axis of rotation a
representation of the circle group.

4.4.12 Proposition:

For fized axis of rotation the operators U(R(d,¢)) give rise to a representation of the
rotation group. This implies in particular that

U(R(d,n)) = lim U(R(d, ¢))

e

ezists and U(R(d, ¢)) is continuous in @ on the whole circle.

Since the proof of this proposition is straight forward but lengthy we will present it
in the appendix.
Now we are prepared for the main result.

4.4.13 Theorem:

Assume the modular group of every wedge algebra
M(W[ly,l2,a]) acts on every algebra of a double cone like the associated group of Lorentz
boosts. Then the modular groups A [(1, (3, a] define a representation of the Poincaré group.

Proof. In the beginning we have constructed the translation so that it remains to
construct the Lorentz transformations. To this end we have to show that the equation

HA[Kgi),Kgi)](t(i)) = 1 implies the relation HA[Kgi),Kgi)]itm = 1. We saw in (4.4.22) that

the product can be transformed into

AJC, 0)(+9) ﬁAf’(b<i>)Af(a<i>) = 1.

=1

To show this the principle of half—sided modular inclusion was needed. Using Lemma 4.4.10
and Lemma 4.4.11 the product in question can be transformed into [[ R(¢,d(¢), ¢(¢)) = 1.
So it remains to show that this implies [[ U(R(¢,d(i), (7)) = 1. From the relation

Ad U(R(dl ) 991))U(R(d2 ) 992) = U(R(R(dl ) 991)d27 992)
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it follows that the operators U(R(d,¢)) give rise at most to a central extension of the
rotation group. Since we know that the representations are unique for the rotations around
a fixed axis we conclude by Mackey’s method of induced representations [Mac68] that the
U(R(d,p)) form a single valued representation of the whole rotation group. Hence follows

[TU(R(L, d(2), (1)) = 1. D
Appendix:

Proof of Proposition 4.4.12: Due to the independence of U(R((, d, ¢)) from { we obtain
with a? = 1 the relation

is(aa £ aa 4 —is(aa)y L aa £
AL, 0]ty (—H—a?)v (aa) = A, ¢)7slea)y (W)V (—aa). (4.4.28)
Applying Ad A[L, (']t to this relation we find by (4.4.197)
n2is(s)y, ¢ e(—t)aa, 4 o et)aa, '
N[N Vi (———— )V (e(t)aa) = V( W (—e(—=t)aa). (4.4.28")
14+ a2 14+ a2
Notice: If we fix the vector £ and the axis of rotation d then we have also fixed a. Therefore,
we obtain
. ' /\CL : / a
Ale, sy (- 2Lyt a)Afe, Oyt (- Lyt 4.4.29
PRIV (S V OAL PV v ) (a420)

for the product of two rotations around the same axis. Using (4.4.19") this expression
becomes

A[ﬂ,K’]i(s()‘a)—i—s(ua))vél(—%)Vé(e(—s(ua))/\a)vél(—%)Vé(ua). (4.4.29')

We want to apply formula (4.4.28’) to the third and fourth factor of the expression (4.4.29").
This implies the following identifications:

7
—¢ —
(=17

= e(—s(pa))A = M1+ p?).

e(t)a (4.4.30)

1+ a?

For the last transformation we have used (4.4.24”). Since the left sides have the same sign,
this must also hold for the right sides. Hence we get the restriction Ay > 0. We can solve
(4.4.30) and obtain

14+a?= !
1=
AL + 2
e(t)a = % At # 1A\ > 0, (4.4.30")
— A

e(=t)a _ p(l—Au)
14 a? 1+ p2
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Inserting (4.4.307) into (4.4.29) then the expression (4.4.29) obtains the form

. ' /\Cl i
A 6,6/ 1(3()\(1)—1—3(;1(1))‘/4 . A 6,6/ 2i(s(wa)
0] A
: 1—A A1+ p?
><V£ (_/“L( /“L)a)vé( ( +H )a)Vé(/,La)
I+ /~L2 1—Ap 1"
e(25(aa))A (1) (4.4.30")
A[z 6]21( (aa)+23(aa)v€' { 8 aa a ) H H CL)] CL)
(14 A2)(14 p?) 14 p?
AL+ p?)
xV + ula
(o e
The argument of the operator V* becomes 1)‘_"")\”“. For computing the argument of v
notice first the relation
e(2s(aa)) = e(s(aa)? = ——— = (1 - Ap)2.
(1+a2)?
Inserting this we find
A\ p(l = Ap) A (1 - p)?
2 —
e (S ) ) R Rl W v S BT ey
Atp
1—Apn

B
A+
=

If we set
A p
= 4.4.31
v ( )
then the product (4.4.29) becomes
NI A i(s()\a)—l—s(ua)—l—Zs(aa))Vé' . P Vé ) 4.4.29"
.0) SV (4.429")

Finally it remains to look at the exponent of the modular operator. We know e(s(Aa)) =

H_)\Q, which implies s(Aa) = —log(1 + A\?). Hence we obtain

s(Aa)+s(pa) + 2s(aa) = —log(l + /\2)(1 + /,Lz)(l + a2)2

= —tog I g (1 (1)) = —togin %)

Since p 1s symmetric in A and p it follows that the rotations around a fixed axis commute
and give rise to a rotation (provided Ay # 1). It remains to show that the relation
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w(ha) + @(pa) = p(pa) is fulfilled. From (4.4.24"") we obtain el¥(A®) = (11:_71))\‘2)2 from which

we get

2
. . _ At
eiap()\a)eiap(ua) — (1 — 1/\)2 (1 — 1/“L)2 _ <1 11_>‘N> ‘

1_|_/\2 1+M2 At 2
1+ (245)

This shows that the group—relations are fulfilled.

The restriction for the calculation was App > 0 and Ay # 1. Therefore, we have to
look at the angle 7 and at the product with different signs of the angle. Let us regard the
second problem first. We find with (4.4.24”) and (4.4.28)

{A[ﬁ,ﬂ’]is(a“)vél(_ 1 iaaz )Vé(oza)}_l — V! (—aa)V’ (- 1 iaaz JA[L, 0]t
i ! aa
= va6/]_ls(a“)Vé(—e(s(aa))aa)Vg (e(—s(aa))m)
= ALV (= E )V (aa)
= Al L] EOAL POV ()Y (—aa).

This implies
R(d799)_1 = R(dv _99)7 -7 <p T

From this we obtain the multiplication rule (¢ > ):

R(dv @)R(dv _¢) = R(dv ¥ — ¢)R(d7 ¢)R(d7 _¢) = R(dv ¥ — ¢)

A similar calculation is valid for ¢ < 1. We have to discuss the point ¢ = 7.

We define R(d,x) := R(d,w/2)*. Since R(d,) is continuous in ¢ we see by the
multiplication rule and the continuity of the square that R(d,¢)? is defined for all values
of ¢ # mw. It remains to show that the product rule is fulfilled also for ¢ = =. Notice
first that R(d,7/2)* = R(d,¢)R(d,m — ) = R(d,x) holds for 0 < ¢ < 7. From this one
obtains

R(d, m)R(d,¢) = R(d,

= R(d,p — 7).

IR0, S E)R(d,¢) = R(a, T2

Moreover, we get with 0 < ¢ < 7/2,

R(d,7)* = R(d,x — ¢)R(d,0)R(d, 7 — ¢)R(d,¢) = R(d, ™ — )’ R(d,¢)* =
R(d,—2¢)R(d,2¢) = 1.

This implies R(d,7) = R(d, —=) and the proposition is proved. O

85



HJB—Apr./99

4.5) The approach of Buchholz and Summers

We saw that the Bisognano—Wichmann property for the modular groups implies
Lorentz covariance, wedge duality and the PCT-theorem, provided the algebras of the
double cones are the intersection of the wedge algebras. This implies in particular, that
the modular conjugations of the wedge algebras act as reflection, i.e.

JwM(D)Jw = M(PwD). (4.5.1)

Here Py is the reflection in the characteristic two—plane of the wedge W, which leaves
the apex of the wedge unchanged. If @ is in the characteristic two—plane of W and W =
W(ly,0s,a) then with @ = My + ply + = one obtains

Pywae = =My — ply + 27 + 2a. (4.5.2)

If the theory fulfils Eq.(4.5.1) for every double cone then we say it fulfils the Bisognano—
Wichmann property for the modular conjugations. Since the Poincaré group is generated
by the reflections (if the dimension of the Minkowski space is larger than two), it is natural
to ask whether or not one can derive the Poincaré covariance also from the Bisognano—
Wichmann property for modular conjugations. Using some additional assumptions this
question has been answered for the translation positively by Buchholz and Summers [BS93].

Since every double cone is the intersection of wedges, it is no restriction if one requires
Eq. (4.5.1) only for wedges. In a recent paper Buchholz, Dreyer, Florig and Summers
[BDFS98] have generalized this setting by requiring that the modular conjugation of every
wedge algebra maps only the family of all wedge algebras onto itself. This contains a
hidden version of the wedge duality. Adding to this the assumptions that the modular
conjugations preserve (I) isotony and (II) stability of non—intersection, they were able to
show the following: Every transformation 7' of the set of wedges onto itself, and which
together with its inverse fulfils (I) and (II), is a Poincaré transformation. If, in addition,
the considered set of transformations T is a group, which acts transitively on the set
of wedges and if the Minkowski space is four dimensional, then this group contains the
identity component of the Poincaré group. In a very recent paper Buchholz, Florig and
Summers [BFS99] showed that the adjoint representation of the translations of this group,
acting on the wedge algebras, is necessarily continuous.

The group representation obtained from the modular conjugations must not fulfil
the spectrum condition. In order to obtain this condition one has to add additional as-
sumptions. The authors of [BDFS99] called one of the possibilities the modular stability
condition.

It 1s interesting to notice that the method of Buchholz, Summers and co—workers can
be transcribed to quantum field theories on de Sitter space. Whether or not this method
can be generalized to other manifolds can only be answered by future calculations.

Here we will present the construction of the Poincaré group and show the continuity
property of the translations. The continuity of the Lorentz transformations will only be
discussed. Our construction of the Poincaré transformation differs in some points from

that of [BDFS99].
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In this section we define wedges slightly different from the notation in Sect. 1.5.
Here W ({1, (s, a) means that the lightlike vectors (1, (5 belong either to V1,9V~ or to
V=, 0V T, ie. ({1,03) <0, and that the wedge W ({1, l2,a + p1l1 + palz) C W(l1,ls, a)
for p1,p2 > 0. This description is symmetric in both lightlike vectors and is better suited
for dealing with time— or space reflections.

4.5.1 Definition:
Let W denote the set of all wedges. By T we denote the set of all transformations T,

T W —W,

such that 771 exists and T as well as T~ fulfil:

(I) Tsotony, i.e. Wy C Wy implies T(W7) C T(Ws) and T-1(Wy) C T~ (Ws).

(II) Stability of non-intersection, i.e. Wy N Wy = @ implies T(W;) N T(W,) = ) and
T-Y W) NnT~Y (W) = 0.

With these assumptions we will show:

4.5.2 Theorem:

Let the dimension of the Minkowsk: space be larger than 2. Then every transformation
T €T s an element of the full Poincaré group enlarged by the dilatations.

Before we come to the proof we introduce some

4.5.3 Notation:

(i) Let ¢ be a lightlike vector, then H({, a) denotes the set of vectors « such that (x —a, () =
0. This is an affine hyperplane of dimension d — 1.

(ii) Recall that the characteristic two—plane of a wedge W ({1, (2, a) is the plane generated
by 1 and /5.

(iii) The supporting plane of the wedge W(l1,{s,a) is the intersection of the two affine
hypersurfaces H((y,a) and H({,a).

(iv) Let ¢ be a lightlike vector. By X () we denote the set of wedges such that one of its
vectors coincides (up to a positive factor) with ¢. This means that the vector ¢ belongs
always to VT or always to V™.

(v) Let ¢ be a lightlike vector. By X (¢, a) we denote the set of wedges in X () such that
their supporting planes belong to H((, a).

(vi) Let (1, (5 belong to different light cones. Then ({1, (2) denotes the set of all translates
of W(Kl,ﬂg, 0)

(vii) Y (01,035 a, (1) denotes the set of wedges in Y(¢1,(2), such that their supporting planes
belong to H(l1,a). Y (l1,03;a,ls) is defined similarly.

(viii) F'(a) denotes the set of all wedges such that @ is contained in their supporting planes.
Using only the isotony property of the elements in T we show:

4.5.4 Lemma:

Every T € T maps the sets Y ((1,03;a,l1) onto the sets Y ({7,05;a’,0}) and also classes

Y(ly1,03) onto classes Y({],105).

87



HJB—Apr./99

Proof: Since all elements in Y((1, (2) have the same lightlike vectors it follows that to
two of the wedges exists a third containing both. Hence by isotony T maps Y({1,(2) onto
a class of the same kind. Since the intersection of the characteristic two—plane with the
supporting plane is one point, the elements in Y((;,{3) can be uniquely characterized by a
point in the characteristic two—plane. This two—plane is isomorphic to the two dimensional
Minkowski space. Defining a map such that the multiples of the vector ¢ belonging to V'
are mapped onto the z1 axis and the negative of the multiples of the vector ¢ belonging
to V7 are mapped onto &7, then the order of inclusion in Y(¢1,(3) becomes the order
by VT in the two-dimensional Minkowski space. By this transformation T induces an
order preserving map v(7') on the two—dimensional Minkowski space. Hence by a result of
Zeeman [Ze64] ~(T') sends light rays onto light rays. This is equivalent to the statement
that T sends Y ({1, (2, a) onto sets of the same kind. O

Next we want to show that T maps families X'(¢) onto families of the same kind. For
this result also the non—intersection property is needed.

4.5.5 Lemma:

Every T € T sends families of the form X({,a) onto families of the same form. In
particular classes X (() are sent onto classes X (0').

Proof: Choose a family Y ((1,03;a,(1) and look at the elements in W which have
an empty intersection with every element in Y ({1,03;a,(1). These consist of the union
of all Y(—01,0s5;b,—(1) such that b = a + p(—{l2) with p > 0. Notice that the family
Y (—01,03;b,—(1) is ordered. We say Y (—01,05;b1,—0l1) = Y (—01,03;by,—(1) if every el-
ement in Y (—(1,03;by, —(1) is contained in one element belonging to Y (—(1,(3;by, —(1).
Thus the maximal element is of the form Y (—/1,0s;a,—(1), and hence the union of the
maximal elements is just X (—(;,a). Since T preserves order of inclusion it also preserves
the order . Hence T maps X (—/1,a) into sets of the same kind. But since T is a bijection
it follows that the map is surjective. Using isotony again we find that the family of sets
X (0) is mapped by T onto itself. 0

Next we want to look at the families F'(a) and want to show that they are mapped
onto families of the same kind. For this we need several preparations.

4.5.6 Corollary:
Every element T € T maps opposite wedges onto opposite wedges.

Proof: A wedge W (l1,03,a) is the unique element belonging to X (¢1,a) N X ({2, a).
The opposite wedge is the intersection of X (—(1,a) with X(—03,a). Since X(—/¢;,a) is the
maximal element in the complement of X (¢;,a), i = 1,2 we see that T maps X(—/;,a)
onto the maximal element in the complement of T(X ({;,a)). This implies the statement
of the corollary. ]

Let us take d linear independent lightlike vectors in V*. Then the point {0} can be
characterized in d different ways, namely by the intersection of the supporting planes of
the wedges W(—/(;,(;,0), i # j. If we apply T to this situation then every of these families
define a point a;. We want to show that all these points coincide.

88



HJB—Apr./99

4.5.7 Lemma:

Let l;, 1 = 1,...d be lightlike vectors belonging to OV —, and T € T. Let the vectors {; be such
that their images (. are linearly independent. (Such families exist because of the property
of T71.) Let a be fized. Consider the dfamilies of d—1 wedges {W(—{;,0;,a), i # j}. For
TeT let T(W( li 05, a4, ])) = W(=L;, 0}, a; ;). The intersection of the supporting planes

27 ]7

of W(—=1}, 05, a; ;) for fized i defines a point a’ Then all the a coincide.

1? ]7

Proof: Frorn Lemma 4.5.5 and Cor. 4.5.6 we know that T(W(—/{;,(;,a)) is of the
form W (-0}, 0%, a; ;), where (] is independent of the other arguments. Moreover, Cor. 4.5.6
implies that we can choose al i = a] . Since “2,]‘ and a; belong both to the supporting
space of T(W(—{;,(;,a)) we can write a; ; = a;+¢; ;, where the vector ; y is perpendicular
to (} and (7. Frorn this we obtain by taklng the difference of a; ; and af;; that a] — a’; is
perpendicular to (] and (. Because of a] — a}; = (a} — a}) — (a} — a}), k # 1,7 we obtain
that a} — a"i is also perpendicular to ¢}. Since these vectors are linear independent we get

r_ !
ai—aj. O

Next we generalize this result.
4.5.8 Lemma:

Let T € T. Let {;, « = 1...d + 1 be vectors belonging to V. Assume that the vectors {;
are such that the d vectors K}, 1 # 7, 1 fized are linear independent. Assume all wedges
W(—=0;,0;,a; ;) are such that their supporting planes contain the point a. Then the sup-

porting planes of the images W(—(}, 0}, a} ;) contain a unique point a'.
Proof: Let a’i be the unique p01nt of the family W(—/;, (%, a; ;) described in the last
lemma. Then one has the relation = = a’+&; ;, where the Vector fm is perpendicular to

(i and ;. From aj ; = a’;; one obtains a} — a} is perpendicular to (] and (. Writing again
a; —a’ = (a; — a},) — (a} — a},) we obtain that a; — a} is also perpendicular to (), k #1, .

Hence these differences vanish. ]
Combining the last two lemmata we obtain
4.5.9 Corollary:

Let T € T. Then T maps a family F(a) onto a family of the same type, i.e. onto F(da').
The mduced map T : a — a' is a bijection of the Minkowski space.

Proof: We start with d vectors {; € 0V~ such that their images ¢/ are linear indepen-
dent. Then the images of the wedges W(—/01,(;,a) define the point a’. It remains to show
that the image of W (l441,l442,a) contains the point ¢’ in its supporting plane. Assume
the additional vector belonging to OV T is {441. If now ¢}, i = 1...d and —{}, 4 are such
that every d—tuple of these vectors are linear independent, then we can replace (1 by —( 441
without changing the point a’. If /44 is not in such situation, then we may succesively vary
the vectors ¢; without changing the point ¢’ such that the new vectors ¢; and —{441 are in
the situation described above. Since —{y1; and {44, and hence also _%—1—1 and %—1—2 are
different we can repeat this procedure without changing the first vector, which is —¢41.
Replacing now (s by (442 we find that the supporting plane of W (l441,0442,a) contains
the point a’. So T maps F(a) onto F(a'). From the uniqueness of the action on classes
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Y (l1,02;a,01) it follows that the associated map 7 on the Minkowski space is injective.
Since T~ ! has the same property it follows that the associated map 7 is a bijection. ]

Now we are in the position to show Thm. 4.5.2.

Proof of Thm. 4.5.2: From the investigation of X'({) we know that the map ¢ — ('
sends OV T either to OV T or to V. The second situation can be reduced to the first by
multiplying 7 with the time inversion. Let ay = ay + pf with £ € OVt and p > 0. We
look at the sub—family of F(a;) respectively of F(as) consisting of F(a;) N X({,a1). We
denote these sets by F(a;, (). The situation az = ay + pl with the above conditions can be
characterized by the condition: To every Wy in F(ag, () exists an element Wy in F(asg, ()
such that Wy C Wy holds. Since a wedge W (', 0}, a) is contained in a wedge belonging to
F(ay,0") only if a = p10' 4+ p2l)y, p; > 0, and since the inclusion holds for all possible 0},
we conclude by the isotony condition a), = p’¢’. This implies that 7 maps light rays onto
lightrays. Hence by the result of Zeeman [Zee64] or Borchers and Hegerfeldt [BH72] we
conclude that 7 is from the Poincaré group enlarged by the dilatations. From the relation
T(F(a)) = F(ra) we conclude that 7 defines the same group as the group of the 7’s. D

Now we restrict our attention to the modular conjugations of the wedges W € W.
Let Tw be the corresponding map in 7. Before we introduce the requirements for the
maps Tw, we add one remark. If G is a subgroup of T which acts transitive on W, and if
the Minkowski space has dimension 4, then it is claimed in [BDFS98] that G contains the
identity component of the Poincaré group. We will use this result which is plausible for
arbitrary dymension. For the following treatment of Ty we need some

4.5.10 Notations:

(1) Let W be a wedge, then we denote by Gy the subgroup of the Poincaré group which
maps W onto itself.

(2) Gy denotes the intersection of Gy with the identity component of the Poincaré group.
(3) Let £ be a lightlike vector, then we denote by G the translational part of the stabilizer
group of ( (see Sect. 4.4).

Because of the special structure of wedges, Dy consists of two parts, the euclidean
group of the supporting plane of W, and that part of the invariance group of the character-
istic two—plane, which maps the wedge onto itself. The latter part consists of the Lorentz
boosts associated with the wedge, and the time reflection (wich is different for different
wedges),

For the transformations Ty associated with the modular conjugation of the algebra
belonging to W we impose the following

4.5.11 Requirements:

(i) The group generated by all the Ty acts transitive on W.
(ii) If two wedges have a non-trivial intersection, then the intersection of the wedge—
algebras is large. This implies

Tw(W)n W = 0.

(iii) Since Ty is the image of the conjugation associated with M(W') we require that Ty
commutes with every element in Giy, i.e.

TwT, =T,Tw, T,<Giy.
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(iv) Since Ty represents a conjugation we must have

With these requirements one obtains

4.5.12 Theorem:

Let Tw fulfil the requirements 4.5.1, then one has Tw = Py, where Pw 1is the total
reflection in the characteristic two—plane. This implies in particular the wedge duality

Ty (W) = W,

Proof: We first draw a consequence of condition (ii), and assume that 0 is contained in
the supporting plane of the wedge. Let W = W (/(y,(3,0) then we know that Tw (W) must
belong to the union of X(—0(y,a), a = —ply, p > 0 and X(—Vlz,a), a = —ply, p > 0. In
order to obtain a wedge in that set we put TG, = (A’ Py, a) with A* € G or A* € G*2. The
vector a belongs to the characteristic two—plane of the wedge and one has to distinguish
three possibilities:

(i) A® € G AP £ 1 implies a = —ply + My, p > 0, ) € IR.
(i) AY € G2, A" £ 1 implies a = —ply + Mo, p > 0,) € R.
(iii) A® = 1 implies that a belongs to the complement of W.

Since Ty}, and Tyw map W onto the same wedge, they differ only by an element
Ty € G1y, (w). For simpler writing we commute T, with T}, and obtain an element in Gy .
Therefore, Ty has the form

Tw = (A PwT,, a),

with AY, Py, T,, a as described above.

Next we turn to the requirement (iii). From the above mentioned structure of Gy we
know that T, maps the supporting plane of the wedge onto itself. The same is true for Py .
If AYis not the identity then the image of the supporting plane is no longer the original
supporting plane. Since Ty has to commute with all translations in the supporting plane
we conclude A = 1. Since (Pw,0) and (1,a) commute both with the transformation
group of the supporting plane, also T, must commute with these transformations. Hence
T, must have the form T, = T T}, where T} is the identity on the characteristic plane
and a multiple of the identity in the supporting plane, i.e. either the identity or the total
reflection on this plane T} lies in the group generated by the Lorentz boosts and the time
reflection. Since Py commutes with the Lorentz boosts also Tgc has to commute with the
Lorentz boosts. This implies that T contains no time reflection, and hence it can only
be a Lorentz boost of the wedge. It remains lo look at the translations (1,a). Since the
only vector in the characteristic two-plane invariant under the Lorentz boosts is {0}, also
a must vanish. Therefore, Ty has the form

Ty = PwAw(t)T:.
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Ay () is a Lorentz boost of the wedge W and T} is either the identity or the total reflection
of the supporting plane. Notice that these transformations commute. Therefore condition
(iv) implies Aw(t) = 1. So it remains

Tw = { PW’
—1.

Finally condition (i) implies
Tw = Pw.

For shifted wedges we obtain Ty by translations. Assume for instance W = Wy + a with
a in the characteristic two—plane of W. Then one obtains

P& = Py, + 2a.

This implies wedge duality. ]

Let 7; be the subgroup generated by the modular conjugations of all the wedges in
W. Assume one is dealing with a QFT on a Hilbert space ‘H and that there exists a vector
Q2 € H, which is cyclic and separating for all wedge algebras M(W). Assume, moreover,
that the modular conjugation Jy fulfils the relation

Jw MWy Jw = M(Tw(W1)),
JWJW1JW = JTWW17 Jw = Jw.

Then the Jy generate an adjoint representation of the determinant +1 part of the Poincaré

group.
Next we want to show that the representation generated by the Jy is a true repre-
sentation. Let Wy, ...W,, be wedges such that

I Tw, =1 (4.5.3)

holds, then one has to show

T Jyw, = 1. (4.5.4)

=1

To this end we choose an arbitrary W and look at the expression H Jw..Jw. Using the
=1
above relation one obtains

‘gl JWiJW = ‘1:[1 JWiJTWnWJWn = ...
= Iy, .. Tw, W El Jw;, = Jw 41;[1 Jw;.

Therefore, H Jw, belongs to the center of the group generated by the Jy’s. We now

restrict to the four—dimensional situation. Later we will see that the group representation
1s continuous.
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It remains to show that we are dealing with a true representation of tha Poincaré
group. We know from section 4.4 how tedious such calculations are. Therefore, we skip
this calculation and refere to the original paper [BDFS98]. Collecting the results we obtain

4.5.13 Theorem:

Let the dimension of the Minkowsk: space be 4, the representation of the “+'"part of the
Powncaré group induced by the Jyw s 1s a true representation.

Next we are coming to the continuity problem and its solution described in [BFS99].

4.5.14 Proposition:

Let U(A,a) be the representation of the Poincaré group obtained by the products of the
Jw’s. Then U(1,a) is strongly continuous.

Proof: Let W be a wedge such that {0} belongs to the supporting plane of W. Choose
a € W (in the characteristic two—plane of W) and define {thM(W + ta)}’ = M. By

construction one has M C M(W).Let J; be the modular conjugation of M(W + ta).
We want to show that J; converges strongly to Jy. We know from Thm. 2.1.1 that J;
converges strongly to .J, where J denotes the modular conjugation of M. Moreover, one
has for sufficiently small t;

Ad (Jthl)M(W + tza) = M(W + (tz — tl)a) C M

Consequently
Ad (JoJ MW +tea) C M(W +1t3) C M.

From this we obtain
MCMW)= Ad(Jo)./\/l(W/) C Ad(Jo)./\/l' =Ad(JoJ)M C M,

this means M = M(W) and hence J; converges strongly to Jo. This implies that the rep-
resentation of the translations in the a—direction is weakly— and by unitarity also strongly
continuous. Hence the translations in the characteristic two—plane of W are strongly con-
tinuous. Changing W we obtain that the translations are continuously represented. O

The proof of the continuity of the Lorentz transformations will not be presented here.
However, one can imagine how the above proof can be adapted to the situation where one
looks at one—parametric subgroups A(t) of the Lorentz group. One wants to compare the
algebra M(A(t)W) with M(W). In order to do this one must assume, that € is also cyclic
for the algebras M(A(H)W NW), provided t is sufficiently small. If this is the case one can
look at the limit £\ 0 and argue as above.

Finally we come to the spectrum condition. As mentioned before, the representation
of the translations induced by the Jy’s does not have to fulfil the spectrum condition. In
order to obtain the spectrum condition, Buchholz, Dreyer, Florig and Summers introduced
a new assumption, which they called
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4.5.15 Modular stability condition:

The modular group of every wedge 1s contained in the group generated by the modular
conjugations.

Since the group generated by the Jy s is the 4 part of the Poincaré group, it is easy to
see that the modular group of the wedge coincides (up to a scale factor) with the group of
the Lorentz boosts associated with the wedge. Since € is also cyclic for the shifted wedges
one can conclude, as in Sect. 4.4, that the spectrum of the translations is contained in the
closure of either V™ or V' ~. In order to obtain this result one can also use the method of
Wiesbrock [Wie92] which leads to the same conclusion.

We end this section with some

4.5.16 Remarks:

(1) If one knows that the operators Jyy fulfil all the conditions we have used in this section,
and if one knows from other sources that the theory enjoys the spectrum condition, then
the group generated by the Jy’s must not necessarily contain the modular groups of the
wedge algebras. Even in the situation where one knows that the Jy are modular conjuga-
tions and that the spectrum condition is fulfilled, a proof is missing that 7; contains the
modular groups of the wedges.

(ii) There exist QFTLO’s which do not fulfil wedge duality, or others where the Lorentz co-
variance is missing (also for the wedge algebras). Such theories do not fulfil the Bisognano—
Wichmann property neither for the modular groups nor for the modular conjugations.
Hence these criteria are a selection criterium for both, the field theory and the vacuum
state. The criterium in [BDFS98] has the advantage that it also applies to certain theories
without spectrum condition. If these methods apply to QFT’s on curved manifolds this
might be an advantage. Whether or not it is an advantage for theories on Minkowski space
is a question of taste, in particular since the so—called modular stability requirement is a
sufficient but not a necessary condition implying that the spectrum is contained in the
forward or backward light cone.

4.6) Remarks, additions and problems

(I) If the local algebras are generated by Wightman fields with finite components then
the result of Bisognano and Wichmann Thm. 3.1.5 shows that the modular groups of
the wedges coincide with the associated Lorentz boosts. On the other hand if we know
the Bisognano—Wichmann property then we can derive Poincaré— and PCT—covariance
for the local net. (Section 4.4 and 4.3.) But it is still an open problem whether or not
the Bisognano—Wichmann property for a local net implies that this net is generated by
Wightman fields. The existing attempts of constructing Wightman fields from local nets try
to relate the field operator to the Hamilton operator (generator of the time translations,
H-bounds methods) Fredenhagen and Hertel [FH81]. It might be useful to try to find

relations with respect to the modular operator of the algebra of the wedge.

(IT) The construction of the Poincaré group from the modular groups of the wedges is
possible if the Bisognano—Wichmann property holds. The first construction under this
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condition has been given by Brunetti, Guido and Longo [BGL94]. Their method is based on
group cohomology and therefore more elegant than the method presented here. However,
their method has the disadvantage that it leads to a representation of the covering group.
In order to obtain a true group representation Guido and Longo [GL95] enlarged the group
by the modular conjugations. In addition they incorporated charged fields. In this frame
they proved the PCT— and the spin and statistics theorem. This result implies that in the
vacuum sector one has a true representation of the Poincaré group.

(ITI) In Tomita’s modular theory one makes statements about the action of the modular
group only on the algebra and its commutant. Therefore, it is unnatural to formulate the
Bisognano—Wichmann property for all local algebras M(D). It should only be formulated
for such D which belong to W or to W'. If one does this, one does not loose any information.
This is a consequence of the following reason: The knowledge about the action inside W
suffices to conclude that the algebras associated with the translates of a wedge along
one of its defining lightlike vectors fulfil the condition of Fhalf-sided modular inclusion
with respect to M(W). With help of Thm. 2.6.2 one obtains the translations in the
characteristic two—plane of W. Since by Thm. 2.5.2 one knows the commutation between
these translations and the modular group one can determine the action of this group
on arbitrary M(D). One finds the full Bisognano-Wichmann property for the modular
groups. This procedure has been worked out by D. Guido [Gui95].

Unfortunately the Bisognano—Wichmann property for the modular conjugations can
not be replaced by a local version. If we only know the action inside the wedge then we
cannot compute the action of Jy on Jy~. Therefore, we are not able to conclude that
the products Jw Jy give rise to a representation of a central extension of the Poincaré
group. Hence if we assume that the modular group of the wedge algebra is contained in
the group generated by the Jy’s, we are not able to conclude that the modular groups
fulfil the Bisognano—Wichmann property.

(IV) The Bisognano—Wichmann property for the modular groups is essential for the deriva-
tion of the CPT—theorem. Since this condition is probably hard to verify in concrete ex-
amples, one has to look for conditions which imply this property. The whole Buchholz
Summers program, if restricted to the Minkowski space, is of this nature. If we start
from a Poincaré covariant theory, then the wedge duality and the reality condition also
implies the Bisognano—Wichmann property for the modular groups. One should add other
assumptions implying this property.

(V) If a Poincaré covariant QFTLO fulfils the Bisognano—Wichmann property for the
modular groups then it can happen that the theory is covariant under two different repre-
sentations of the Poincaré group. In this case holds [Bch98b]:

4.6.1 Theorem:

Assume we are dealing with a local quantum field theory in the vacuum sector, which is
covariant under two different vacuum representations of the Poincaré group. Let Uy(A, a)
be the representation generated by the modular groups of the wedge algebras and Ui(A,a)
the second representation. Then there exists a local gauge transformation of the Lorentz
group G(A) with

Ui(A,a) = Up(A, a)G(A).
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Moreover, G(A) commutes with Ug(A',a) for all a,A,A'. In addition G(A) is a gauge

transformation, i.e. it maps every local algebra onto itself.

That this situation occurs shows the following example: Take an infinite number of
copies of a finite component Wightman field. Let U(A,a) be the representation of the
Poincaré group transforming the Wightman field. Let G(A) be a representation of the
Lorentz group which acts on the indices numbering the copies. Then U(A,a) @ 1 is the
group generated by the modular groups and U(A, a) @ G(A) is the second representation.

(VI) The reality condition together with the wedge duality implies the Bisognano—Wich-
mann property. Recently Guido and Wiesbrock (see Schroer and Wiesbrock [SW98]) have
given a different condition which replaces the reality condition 4.2.1.

4.6.2 Theorem:

Assume we are dealing with a QFTLO on the vacuum sector. Assume that for every wedge
the map

AQ — U(AW(—%))A*Q
is bounded for A € M(W). Here U(Aw(t)) denotes the group of boosts associated with W.

Then the theory fulfils the Bisognano—Wichmann property.

(VII) Inspired by the result that M(W[(, (1)) N W[(,(5]), (1 # (2 fulfils the condition of
—half-sided modular inclusion with respect to both algebras M(W{(, (1]) and M(W[(, (5])
(see Thm. 4.4.1) H.-W. Wiesbrock has introduced the concept of "modular intersection”.

4.6.3 Definition:

Let M, N be two von Neumann algebras with a common cyclic and separating vector §Q.
One says that (M, N, Q) have the FTmodular intersection property if:

I. M NN fulfils the condition of Fhalf-sided modular inclusion with respect to both
algebras M and V.

IT. There holds

: it A —it e 1 it A —it
JN(S—tEEEnOOANAM)JN—(S t_lgcnooAMAN).

In a QFTLO which fulfils the Bisognano—Wichmann property the modular intersection
condition is fulfilled for the algebras of two wedges which have the first— or the second
light ray in common. The condition II is a consequence of Lemma 4.4.5. In particular

the existence of the strong limit is guaranteed by the first condition. If we set (s —
lim A%A;ﬁ) = U then condition II reads JyUJy = U*.

t—too
Using a finite number of pairs fulfilling the condition of modular intersection one is

able to reconstruct the algebras of all non—translated wedges. This program has been taken
up by H.-W. Wiesbrock [Wie97b],[Wie98], where he solved the problem for IR*. Here he
needs three wedges which are localized in such a way that the algebras of every pair fulfils
the condition of — or +modular intersection. Adding one shifted wedge which fulfils the
condition of half-sided modular inclusion, he was able to construct the algebras of all
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wedges (including the translated ones) and a continuous representation of the Poincaré
group which fulfils the spectrum condition.

Taking the intersection of wedge algebras on can construct the algebras for the double
cones. Unfortunately one is not able to conclude that 2 is also cyclic for these algebras
except one starts from a QFTLO.

5. Properties of local algebras

For several applications one wants to know the structure of the local algebras. The
questions of interest are usually the factor property, the type of the algebra, and the action
of symmetry groups. Before entering into the subject we have to collect some results of
the Tomita—Takesaki theory.

5.1) Some mathematical consequences of the modular theory
The first concept is the generalization of the center of a von Neumann algebra.

5.1.1 Definition:

Let M be a von Neumann algebra with cyclic and separating vector Q. Set w(A) =
(Q,AQ), A € M. The centralizer of w consists of all elements Z € M for which

w(ZA)=w(AZ), ¥V AeM

holds.
If Z belongs to the centralizer, then the KMS—condition implies

o'(Z) = Z, teR

and viceversa. In particular the center of M belongs to the centralizer.

It might happen that a von Neumann algebra is too large in order to possess separating
states. In this case one has to generalize the concept of states. They are called weights.

5.1.2 Definition

(a) Let M be a von Neumann algebra. A weight is a mapping
w: Mt — [0, ]

with the properties:

() w(pA) = pw(4), peRT, Ae Mt

with the multiplication rule 0.00 = 0.

(8) w(A+ B) = w(4) +w(B), ABeMt

(b) A weight w is called semi-finite if

N ={A € M;w(A*A) < oo}
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is strongly dense in M.
(c) w is called faithful if A € M™T and w(A) = 0 implies A = 0.
(d) A weight is called normal if for every increasing net A, € M™ there holds

wlim Ay) = limw(Aq).

The set n, is a linear space and by the linear extension of w this becomes a pre-Hilbert
space. Moreover, n,, is a left-ideal so that one gets a representation of M by

7o(B)A) = BA).

If w is a normal, faithful, semi—finite weight, then one can handle the Tomita—Takesaki
theory in almost the same manner as with normal faithful states. (See U. Haagerup
[Hgr75].) The advantage of this concept is the existence of normal, faithful, semi—finite
weights for every von Neumann algebra. We need weights only for the discussion of sym-
metries in section 5.4. Otherwise we use only von Neumann algebras which have normal,
faithful states.

Another important aspect of the Tomita—Takesaki theory is the natural cone associ-
ated with a von Neumann algebra. It is often denoted by P%. Here we will use the notation

HT.
5.1.3 Lemma:

Let M be a von Neumann algebra acting on H with cyclic and separating vector 2. Let
(A, J) be the modular operator and conjugation of (M, ). Then the following sets coincide
and are called the natural cone of (M, ).

(i) Closure of AM*MTQ.

(i1) Closure of A™V/* M'TQ,
(1i7) Closure of {Aj(A)Q; A € M}.

For the proof see [BR79] Prop. 2.5.26. Some of the properties of H* are listed in the
following

5.1.4 Proposition:

Let H' be the natural cone of (M, ). Then holds:

(i) HT is a proper cone, i.e. HT N (—=HT)={0}.

(i1) With H, = {¢p € H; Jp =} one gets H, = HT — HT.

(i17) HT is a self-dual cone in H,, t.e. ¥ € H, and (,0) >0V ¢ € HT implies p € HT.
(iv) For every ¢ € HY and A € M one has Aj(A)p € HT.

(v) AUHT =HT for allt € IR.

For the proof see [BR79] Props. 2.5.26, 2.5.27, 2.5.28. The natural cone has some
universality properties listed in the following
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5.1.5 Theorem:
Let H' be the natural cone of (M,). Then:
(i) To every normal, positive linear functional w on M exists a unique vector v, € HY
with
w(A) = (Yo, Ay), Ae M.

(11) The mapping w <> g, 18 continuous in both directions. The following estimate holds:

[t = oll* < llw = pll < Il — Ll + 2.

(i1i) Assume the vector ¢» € HT is cyclic and separating for M then the natural cones
HY(M,Q) and HT(M, )

coincide.

(tv) Let o € AutM and define
U(Oz)@/)w = ¢(a—1*w)

then by linearity this map can be extended to all of H. This extension s a unitary
operator. The set

{U(a); o € Aut M}

defines a unitary representation of Aut M, the adjoint action of which implements
the automorphisms.

For the proof see [BR79] Thm. 2.5.31, Prop. 2.5.30, Cor. 2.5.32. Another important
result is due to A. Connes [Co74] which says that the algebras M and M’ are uniquely
characterized by the natural cone. First some notations:

5.1.6 Definition:

(i) A face of a cone C is a subcone F C C with a,b € C, a < b in the order of the cone C
and b € F implies a € F.

(ii) The set D(H') := {§ € B(H); e!®HT = H* V¢ € R} is a Lie algebra.

(iii) A map I : D(H') — D(H™T) is called an orientation of H* if it fulfils:

I? = -1, [I161,82) = [61,182] = I[61,82] and I(6*) = —I(6)*. (To be precise, for this
definition one first has to devide D(H™) by its center.)

(iv) Let F be a face of HT, then F~ denotes the face of HT which is perpendicular to F. By
a result of Connes one has closure F' = F~~. Pp denotes the projection onto the Hilbert
subspace generated by F. H7 is called facially homogenious if e/’7 =Pr=)H+ = 4+ t € R
and this for all faces F of H™.

The concept of orientation and homogeneity can also be formulated for arbitrary cones.
The result of Connes is the following:

5.1.7 Theorem:

There 1s a one to one correspondence between von Neumann algebras M acting on H and
selfdual, orientable, and facially homogenious cones of H.
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Von Neumann has classified the factors by three types denoted by ILII, and III. For
a long time there were only very few different type III factors known. Using canonical
anti—commutation relations, R. Powers [Pow67] was able to construct a continuous family
of different type III factors. An attempt to classify these factors were made by Araki
and Woods [AW68]. The question of the classification has finally be settled by A. Connes
[Co73a]. This classification is based on the invariant S which is defined as follows:
5.1.8 Definition:

Let M be a von Neumann algebra and w be a normal weight on M. Let E € M be the
support of w. Then w is faithful on EME. Hence there exists a modular operator A, for
this algebra. One defines:

S(M) = N{spectrum A,;w is a normal, semi — finite weight on M }.

If M is of type III, then there are the following possibilities:

5.1.9 Theorem:

Let M be a type III factor, then for the Connes invariant exist the following possibilities:
(1) S(M)={0,1},

(2) S(M)={0} u{\"sn e Z,0 <\ <1},

(3) S(M)=TR".

If S(M) is {1} then M is not of type III.

5.1.10 Notation:
A factor with S(M) = {0, 1} is called a I1Iop—factor. The factors with the set (2) are called
I1Iy, and those with S(M) = IR™ are named I1I;—factors.

Let M be a von Neumann algebra and w be a normal faithful state on M. Then it

can happen, that for some ¢ € IR the modular transformation ¢!, is inner, i.e. there exists

a unitary U € M with ol (A) = UAU*, A € M. In this case one shows
AL =UJ,UT,. (5.1.1)

If ¢! is inner for one normal faithful state then this is true for every such state.

A. Connes [Co73a] has introduced the invariant T'(M), consisting of all ¢+ € R such
that o' is inner. It is clear that T(M) is a subgroup of IR. For instance an algebra M
is semi—finite iff T(M) = IR. We do not need the full relation between T'(M) and S(M).
We are only interested in the type III; case. The result is the following:

5.1.11 Theorem:

A von Neumann factor is of Type 111 iff T(M) = {0}. This means that all o', t # 0 are

outer automorphisms of M.

In every class I11y, 0 < A < 1 no classification is known except for one algebra. These
are the hyperfinite factors.

100



HJB—Apr./99

5.1.12 Definition:

A factor M is called hyperfinite if there exists an increasing net N, C M of type I algebras
with
M ={UN,}".

The importance of this concept is the following result [Co76], [Hgr87]:
5.1.13 Proposition:

Every of the classes 111y contains exactly one element which s hyperfinite.

5.2) The factor problem

The locality and the spectrum conditions together with the existence of a vacuum-
vector imply that the global algebra is of type I. One finds that the commutant of the
algebra M(Rd) is abelian, and that the projection Ey onto all translational invariant
vectors is an abelian projection in M with central support 1. In this case the center is
pointwise invariant under the translations. This has first been observed by Araki [Ara64].
The properties of the projection Fy is a consequence of the cluster property.

The first proof of the cluster property is due to the author [Bch62]. A systematic study
of this property was started by Doplicher, Kadison, Kastler, and Robinson [DKKR67]
using the notation of asymptotic abelian systems introduced by Doplicher, Kastler, and
Robinson in [DKR66] and independently by Ruelle [Ru66]. This notation has been weakend
by Lanford and Ruelle [LR67] introducing the concept of G-abelian systems. The most
general concept leading to the cluster property has been introduced by Stgrmer [Stg67].
He called it large groups of automorphisms. One important consequence of the cluster
property of the vacuum state is the additivity of the spectrum. The result is due to
Wightman [Wi64].

Next we are looking at the algebra of the wedge. Here the following result is known:

5.2.1 Theorem:

Assume we are dealing with a QFTLO on the vacuum sector. Let M(W) be the algebra of

the wedge domain. Then
Z(M(W)) € Z2(M(RY)),

where Z(M) denotes the center of M.
This result has first been obtained by Driessler [Dri75]. Our demonstration is taken

from [Bch98a]. First we show a result which has its interest of its own, and from which
Thm. 5.2.1 follows easily.
5.2.2 Lemma:

Let M be a von Neumann algebra with cyclic and separating vector Q. Assume U(s) €
Hstr(M)T or U(s) € Hstr(M)~. Then:
a. If we write U(s) = eIt and denote by D(H) the domain of definition for H then

A'D(H) Cc D(H).
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b. If Ey denotes the projection onto the eigenspace to the value 0 of H then Ey commutes
with A,
c. If Fy denotes the projection onto the eigenspace to the value 1 of A, then one has

F < Ep.

Proof: We show the lemma for U(s) € Hstr(M)T. For U(s) € Hstr(M)~ the
arguments are essentially the same.
a. Let ,¢ € D(H) then we obtain from Thm. 2.5.2 (¢, At He) = e 2™ (Hp, Ally)). Since
the left side is continuous in ¢ it follows that Alfy € D(H).
b. Let Hiyp = 0 then we obtain 0 = A'H¢ = He 2™ Al From this we conclude
A'EyH C EyH. Because of the group property of Alf we get AVEyH = EyH.
c. Keep s real and s > 0. From the assumption AdU(s)M C M for s > 0 and from
D(A%) = { XXM, Q € D(X) N D(X*)} we conclude that on D(A%) the relation
AU (s) = U(e™2™5)All can be analytically continued in t as long as —% <SQmt <0 If
we choose t = —ii then we find

A1/4U(3) — e HsAA 5> 0.

Multiplying this equation from both sides with Fy we find FyU(s)Fy, = Fie H°Fy.
Since the right side is positive we obtain

FlU(—S)Fl == (FlU(S)Fl)* == FlU(S)Fl 2 0.

Hence by the spectrum condition and by Schwarz reflection principle the function FyU(s)F}
is bounded and entire analytic which must be constant. This implies F} e~ HsF, = F| which
is only possible for Ey > F}. ]

Next we have to show that the elements in Z(M) commute with the half-sided trans-
lations.

5.2.3 Lemma:
Let U(t) € Hstr(M)T, then

[U(t),Z] =0 VZeZM) and VtelR.

This result can also be found in [Dri75].

Proof: Let Z = Z* € Z(M) and set Z, = AdU(t)Z. For t > 0 the element Z;
belongs to M and for ¢t < 0 to M’. This implies that Z commutes with Z; for all t € IR.
Applying AdU(s) to the commutator we obtain [Z,, Z¢,] = 0. Hence {Z;} generates an
abelian von Neumann algebra invariant under U(t). Since U(t) has a positive generator it

follows that Ad U(t) is inner in {Z;}” [Bch66]. This implies Z;, = Z. D

Proof of Thm.5.2.1: Let W = W ({y,(3), then the translations along the ¢{;— and (,—
direction belong to Hstr(M)T and Hstr(M)~ respectively. Let Ey be the projection onto
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the vectors invariant under both of these translations, then Lemma 5.2.2 implies F} < FEj.
The translation group of the characteristic two—plane contains the time translations. This
implies that Fy is the projection onto vectors invariant under all translations. Since € is

also separating for M(W) Vv Z(M(Rd)) we conclude that the centralizer of M(W) is a
subset of the global center. O

For the algebras of the double cones no similar result can be obtained. Even in the
case where M(Rd) is a factor, one can easily construct examples where M (D) has a non—
trivial center. (See 5.5.(II).) Up to now there are no conditions known, implying, that

M(D) is a factor.

5.3) The type question

From the investigations of Kadison [Ka63] and from Guenin and Misra [GM63] it is
known that the local algebras can not be of finite type. In 1967 Borchers [Bch67] showed
the following result:

5.3.1 Theorem:

(1) Let O1 C Oy such that there exists O3 C (O3 N OY). Assume E is a projection in
M(Oy), then E is equivalent to its central support in M(O3), mod M(O3).

(2) If O1 + x C Oz for x in some open neighbourhood of IR?, then the central support of E
in M(O3) belongs to the center of the global algebra.

there is not known more under the general assumptions. If one wants to obtain better
results, one has to impose additional requirements.

The situation is much better for the algebra of the wedge. This is due to the existence
of half-sided translations. The first result in this direction is due to Driessler [Dri75]. But
he uses the additional assumption that the spectrum has a mass gap. Here we follow the
method of Longo [Lo79], with a slight variation, applying Thm. 5.1.11. There exists also
a proof which uses the invariant S(M) and Prop. 5.1.9. (See [Bch98al.)

5.3.2 Theorem:

In a QFTLO on the vacuum Hilbert space with one vacuum vector the algebra M(W) s
of type I11.

Proof: Since the center of M (W) is contained in the center of the global algebra, the
statement is true in case that it is true when M(Rd), and hence by Thm. 5.2.1 M(W)isa
factor. We will use Thm. 5.1.11 for the proof of the type question. Assume o' is inner for
one fixed t # 0. We want to leed this to a contradiction. In that case there exists a unitary
Ue M(W) with of(A) = UAU*, A € M(W). From this we obtain Ad {c"(U*)U}A = A.
This implies o/ (U*)U = A with |\ = 1. But o/(U*) = UU*U* = AU* implies \ = 1.
Hence U* and U belong to the centralizer of M(W). (See Def. 5.1.1.) From Lemma 5.2.2
(c) we get UQL = pu€, || = 1, and since Q is separating we find U = 1 and by Eq. (5.1.1)
Al = 1. This contradicts the existence of half-sided translations. (See Thm. 2.5.2.) @
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This result has used only the existence of half-sided translations. Therefore, the
theorem remains true for arbitrary algebras with half-sided translation. In conformal field
theory these are the algebra of the forward light—cone and the algebras of the double cones.

The determination of the type of local algebras M(D) is burdened with some diffi-
culties. It is known from examples, as the free massive field, that local algebras fulfil the
split property [DL84] if specific conditions are fulfilled. This property is the following: Let
D; C D be such that Dy + a2 C D for x in some open neighbourhood of the origin. In that
case one can find a type I algebra A" with M(D;) C N C M(D). This implies that one
cannot expect any statement about the type from purely local considerations. Some more
information about the structure of M(D) has to be used.

This difficulty has been circumvented by Fredenhagen [Fre85] by observing that there
exists no intermediate type I algebra if the domains D7 and D have boundary points in
common. Therefore, he puts the double cone D into the corner of the wedge and tries to
compare the Connes invariant S of M(D) and M(W). To do this he needs the assumption
that the local algebras are generated by Wightman fields wich have the Haag—Narnhofer—
Stein property [HNS84].

Let us first explain this concept. Let ®(x) be a Wightman field, then we say for ®(x)
exists a scaling limit if there exists a non—negative function N(A) defined for A > 0 such
that for all n

N, 2(Aay)...2(\xy,)Q)

converges for A — 0 to some non—trivial Wightman functional. With this concept we
introduce the following

5.3.3 Requirement:

There exists a Wightman field ®(x) such that:

(i) For every f € D with supp. f € D the operator ®(f) is affiliated with M (D).

(ii) @(«) fulfils the Haag—Narnhofer—Stein scaling property.

(iii) The theory fulfils the Bisognano—Wichmann property. (If the set of Wightman fields,
which fulfil (i), generate M(D) then (iii) is implied by the result of Bisognano and Wich-
mann Thm. 3.1.5.)

With this requirement Fredenhagen has shown the following result:

5.3.4 Theorem:

We are dealing with a QFTLO wn the vacuum sector, such that the global algebra is a
factor, and which fulfils the Requirement 5.3.3. Let W be a wedge such that zero belongs
to its edge. Let D C W be a double cone such that zero belongs to the boundary of D. Let
N be a von Neumann algebra with

M(D) C N C M(W).

Then N is of type III.

For the proof of this result we need some preparations. The first is concerned with
the characterization of points in the spectrum of the modular operator. This will be given
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without proof. The second deals with consequences of the Haag—Narnhofer—Stein scaling
property.
5.3.5 Proposition:

Let M be a von Neumann algebra with cyclic and separating vector Q2. Let A,J be the
modular operator and conjugation of the pair (M, Q) and let j(A) stand for JAJ. Then
the following statements are equivalent:

1. A € spec A.
2. For every € > 0 exists an operator A € M with ||AQ|| > 1 and

IONV2A = A DQY + [[(A* = A25(A)Q| <e.
3. For every € > 0 exists an operator A € M with ||AQ| > 1, such that
(Q, ABQ) — \(Q, BAQ)| < e{(Q, B*BQ) 4+ \(Q, BB*Q)}'/?
holds for every B € M.
For the first equivalence see [Ped79] Lemma 8.15.8, and for the second [Fre85] Prop.

4.1. The next result is concerned wit consequences of the Haag—Narnhofer—Stein scaling
property.
5.3.6 Lemma:

Make the assumptions of Thm. 5.3.4 and let J be the modular conjugation of M(W).
Then for every A > 0 and € > 0 exists a uniformly bounded sequence A, € M(%D) such
that

A > 1 and |[[(j(An) — /\1/2An)QH <e (5.3.1)

holds.

Proof: Let us choose coordinates in such a way that the characteristic two—plane of
W is the (0,1)-plane and that the center of D is the point (0,1,0,...,0) =: 2. Then one
finds
Ad A ®(prg) = ®(—psinh 27, p cosh 27,0, ...).

We set

®,(t) = N(p)®(—psinh27t, pcosh 2xt, 0, ...).
It is known, that it is sufficient to integrate ®(x) only in the time coordinate in order to
obtain a well defined operator [Bch64]. Hence it is sufficient to test ®,(¢) with functions
f(t) € D. Moreover we have ®,(f) n M(p'D) for supp f(t) C {t;|t| < %ln?%}. This

implies for p > 0:
1 ) 1
¢ (f)nM(=D), if supp f(t) C{E]t] < 5—In2(1+p)}.

n(1+p)
Choose p and f(t) with supp f C {#; |[t| < 5= In2(1 + p)} (depending on €) such that the
Fourier transform of f(t) is centered around log A. More precisely, since ®,(x) converges
for p — 0 we can choose p and f such that
€ 1 1
18 2 (HQII21+ 2, and [[(Ag —A2)8_,_(£)Q <

n(1l+p) n(l+p)

(5.3.2)

Lol o
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for sufficiently large n. Now we set

Ap={l+cd_._(f)d

n(1+p)

(F)3e_o(f)

n(1+p)

1
n(1+p)

with a constant ¢ which we have to determine. (Here ® means the closure of the tested

operator.) Writing ® for ® - (f) we obtain the estimate

CZ((I)(I)*)Z

A, —®)Q|* = (Q,¢* ——— L —
I(an - 2)* = (2.8 T

Q)
1
= 2(Q (PP P ——_B(PD)Q (5.3.3)
< Jj@* a0’
4

The last estimate is obtained by inserting ®* = U|®*| and observing that the unitary U
drops out in the estimate of the norm. From this we obtain

Ve o
1AW (An = @)1 (A — )| = [|(An — )| < 5 1272

Since ® 1 (x) converges for n — oo we can choose ¢ such that % |@*@Q| < £ uniformly

n(l+p)

in n > ng. Combining Eqs. (5.3.2) and (5.3.3) with this estimate we obtain the lemma. o

Proof of Thm 5.3.4: For the proof we make use of the fact, that the algebra of a
point consists only of multiples of the identity. (See e.g. [Bch96] Thm IV.6.3.) Since the
sequence A, is bounded in norm and since A, C M(%D) it follows that every weak limit

point of A Ay, ((A%) — N4, )" AS) — AV AL, (4% — \V2j(A)* (AL — A1/2j(A,)
is a multiple of the identity. This implies that for ¢» € ‘H and sufficient large n one has

[Antll <1 =€, (AL = MN2AD0| <6 |[(AL = MN2(An)0]| <e
From this we obtain for B € A the estimate

(4, (AnB = BAn)w) = (A}, = MV2j(An)), BY) + M2 ((An)e, B)
+AVHBR Y, ((AL) = A2 AR)e) = NVH(BT, (A7)
= {l[BYll + NI B Y| < eV2{(¢, B*BY) + (v, BB )}/,
Hence every A > 0 belongs to S(N). Since S(N) is closed it follows that S(A') is the

closed positive real axis. This implies that the central decomposition of N contains only
factors of type III;. ]

More about the structure of the local algebras can be said, if in addition, one makes
more assumptions, in particular the nuclearity condition introduced by Buchholz and Wich-

mann [BW86].
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First we must explain this concept. Let H be the generator of the time translation
and {2 the vacuum vector. The map ©g : M — H defined by

Os(A) = e PHAQ
is called nuclear if one can write it

O5(4) =D p(A)bn, @M, M (5.3.4)

with 32 flon[[[¢n]] < oc.

The expression

N(©3) = inf{y_enllllnll}

where the infimum is taken over all possible representations Eq. (5.3.4). Buchholz and
Wichmann suggested the nuclearity condition by comparing the situation in a bounded
region with that of a thermodynamical system in a box. If one does so, one obtains some
suggestion about the behaviour of the norm N(0O3) as function of 3, the dimension of the
Minkowski space and the diameter of the double cone D, when O is applied to M(D).
In the coming investigation we only need the behaviour in . This we formulate as an
assumption.

5.3.7 Condition:

We say a QFTLO fulfils the Buchholz—Wichmann property if the map M(D) — H defined
by
Os(A) =e PHAQ, A c M(D)

is nuclear and the nuclear norm fulfils the estimate
N(©4) < Ml 3",

where M, (3p,n are constants which may depend on the dimension of the space and the
diameter of the double cone D.
With help of this condition Buchholz, D’Antoni and Fredenhagen [BDF87] showed

the following result:

5.3.8 Theorem:

Assume a QFTLO fulfils the Buchholz—Wichmann property, Condition 5.3.7. Let D1 C D
such that the closure of Dy s contained in the interior of D. Then there exists a type I
factor P with

M(Dy) CP C M(D).

For the proof of this theorem we refer to the orginal paper [BDF87]. We want to
combine this result with Thm. 5.3.4 and obtain:
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5.3.9 Theorem:

Assume we are dealing with a QFTLO wn the vacuum sector. Assume that the theory fulfils
the Haag—Narnhofer—Stein assumption, Requirement 5.3.3, and the Buchholz—Wichmann
property, Condition 3.5.7. Assume in addition that M(D) is continuous from inside or

from outside. (The first statement means M(D) = {UM(D;)}” with closure D; C interior
Dit1 and UD; = D.) Then every local algebra is isomorphic to:

M(D) = REZ.

where R is the unique hyperfinite type I11; factor and Z is the center of M(D).

Proof: From Thm. 5.3.8 we know that M(D) can be approximated from inside (or
outside) by type I factors. Hence M(D) is hyperfinite. Since in the central decomposition
of a hyperfinite von Neumann algebra there appear only hyperfinite factors, it follows
that M(D) can be expressed as an integral M(D) = [du(z)R(z) of hyperfinite III;
factors. Because of the uniqueness of this factor, Prop. 5.1.13, we obtain the statement
of the theorem. (The integral decomposition causes no problem, since M(D) is countably
decomposable.) O

5.4) On the implementation of symmetry groups

Assume we are describing a physical theory in terms of a C*-algebra A and a symmetry
group G, i.e. we have a representation of G by automorphisms of A

a: G— Aut (A).

This situation is usually called a C*-dynamical system and denoted by the triple {A, G, a}.
For applications it is of interest to characterize those representations 7 of A, for which
there exists in H, a continuous unitary representation U(g) of the symmetry group which
implements the automorphism:

Ulg)m(z)U"(g) = m(agx). (5.4.1)

Let a4 act strongly continuous, which means that the function ¢ — a,4(A4) is a continuous
function on G with values in the normed space A. If in addition the group is locally
compact, then one can integrate over the group. This led Doplicher, Kastler and Robinson
[DKR66] to introduce the C*-completion of the algebra of continuous £! functions on G
with values in A. They called it the covariance algebra. Nowadays it is called the crossed
product of A with GG. The importance of the covariance algebra stems from the fact that
there is a one to one correspondence of covariant representations of A and representations
of the covariance algebra. For details see the book of G.K.Pedersen [Ped79].

If one is dealing with a C*-dynamical system and a representation {m, H} of A, then
it is usually hard to decide whether or not this representation can be extended to a repre-
sentation of the covariance algebra. The difficulties are twofold: If 7(.A) has a center then
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the multiplicity problem may appear. Moreover, by passing to the adjoint representation
of the group, one has to be aware of central extensions of the group. Both problems can
be circumvented by passing to quasi—equivalent representations. The reason for the first
problem is clear. The reason for the second problem is the following: If U(g) is a ray—
representation of G on H, then there exists a second representation U(g) which is also a
ray-representation, but with the complex conjugate phase—factor. Therefore U(g) @ U(g)
is a representation of the group on H@H. Replacing # by # @ 1 we obtain a covariant
representation. This leads to the following notation:

5.4.1 Definition:

Let {A, G, a} be a C*-dynamical system and {7, H} be a representation of A then {#, H}
is called quasi-covariant, if there exists a covariant representation {my,U, H;} such that
{m,H} and {71, H1} are quasi-equivalent.

Quasi—covariant representations are much easier to characterize than covariant repre-
sentations. The first result was obtained in [Bch69] which was based on the assumptions
of strong continuity and the locally compactness of the group. Some time later Borchers
[Bch83] observed, that it is neither necessary to assume that o, acts strongly continuous
nor that G is locally compact. To prove this the natural cone will be used, in particular

Thm. 5.1.5.(iv).

5.4.2 Theorem:

Let {A G,a} be a C*-dynamical system. Let m be a representation of A. Then this
representation 1s quasi—covariant iff:

() The dual action o maps the folium of ©(A) onto itself.

(B) aj acts strongly continuous on the folium of =. This means the function
g — ay(w)

18 a continuous function on G with values in the folium of w, furnished with the norm
topology.

The folium of a representation is the set of states, which extend to normal states of 7(.A)”.

Proof: Condition (o) is clearly necessary. If U(g) is a continuous representation, then

one has for ¢ € ‘H

(4, U(g) AU (9)1) = (¢, Ulgo) AU (90))| = [((U"(9) — U~ (g0))¢, AU (9)¢)
+ (U (90)¢, (U™ (g) = U (g90))) < 2[|Al[ AT (g) = U™ (g90))2]l-

Since U(g) is strongly continuous it follows that o} acts strongly continuous on the vector
states. Since the foliun consists of the norm closure of the linear span of the vector states,
we see that o acts strongly on the folium. If conversely o acts strongly continuous on the
folium, then we use the standard representation of 7(A)” and we obtain by Thm. 5.1.5.(iv)
a representation of the group which is strongly continuous because of Thm. 5.1.5.(ii). D

This result suggests to investigate closer that part of A* on which o} acts strongly
continuous. We introduce:
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5.4.3 Definition:

By A’ we denote the set of ¢ € A*, (A* denotes the topological dual of A), such that for
every € > 0 exists a neighbourhood U of the identity of G such that

[poay —¢f <e

holds for g € U.

Some properties of this set are described in the following

5.4.4 Proposition:

Let { A, G, a} be a C*-dynamical system and assume G(7) is a topological group, then the
space A* has the following properties:

(i) AY is a linear norm—closed space.
(i) A% 1s invariant under the action of the group i.e. ¢ € A% implies ¢ o ay € A for
every g € G.
(iii) With ¢ € A’ one finds also that ¢* and |@| belong to AX. A is generated by its

C
positive elements.

Since this result has no connection with the Tomita—Takesaki theory, we refer for the
proof to the original paper [Bch83].

Recall that for every positive linear functional w € A% exists a vector &, € HT, (H™T
denotes the natural cone of A**) with w(A) = (£, A&,). Next we introduce some concepts:

5.4.5 Notation:

Let {A,G,a} be a C*-dynamical system with G being a topological group. Let H be the
Hilbert-space of the standard representation of A** and let HT be the natural cone associ-
ated with this representation then we denote

(1) HE = {dujw € (AD)T}

(ii) H. = smallest sub-Hilbert-space of H containing HT.

(iii) Denote the canonical involution associated with the standard representation of A** by

J.
(iv) The algebra A** will usually be denoted by M. Then A* and M, are the same space.

About this set we know:

5.4.6 Proposition:
With the assumptions and notations of 5.4.5 one obtains

(i) HT is a closed cone.
(i1) The space H. is invariant under the canonical involution J.
(iii) If H" denotes the vectors v € H, with Ji = then H} is a self-dual cone in H' and
H. 1s algebraically generated by HY .
(iv) If P. denotes the projection onto H. then for every v € HT one has Puyp € HY.
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Proof: (i) Let &;,&, € HI then it follows from Prop. 5.4.4 that the functional
A — (&, AL) belongs to M, .. Hence the functional generated by & + & is in M, .
which implies that HT is a cone.
(ii) This follows from the fact that H is pointwise invariant under the involution J.
(iii) Assume &;,1m; € HE, ¢ = 0,..3. then the functional A — <E(i)k§k,AE(i)lm>
belongs to M, .. Since M, . is norm closed it follows that A — (£, An) € M, . for all
¢,n € H.. This implies that HT N H. is a closed cone. Now let n € H. with Jn =, then
(n,.n) € ./\/lj;’c and hence exists a vector £ € HF with (n,.n) = (£,.£) and consequently
a partial isometry W' € M’ with n = W’'{. From Jn = n and J& = £ it follows with
W = JW'J that also 5 = W¢ holds. Without loss of generality we may assume that

W*W is the support of £&. Now from W¢ = JW.JE we obtain W26 = WJIWJE € HT.
This implies for A € M

(W2, AW2E) = (WIWJE AW IW JE) = (WE AW IW*WE)
= (WEAWE) = (JWJEATWIE) = (€, AL).

By the uniqueness of the representing vectors we obtain W?2¢ = (JW.J)*¢ = £ From
the minimality of W we obtain that W? is the support projection of ¢. This implies
W = W*. Since (n,.£) = (W¢E,.£) it follows that (n,.£) is selfadjoint and this formula
gives the polar decomposition. From this we see {t = WT¢ e HE and £~ = W& € HE.
Hence HI — HT = H!. Finally &1,& € HF implies (&1,&2) > 0 since HF C HT. If n e H.
then from the previous calculation n = & — & with &,& € HY and (&1,&) = 0. Hence

(n,&) > 0 for all £ € HF implies (,£7) = —[|¢7||* > 0. From this we obtain n € H.
(iv) Let £ € H then we obtain for all (. € HI the estimate (P.£,&.) = (£,&.) > 0. This
implies P.{ € H}. O

Next we want to look at the facial structure of HF. In the following investigations we
will use only the properties (1)...(4) of HT, so that the results can be used for arbitrary

c
sub-cones of H* with these properties. For these investigations we need some

5.4.7 Notations

Let f be a face of H, then we denote by f¢ the complementary face in HJ

o, 1t 1s:

fr={¢e H; ¢~ [}
By f~ we denote the complementary face of f in H™:
fo={eeH 6~ 1}

We remark that the map f — f¢ is only defined for faces of H}, while f — f~ is also
defined for faces of H™.

For every face f of H} we associate two faces of HT, namely, F*(f) = (f¢)~ and
P(f) = ()
Note that f¢, f=, F~(f), and FT(f) are closed faces. If possible we will denote the faces
of HT by small and those of HT by capital letters.
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The elementary properties of these faces are described in the following

5.4.8 Lemma
For any face f of H} we obtain:

(a) fCF(f) CF*(f).

(b) ¢ e Ht then P.£ € (f°)°iff £ € FY(f)

(c) P.F(f) = PF*(f) = (f)"

(d) ( )T =F(f°) and (F~ ()™ = F*(f°).

(e) The set {n € HT; such that there exists £ € f with n < ¢} is dense in F~(f).
(f) f is dense in (f°)°.

Proof: (a) Note first that the operations f — f¢ and f — f~ reverse the order of
inclusion. Moreover, the relation f C (f°)° follows directly from the definition. From
¢ C f~ we conclude therefore, f C (f7)~ C (f°)~, which is the first statement by the
definition of F~ and FT.

(b) We know that ¢ € H* implies P.& € HF. Hence P.£ € (f¢)° iff (P.£,n) = 0 for all
n € f© C HF. Consequently (P.£,n) = (£,1) = 0 and therefore ¢ € (f¢)” = FT(f) and
vice versa.

(¢) The last result implies P.FT(f) = (f¢)¢. On the other hand f¢ C f~ and P.f~ = f¢,
since P.f = f. Therefore, n € (f°)° and £ € f~ implies (n,¢) = (n, P:{) = 0, from which
we conclude n € F~(f). Hence (f¢)¢ C F~(f) C FT(f) which yields (c).

(d) We have by definition F*(f) = (f°)~ and hence (F*(f))” = ((fc)_>_ = F~(f°).

Inserting now f¢ for f we obtain (F1(f°))” = F~((f°)¢). Now remark, if £ € f~ then

(&,n) = 0 for all n € f and hence P.£ € f°. But this 1mp1ies for n € (f°)° the equation

(&,n) = (P:£,n) = 0 and hence f~ (( o) c) or F~ = F7((f°)°). This leads to
_|_

By (PR on (PN = (FA Y e (1) simee (F(F)) i o elosed
face of HT.

(e) Let F be the face {n € HT;n < £ for some £ € f}. Then by the above mentioned result
of A.Connes (5.1.6.(iv)) one has F' = (F~)~. Let n € f—, then (1,£) = 0 for all £ € f
and hence for all £ € F, since the scalar product preserves order. This shows f= C F~.
On the other hand by definition of F' we have f C F' and hence F~ = f~. But this yields
F=(F) = ()~ = F(f)

(f) By the proof of (¢) we know ()¢ C F~(f). Hence by (e) we find for a given £ € (f°)°
and € > 0 elements n € F7(f) and ¢ € f such that n < ( and [[{ — ]| < e. Now
P.np < P.£ = (andhence P.n € f. Onthe other hand ||{—P.n|| = [|P.(§—n)|| < |lE—n|| < e
This shows that f is dense in (f°)°. O

In order to formulate the next results we need some more

5.4.9 Notations:

(a) Let F be a face in HT then Eo( )" F is a linear sub-space of H. The projection onto
its closure will be denoted by Pr. (See 5.1.6.(iv).)

(b) If we perform the same construction in H. with a face f then we will denote the
corresponding projection by py.

112



HJB—Apr./99

5.4.10 Remark: If I is a face of H' then Py is of the form Pr = EJEJ, where E is
a projection in M. (See e.g. [Co74].) In particular, PrH is the standard representation-
space for the algebra M pg. In particular, F is the natural cone of M g. This implies that
Eg(i)"ﬁ’ is closed. At the moment we do not know whether or not Eg(l)"f is a closed
sub-space of H.. That it is, indeed, closed is a consequence of the following

5.4.11 Lemma:

For any face f of H} follows:

(a) [Pp+(p), Pel = [Pr-(p), Pe] = 0.
(b) py = PePp-(5) = PePp+(y)-
(¢) [Pp+(pys Pr-(p] = 0.

(d) Pr-() = Pr+(5)Pr- g1y

Proof: (a) From Lemma 5.4.8 we know P.Pp+ pHT = fc Pp+(pHt. Hence we

get PePp+pH = P ()"F*(f) = >())"f C Pp+(pyH. This implies P.Pp+pH =
Ppy (5P Pp+(syH and hence Pp+t () PePrp+(5) = PePp+(y), which shows that the two pro-
jections commute. The same argument holds for Pp— 4.

(b) Due to the commuting of P, and Pp- sy the product is a projection. Since P.F~(fYHT
= f we learn that P.Pp-(pyH = > (1)" f is closed and equal to pyH. The same argument
is again true for Pp+(y).

(¢) First note f¢ C HF, and hence FT(f) D HI'~. Let now ¢ € HT then by Remark
5.4.10 one has Pp_ 4+ € F~(H}) and Prt(p)Pp- (y+)€ € Ft(f). Take n € (HI)~
then both equations lead to (777PF+(f)PF—(Hj)§) = (n,PF_(Hj.)f) = 0, hence we have
Prt(p)Pp- (y+)€ € F_(Hg') for every £ € HT. Since such vectors generate H the equation
Pp_ ity Pp-u+y = Pr- () follows, which is equivalent to (c).

(d) Since for £ € HT the vector PF—(Hj)g belongs to F~(H}) there exist for every
e > 0 vectors n € F~(H}) and ( € HF with n < ( and HPF_(Hj.)f —n| < e So
we obtain "PFJF(f)PF—(Hj)f — Pripyn|| € € and Ppypn < Prep)( € f. This shows
PF+(f)PF_(H;|-)H+ C F~(f). Since the inverse inclusion F~(f) C F~(HI) holds both

sides coincide. ]
As a consequence of the last lemma we obtain:

5.4.12 Corollary:
HT is a homogenious cone in the sense of A.Connes [Co74]. (See also Def. 5.1.6.)

Proof: If f is any face of HI then we have to verify the equation
exp{t(pr — pe )Y HT =M
for every t €R. Since H™ is a homogenious cone it follows for every face I of H*
exp{t(Pp — Pp-)}HT =HT.
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Choosing F = F*(f) then by Lemma 5.4.8 (FT(f))” = F~(f°). Multiplying the above

equation by P. we obtain

Hj— = PCH+ = Pc exp{t(PF+(f) - PF—(fc))}H+
= exp{t(ps — pye )} PoHT = exp{t(ps — pse) Y HT.

This gives the desired result. O

The aim is to show that the cone H} is the natural cone of a von Neuman algebra.
First we introduce some candidates.
5.4.13 Definition:
(1) We define
M ={A € M;[A, P] =0}

(2) Let Aw(.) :=w(A.) and wA(.) := w(.A). Then we put
MO ={Ae M;Aw e M, ., wA € M, Ywe M, .}

(3) Let E. be the smallest projection in M with E.P. = P,.

All these objects are invariant under « . First note that both sets are von Neumann
algebras. The two algebras are not different. We have
5.4.14 Lemma:
(1) The two algebras M and M2, coincide.

(2) Every element in M2 commutes with E..

Proof: (1) If A € MY then it commutes with P. which implies that with ¢ € H, also
A€ belongs to H., hence M% c MO . Conversely let U = €' ¢ M% be unitary then
UJUJH} = H} which implies that UJUJ commutes with P.. Since P, and J commute
we obtain [P., H] + J[P., H]J = 0. Replacing H by iH we see that H belongs to M?.
Since the von Neumann algebra is generated by its unitaries follows M% c M7.
(2) A € MY implies that it maps the Hilbert space H, into itself. Consequently it maps
also closure{ M'"H.} = E.H into itself. [

For the coming investigation we introduce with A. Connes [Co74] the sets

5.4.15 Definition:

We denote by

(a) D(HT) = {6 € B(H);e""Ht Cc HT Vtc R}

(b) D(HY) = {6 € B(H.);e"®H. C H. VteR}

where B(H) denotes the set of all bounded linear operators on H.

For facially homogenious self-dual cones the following characterization of D(H*) has
been given by A.Connes [Co74]:

(a) Let HT be a facially homogenious self-dual cone and § € B(H) then § € D(H™T) iff
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(i) J6=46J and
(ii) For &n € HT with ((,n) = 0 it follows (8¢,1) = 0.
(b) If H is the natural cone of M then § € D(HT) iff 6 = « + JaJ for a suitable x € M.

We start the investigation from Remark 5.4.10 showing that to every face f C HI
is associated a minimal face F~(f) and hence a projection E(f) € M with P(F~(f)) =
E(f)JE(f)J. First we want to investigate these special projections:

5.4.16 Lemma:

Let f be a closed face of HF and let F~(f) be the minimal closed face of H' containing
f. Let E(f) € M be the unique projection such that P(F~(f)) = E(f)JE(f)J holds then
E(f)e M.:= MYE..

Proof: We know from Lemma 5.4.11 that P(F~(f)) = E(f)JE(f)J commutes with
P.. Then ép- commutes with P.. On the other hand, we know that ép- is of the form
op- = 1/2(E(f) + JE(f)J).

e!/2E) Jet/2EW) T maps HT onto H}, consequently for w € M:c we have
el 2B Jet/2E(D) et 2B Jet/2E(N) ] ¢ M. The left side of this expression has some
analyticity property namely the first factors are entire analytic in t and the last are entire
anti—analytic. Therefore the inclusion also holds for complex t. (The second ¢ has to be
replaced by t.) But this can only be true if et/ 2B et 2EW) ¢ ./\/lj;c. Hence e!/2E() ¢
M2 and by differentiation E(f) € MY,. But since E(f) is smaller than E. we obtain

E(f) e M.. O

5.4.17 Definition:

We put
D(HT)={§ € D(HT) with§ = A+ JAJ, Ac M.}

Using the last result we obtain:

5.4.18 Proposition:
(1) For every 6 € D(H™) one has wo(8) € D(H}) with

770(5) = PC(SPC

where P. denotes the projection onto H..
(2) If we denote by 7. the restriction of mg to D.(HT) then w. defines a bijection between
the self-adjoint parts of D.(HT) and D(HT).

Proof: (1) Since P. and § both commute with J, also P.0P. commutes with .J.
Assume next &, € HF with (£,1) = 0 then follows from (£, P.6P.n) = (£,0n) = 0 that
P.5P, belongs to D(HT).

(2) The spaces D(H*) and D(H}) are both invariant under involution and weakly closed.
Therefore, one can pass to the self-adjoint and positive part. The sets DSG(H"F)T and

DSG(H;")T are both weakly compact and convex. The extremal elements are of the form
1 _
5F:§(1H—|—P(F)—P(F )
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or

5 = 3(1n. +p(f) ~ p(f))

respectively. Bellissard and Iochum [BI79] have shown that for every facially homogenious
self-dual cone H* the elements in Dy, (HT) permit an integral representation
+1I81l
d= / AdSp(x)-
—llall
This holds in particular for our cone H}. Since we know that every &y is of the form
To(dp(f)) With dpcp) = %(1}[ + P(FT(f)) — P(F~(f%))) we see that every self-adjoint

element in D(HT) is of the form ().
Moreover, we know by Lemma 5.4.15

P(FY(f)) = (E(f) + 1 - E)J(BE(f) +1— E)J
P(E™(f°))) = E(f*)JE(f)J

which implies §p— () € D(HT). Consequently . is surjective.

Since 7, is the multiplication by the projector P, one has ||7.d| < |[d]]. On the other
hand, the carrier of P. in M, is 1. Therefore the reconstruction of ¢ from 7.4 by means of
the integral representation shows that (for self-adjoint) § and 7.6 have the same spectrum.
This shows ||0|| = ||7.d|| and hence ker 7. = 0. Consequently 7. is an isomorphism. 0

Combining all results we obtain:

5.4.19 Theorem:

e cone 18 facial homogenious and oriented and s erefore e natural cone
1) Th HE [ homog d ted and 1is, th . the natural
of a von Neumann-algebra N..
e von Neumann-algebra N, 1s 1somorphic to the sub-von Neumann-algebra M, C
2) Th N lgebra N, phic to th b N lgebra M
Mg, where
«) E. 1s the smallest projection in which 1s larger than the support projections o
E th llest project M which 1s larger than the support project
all states belonging to M, ..
. 18 the set of operators in Mg which are 11 and left multipliers o r.cr
M th t perat Mg, which ght and left [tipl M.,
(v) The automorphisms a4 are automorphisms of M..

(3) M. . 1s the pre-dual of M..

Proof: We know from Proposition 5.4.17 that the self-adjoint elements of D.(H™)
and D(HT) coincide. Therefore, we have to look only at the skew-symmetric elements in
D(HLF). Let § = —6* € D(HT), then e defines a unitary group. Set a(d;) = e?®§ e
for §F = 61 € D(HT). Since §; = A+ JAJ with A = A* € M, we know that we can write
ay(01) = &(A) + Ja(A)J, where &4 defines a linear mapping of (M.); into itself. By
linear extension we obtain a linear mapping of M, onto itself. Since this mapping is given
by a unitary group it must be an automorphism. Using now the theorem of Kadison [Ka66]
and Sakai [Sa66] we obtain by standard arguments that § belongs to M. This shows that
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the map 7., defined in Proposition 5.4.17, is a bijection between D.(H*1) and D(H]I).
Therefore, H} is oriented by the orientation induced by M,.. The isomorphism property
of 7. shows the second statement of the theorem. The statement (v) is a consequence
of the invariance of M, .. The third statement is due to the fact that HI generates all
functionals in M, . and that Ht is the natural cone of M.. O

The construction of the algebra M. is taken from [Bch93a).

5.5) Remarks, additions and problems

(I) Since physical observables should be real, i.e. represented by selfadjoint operators, some
physicists like to start with Jordan algebras instead of C*— or von Neumann algebras. In
this connection it is worthwhile to mention that Connes’ theory of the equivalence of
von Neumann algebras with cones, fulfilling some properties, extends to certain Jordan
algebras, which are the analogue of von Neumann algebras. This has been worked out by

B. Iochum [Io83] in his thesis.

(IT) It is easy to construct examples of QFTLO, where M(D) is not a factor. Let
{M(O),H,Rd+1} be a QFTLO on the (d+1)-dimensional Minkowski space. Define a
theory on the d-dimensional space as follows. Let D be a double cone in IRY and D its
extension to R, Let K(D) be the cylindrical set in IR*TL. ie. (29, ..., 2471 ¢ D
and z? arbitrary. Then D’ N K(ﬁ) contains interior points. Choose an abelian algebra
A(D) c N(D' N K(D)) and define M(D) = M(D) V A(D). This algebra has at least A
as center. It is clear that one can choose A(D) in an IR? invariant manner. Notice that
we obtain for the wedge

M(W) = V{M(D),D c W}
because of the double cone theorem 1.4.4.
Problem: Do there exist conditions implying that M(D) is a factorD’

(ITI) Also for the algebras of spacelike cones one knows their type. Driessler [Dri77] showed
that the algebra of a spacelike cone M(C') is of type III. Borchers and Wollenberg [BW91]

showed the following result:

5.5.1 Theorem:

Let C be a spacelike cone and e be a direction inside C. Let W be a wedge which s invariant

in the e~direction. Then M(C NW) s of type I11;.

Notice if C' is a cone which is causally stable, i.e. ' = C” then exists a larger cone
C’ O C such that C = C’' N W. Therefore, the algebras of such cones are of type I11;.

(IV) If one deals with special assumptions then the result of section 5.4 can sometimes be
strengthened. If the group is the translation group of IR? and one is interested in those
representations where the spectrum of U(a) is contained in some proper cone C then one
obtains a stronger result. But first we need some notation.

117



HJB—Apr./99

5.5.2 Definition:

Let {A, R?, a} be a C*~dynamical system and C' C IR? be a closed, convex, proper cone
with interior points. Let €' denote the dual cone of C'. Then we denote by

(1) A(C) the set of elements ¢ € A* with the properties:
(o) a = @(xa.y) is a continuous function on RY, z,yc A
(8) ¢(xagy) is the boundary value of an analytic function W(z) holomorphic in the

tube )
T(C) = {z € €%, Im =z € interior ofC'}.

(7) There exists a constant m such that
W () < llelllle]llylle™ = =1

holds for z € T(C').
(&) ¢* fulfils the same conditions as ¢.

(2) A*(C) is the norm—closure of Af(C').
With this notation one obtains:

5.5.3 Theorem:

Let {A, IRd,oz} be a C*-dynamical system and C C IR be a closed, convez, proper cone
with interior points. Then there exists a projection E(C) in the center of A** with

(1) ¢ € A*(C) iff there holds
e(E(C)A) = p(A), VAeA

(2) Let {H,n} be a representation of A. Then one can find a continuous unitary repre-
sentation V(a) acting on H, which implements o, with spectrum V(a) C C if and
only if every vector state wy belongs to A*(C).

(3) The representation V(a) can be chosen to be in w(A)”.

For details see [Bch96].

(V) Part 5.4 has some interest in connection with broken symmetries. If {A,G,a} is a
C*—dynamical system with G a topological group, then one is not only interested in rep-
resentations where the symmetry is implemented by a continuous unitary representation
of the group G, but also in representations with broken symmetries. By this we mean rep-
resentations where the symmetry is no longer exact, but where there is enough symmetry
left in order that it can be observed as symmetry on some observables. One possibility is to
assume that there is an exact symmetry on some subalgebra. Adapting this point of view
one should look for some algebra which is isomorphic to a subalgebra of M., introduced
in the last section. (Lagrangean field theory suggests to look at some deformed algebra.
But, in the general theory it is not clear what deformation means.)
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6. Tensor product decomposition of quantum field theories

The axioms of quantum field theory are such that they allow to describe two or more
independent theories in one object. There are several mathematical procedures which
permit to construct a new theory out of two or more independent theories. In all the
known examples the new theory does not describe new physics. The simplest example is
the direct sum, or more generally, the direct integral of theories. The inverse operation
is the integral decomposition with respect to the center of the global algebra. There are
effective criteria implementing that a theory is indecomposable with respect to the direct
sum operation. This is the cluster decomposition property or equivalently the uniqueness
of the vacuum vector [Bch62],[DKKR67].

More complicated is the direct product of theories. Starting with two theories
{M;(0),U;(A,z), H;, i}, i = 1,2 one can define a new theory on H1@H2 by M(O)
= M1(0)@M3(0), UA,z) = Ui(A,2) @ Uz(A,z) and © = Q1 @ Q3. The new theory
{M(O),U(A,z),H,Q} fulfils again all axioms of local quantum field theory. In order
to discover the direct product structure one has to look at the sub—theory {M;(0) @
1, U(A,x),H,Q} which fulfils the assumptions of the theory of local observables except
the cyclicity assumption for the vacuum vector. In this section we want to develop the
theory for the converse operation, i.e. decomposition of tensor products. Besides the usual
assumptions we require that the global algebra is a factor, and that the theory satisfies
the Bisognano—Wichmann property.

6.0.1 Remark:

(1) As a consequence of the Bisognano—Wichmann property one concludes that the theory
fulfils the wedge duality, i.e, for every wedge the relation

M(W) = M(W")

holds, where W’ denotes the opposite wedge of W. For the proof see Prop. 4.4.2.
(2) If one identifies the algebra of the double cone D with

M(D)=n{M(W); D C W} (6.0.1)
then the general duality property
M(D)" = M(D')

holds, where D" denotes the (interior) of the spacelike complement of D.

6.1) On modular covariant subalgebras

In order to understand the problem let us start with the assumption that our theory
is a tensor product.

{M1(0)®M2(0), Ul(l') & Uz(l’),?‘[l@%z,@l & QQ}
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First we look at one algebra M for a suitable chosen domain. Then we have M = M;@Ma;.
Since {2 is a product state we know that also the modular group splits, i.e.

At = Al @ AY.
If this is the case then My @ 1 is a subalgebra of M which is mapped by o! onto itself
O't(Ml ® ]1) - Ml ® ]1

Subalgebras which are mapped by ¢! onto itself are “modular covariant subalgebras”.
We start our investigation by introducing modular covariant subalgebras and describ-
ing their relations to normal and faithful conditional expectations In addition we describe
Takesaki’s result on the structure of modular covariant subalgebras [Tak72].
Let M be a von Neumann algebra acting on the Hilbert space H and let the vector
Q € 'H be cyclic and separating for M. Then we denote by A, J the modular operator and
the modular conjugation associated with the pair (M, Q).

6.1.1 Definition:

A von Neuman subalgebra N' C M (1 € N) is called modular covariant if it fulfils the
equation

A'NAT =N,  VteR.
The set of modular covariant subalgebras of M will be denoted by Mes(M)

Notice that the vector  is separating for A but not cyclic, because cyclicity implies
N = M. (See e.g. Kadison and Ringrose [KR86] Thm. 9.2.36.)
The symbol [N ] denotes the projection onto the Hilbert subspace generated by N Q.

Modular covariant subalgebras have the following well known and easy to verify prop-

erties. (See [Tak72],[Ko86],[KIK92] and [Bch98b].)

6.1.2 Lemma:

Let N € Mes(M). Let Hua be the closure of NQ and denote by Ex the projection onto
Har. By N we denote the restriction of N to Har. Then:

1. Ex commutes with A and J. The restriction of A and J to Har will be denoted by
A and J.

A and J are the modular group and modular conjugatwn of (N Q).

The commutant OfN n Ha comncides with JNT.

The map N — N is an 1somorphism of von Neumann algebras.

Ae M and [A,Ex] =0 implies A € N.

Ae M and AQ € Hp implies A € N

S Ot WY

Proof: 1. Since A is invariant under the action of the modular group we get AYANQ =
NQ. Hence A maps Hpr onto itself. Therefore, it commutes with Ex. For A € N we
get the identity JAQ = AY2JAY2AQ = AY2A*Q. This implies that J maps Ha onto
itself. Hence J commutes with FExr.
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2. For A, B € N we find: (©, BAIU=DA) = (Q, BAIU-D AQ) = (Q, AN BQ) =
(Q AN~ ‘tBQ) This implies that Ait fulfils the KMS—condition with respect to the algebra
N. Hence Ait is the modular group of N'. The equation (A4 € N) JAY2AQ = A*Q implies

that .J is the modular conjugation of N.

3.JNJ is a von Neumann subalgebra of M. Since J and ' commute with Ex we obtain
ExJNJ=JNJT=AN'.

4. The algebra N contains M’ which implies that © is cyclic for this algebra. Hence we
find for A € NV

IA|I> = sup (BExQ, A"ABENQ)/(Q, ExB*BEx(Q)

BeM'
= sup (\/ExB*BENQ, A*A\/ExB*BENQ)/(Q, ExB*BENQ) = || A]|%.
BeM'

5,6. Let A be the subalgebra of those elements in M which commute with Exs. Then this
is again a modular covariant subalgebra which contains N. The restriction of N to Har
has again A as modular operator. But this implies that this restriction and N coincide.
Since () is separating for M it follows that N and A coincide. O

The results of the last lemma have been strengthened.

6.1.3 Theorem: (Takesaki [Tak72])

With the assumptions and notations of Lemma 6.1.2 we obtain:

1) For A€ M one has EAE € N

2) There exists a normal faithful conditional expectation & from M onto N.
3) € commutes with the modular action:

E(AAATA) = AdATE(A), A C M.
4) There exists also a conditional expectation &' from M’ to JE(M)J defined by
ENANY =JETA T, Ale M.

5) Let E be a projection with EQ2 = Q. If there is a von Neumann algebra N C M with
E € N7 and the central support of E in N 1is 1 and if addition one has EME = N'E then

N is a modular covariant subalgebra of M.

Proof: 1) Let A € JNJ then A commutes with Exr and with M. Hence A commutes
with ExBEx for B € M. Since N is the commutant of JAJ in B(Has) it follows that
ExNBEy € N. ~
2) Let p be the map N' — N which is a normal isomorphism. For B € M define

E(B) = p ' (ExBEy).

Since ExrBEx € N it follows that € is a normal map. For N; € N/, i = 1,2 we obtain

with B € M
E(N1BN2) = p~' (p(N1) Exn BEnp(Nz))

= Nlp_l(ENBEN)NQ == ng(.B)NZ
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Hence & is a normal conditional expectation.
3) Since Ex commutes with A it follows that for N € A the equation p(AdAN) =
Ad Alfp(N) holds. This implies for A € M:

E(AdATA) = p " (ENAdATAEN) = p ' (AdAYENAE )
= AdAYp Y ENAEN) = AdATE(A).

4) This is a trivial consequence of 2).

5) Let S be the Tomita conjugation of M, then the assumptions imply that S commutes
with E. Next we show that 5*S also commutes with E. Let B € M’ then EBE commutes
with N since E commutes with A", Let now C € N’ then we want to show that it is
of the form ECE with C € M'. Define C by the equation CAQ = ACQ, A e M. If C
is bounded , then it belongs to M and has the properties we need. We get the following
estimate:

ICAQ| = |ACQ| = (Q,C*A* ACQ)H/?
= (Q,C*EA*AECQ)'/? = (Q,[EA*AE]'?C*C[EA*AE]'/?Q)1/?
<|ICINEAAET Q| < |[C|I|| |A] €.

Hence we get N' = EM'E which implies that S*S commutes with E: Hence N is a

modular covariant subalgebra. This proves the theorem. O

6.2) Conditional expectations and half-sided translations

If M is a von Neumann algebra with cyclic and separating vector then we call the

anti-linear operator S := JMA%tz the Tomita conjugation of (M, ). In this section we
will deal with operators of the same kind, i.e. operators S fulfilling:

(1) S is a densely defined closed anti-linear operator with domain of definition D(.5).
(i1) S? = 1 on D(S).
(1i7) Q € D(S) and SQ = Q.
We will call such operators generalized Tomita conjugations.
Since S is closed it has a polar decomposition S = JAY2. Then A is invertible and
J 1s a conjugation, 1.e.

JAT =AY J=J"=J" (6.2.1)

These properties follow from the condition S* = 1. (See e.g, Bratteli and Robinson [BR79]
Prop.2.5.11.)

We often deal with the situation that we have a generalized Tomita conjugation S
and a Tomita conjugation Sx¢ which is an extension of S. From Eq. (2.1.3) we know
(1+ AM)_l > (1+ A)_l. This implies that the operator—valued function C(t) := A/_\/ittAit
has a bounded analytic extension into the strip S(0, %) We are interested in determining
the value of this function at the upper boundary. We obtain:
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6.2.1 Lemma:

Let S be a generalized Tomita conjugation and Sa be the Tomita conjugation of M such
that the latter is an extension of S. Define C(t) := AA'. Then C(t) has a bounded

analytic continuation into the strip S(0, %) and at the upper boundary one has

Ot + %) = TmC(t)J. (6.2.2)

Moreover, the following estimate holds:

IC(Il < 1.

Proof: Since Ay < A it follows by standard arguments that C(¢) has a bounded
extension into the strip S(0, %) This extension is bounded in norm by 1. Choose ¢» € D(S5*)
and ¢ € D(Sa) then we have

(p.C(t+3)¥) = (Afe, AT AT ATEY)

= (TS, Ay AT TS* ) = (T A AT TS, S ).
Since S*¢ € D(S*) we find JMALIALTS™) € D(S%,). Hence we obtain
= (¢, ST MA G AT TS ).
With S%,Jam = JamSam and the commutation of Saq with ALY we find
= (0, JMA G SMATTS* ).

Because Spq is an extension of S, we can replace Sy by S which commutes with A
Hence we obtain

= (¢, JUA T ATS TS ).
With $.JS* = .J we get ‘
(0, C(t+ 5)) = (9. TmC () T¥).
Since D(Saq) and D(S*) are both dense in A the lemma follows. D

We saw in Sect.2.3 that the elements in Char(M) are in one to one correspondence
with the von Neumann subalgebras belonging to Sub(M). Therefore, it is interesting to
know which condition of Lemma 2.3.2 is the crucial one. It turns out that the conditions
(1)-(6) can easily be satisfied, but that condition (7) is the essential one. In order to
overcome the lack of condition 7 of Lemma 2.3.2 we will use a property similar to that of
half-sided modular inclusions.
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6.2.2 Theorem:

Let M be a von Neumann algebra on H with cyclic and separating vector ) and let Sxq be
the Tomaita conjugation of M. Let S be a generalized Tomita conjugation and assume S sy

18 an extension of S. Assume in addition that S 1s an extension of A%SA/_\j{t for t < 0.
Then:
1. There exists a unitary group U(t) with

a Ut)Q = for allt € IR.

B U(t) has a non—negative generator.
2. Between the modular group of M and U(t) exist the relations

AL USAY =U@E™?™s),  ImU(t)JIm = U(—1).

3. Define . .
St = AIXASA/_\/I(t
which 18 monotonously increasing with t and set
t—o0

Then there holds for s > 0
U(s)SacU(—s) =5_

%log s*

Notice: There exists a variant of this theorem which is obtained by replacing every-
where t by —t.

The statement of the theorem needs some explanation. By assumption the family
A%SA/_\j{t is increasing with ¢. Hence the projections onto the graphs are an increasing
family of projections which converges strongly. Since all these projections are majorized
by the projection onto the graph of S the limit is smaller or equal to the majorant.

The proof of this theorem is a variation of the proof of Wiesbrock’s theorem on half-
sided modular inclusions presented in section 2.4.

6.2.3 Lemma:

Let S = JAY? be a generalized Tomita conjugation. In addition let V' be a unitary operator
with

a. VD(S) C D(9).

b. VQ = Q.
c. For ¢ € D(S) one has SVip =V S,
Then:

The operator—valued function
ATIVAT = V(1)

has a bounded analytic continuation into the strip S(0, %) which fulfils the estimate

IVt +ir)| <1. 0<7<

N | —
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At the upper boundary V(z) obeys the equation

Vit + %) = JV(t)J.

Proof: Since S commutes with Al? it follows that S commutes with V(). Moreover,

since VD(S) C D(S) it follows by the usual argument that A~V A has a bounded
analytic continuation into S(0, ). Choose ¢ € D(S*) and ¢ € D(S). Then one has

(0 V() = (A2, ATV AT 2) = (IS, V(1)S )
= (S"Jp, V()T S™0) = (SV(£)IS70, Jp) = (V(£)J6, o) = (¢, TV(1)J0).

This shows the lemma. O
Next we have a look at the expression A/_\/ittAit under the assumption of the theorem.

6.2.4 Lemma:

Assume S 15 an extension of A%SA/_\j{t for t < 0. Then for the operator—valued function
A AT = C(t) the following holds:
(1) The inclusion properties:
a. C(t)D(S) C D(S) fort>0.
B. C(t)D(S*) C D(S*) fort<O.
v. C(t+ 1)D(S*) C D(S*) fort € R.
(1) This implies:
a. For o € D(S) one has SC(t)y = C(t)Sy  provided t > 0.
(. For ¢ € D(S*) one has S*C(t)p = C(t)S*p if t <0.
~. For o € D(S*) one has S*C(t + %)c,o =C(t+ %)S*c,o for allt € R.

Proof: S is for t < 0 an extension of A%SA/_\j{t. This implies All, D(S) C D(S)
C D(Sam). Hence we obtain C(¢)D(S) C D(S) for t > 0. Next choose ¢p € D(S*) and
© € D(5) then we obtain for ¢ < 0:
(. SARSY) = (¢, SMARS)
= (¢, A SmSe) = (U, Allp) = (ALY, 0).
On the other hand we get
(1, SALSP) = (S, AL'S™Y).
Since the expression is continuous in ¢ we conclude A/_\/itts*@b € D(S*) and from S*D(S*) =

D(S*) we get for t <0 A/_\/ittD(S*) C D(S*). This implies (i),5. Using Lemma 6.2.1 we

obtain

Ot + %)D(S*) = JmC(#)ID(S*) = JuC (#)D(S).
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Because of D(S) C D(Sam) we obtain by the definition of C'(#) the inclusion
C(t+ 5)D(S*) C JmD(Sm) = D(S34) C D(S*). This shows (i),y. For t > 0 we obtain
from A 'D(S) € D(S) C D(Spm)

SC()D(S) = SAGAID(S) = SUA G ATD(S) = A SmA'D(S)
= AJSATD(S) = AJIAYSD(S) = C(t)SD(S).
Next we calculate for ¢» € D(S*) and ¢ € D(S) and t <0
(0, S*C (1)) = (ARG A, Sp) = (A, AT SAH AL ).

As A%SA/_\j{t is the generalized Tomita conjugation with domain AL D(S) C D(S) it
follows that (All, SAT)* is an extension of S*. This implies

= (AL, (ARSAY ) AM) = (Alp, STATE) = (p, AR ATS ).
This shows (ii),. Finally
S*C(t+ %)D(S*) = S*TmC(t)TD(S).
As in the proof of (i),y we have JyC(t)JD(S*) C D(S3) C D(S*). Hence we obtain
= ST ITMA G ATTD(S*) = JuA Y SmATID(S™).
Since Saq 1s an extension of S we get
= JMA Y SATID(S*) = JMA G AT TS D(S*) = C(t + %)S*D(S*).

This shows the lemma. O

C(t) has an analytic extension into S(0, %) For ¢ > 0 it maps D(S) into D(S) and
for the rest of the boundary it maps D(S*) into D(S*). Therefore, we will map S(0, %)
bi-holomorphic onto S(0, %) in such a way that IR" ist mapped onto IR and the rest of
the boundary is mapped onto 5 + IR. This is achieved by the transformation

1 1
(= ﬁlog(ezm - 1), z = ﬁlog(ewc +1).

We introduce .

B(t) := 0(277

log(e*™ + 1)), (6.2.3)
then together with Lemma 6.2.4 holds
B(t)D(S) C D(S), fort € R and SB(t)D(S) = B(t)SD(S),
B(t + %)D(S*) C D(S*), fort € IR and S*B(t+ %)D(S*) = B(t + %)S*D(S*).
(6.2.4)
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The last inclusion is valid with the possible exception of the point % Next we show:

6.2.5 Lemma:
Define B(s,t) = A7 B(t)A" with B(t) from Eq. (6.2.3). B(s,t) has an analytic extension

into the tube based on the quadrangle with the corners

1 1 1 1
RS Smt) =(0,0), (=,—=), (=,0), (0, =). 6.2.5
(Sm s Smt) = (0.0), (3.-2). (5,00, (0. ) (625)
In the domain of holomorphy one has
|B(o,7)|| < 1.

In the four corners B(o,T) takes the values

B(s,t) = AT B(t)A”,
B(s + %,t) = AT TB()JA,
B(s,t + %) = ATUB(t + %)Ais,

1 1 . i ,
B —t—=)=AT"JB(t + =)JA"Y.
(s 50t = 5) = ATTB(t 4 5)]

Proof: For t real we get by Lemma 6.2.3 in s an analytic extension into S(0, %) which
is bounded in norm by 1. Moreover, we have B(s 4 5,t) = JB(s,t)J = ATWJB(t)JA".
For s real Lemma 6.2.1 yields an analytic extension in ¢ into S(0, %) which is also bounded
in norm by 1. Moreover, we have B(s,t + 5) = AT"B(t + 5)A'®. Since J is anti-linear

the expression JB(t).J can be analytically continued into S(—%, 0) wich is norm—bounded

by 1. At the lower boundary one finds B(s + %,t — %) = AT JB(t + %)JAiS. Using the

Malgrange-Zerner theorem Thm. 1.4.2 we obtain the statement of the lemma. O
Now we are prepared for the first crucial step:

6.2.6 Proposition:
Between the group A and the operator-—valued function B(t) exist the relations

A"B(t)A™* = B(t —s) and JB(t)J = B(t + %).

Proof: Choose ¢ € D(S) and ¢ € D(S*) and define the two functions

F+(37t) = (@7B(Svt)¢) = (997A_iSB(t)AiS¢)7
F~(s,t) = (S, B(s,1)*S*¢) = (S, AT B(t)* Al*S* o).
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By Lemma 6.2.5 FT(s,t) has a bounded analytic extension into the tube given by Eq.
(6.2.5) and F'~(s,t) into the conjugate complex of that domain, which is also the negative
of the domain given by Eq. (6.2.5). By Eq. (6.2.4) we obtain for real s,¢

F¥(s,t) = ("S5, ATUB(H)A" ) = (SAT*B(t) A", S™p)
= (AT B(t)A Sy, S*p) = F~(s,1).

Moreover, one obtains with Eq. (6.2.4) and Lemma 6.2.5

Fr(s+ %,t - %) = (§*S* o, AT IB(t + %)miw) = (SATJB(t + %)JA%, S*p)
= (ATJS*B(t + %)miw, S*p) = (AT JB(t + %)s*miw, S*p)
= (AT JB(t + %)JA185¢, S*p)=F (s — %,t + %).

Using the edge of the wedge theorem Thm. 1.4.1 we obtain a function which is periodic,
1.e.

F(s,t) = F(s + ni, t — ni), nez.

(As mentiond in Sect. 2.6 the discontinuity which might exist at % is harmless.) Since
F(o,7) is bounded by max{|[¥||||¢]l, [[S¥]|||S*¢||} the function must be constant in the
direction of periodicity, i,e.

F(s,t) = F(s+z,t—2), zeC.
Choosing z = —s and inserting the expression for ' we obtain:
(9, A B(HAR) = (g, B(t + 5)1).

For s = % and z = —% one finds

(o, TB(TE) = (¢, Bt + 5)0)

Since D(S) and D(S*) are both dense in H we obtain the statement of the proposition. D
The last result is the basis of the following

6.2.7 Proposition:

The operator—valued function C(t) is a commutative family of unitary operators. Moreover,
there exists a continuous unitary group U(s) with non-negative generator such that

C(t) = U(e*™ —1) (6.2.6)
holds.
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The proof of this statement is based on the last proposition and it is an exact copy
of the corresponding part of the proof of Thm. 2.6.2. Therefore, it does not need to be
repeated here.

Proof of Theorem 6.2.2: The first statement of the theorem is the content of Propo-
sition 6.2.7. We know that C(t) fulfils the cocycle relation, which we use in the form
A_iSC(t)AiS = C(s+1t)C(s)*. Inserting Eq.(6.2.6) we find

A/—VitsU(GZﬂ't _ 1)A{/f/t — U(GZﬂ'(s—l—t) _ 1)U(_62ﬂ'3 + 1) — U(GZTFS(eZTrt . 1))

Since U(t) fulfils the spectrum condition the last equation can analytically be continued
to arbitrary arguments. This shows the first part of statement 2. From (6.2.6) we obtain

C’(%) = U(—2). Hence we obtain Jy = C’(%)J = U(—2)J. If we insert Eq. (6.2.3) into

the second expression of Proposition 6.2.6 we get
AQTC (- log(e™ + 1) = C (5 log(—e#™ + 1)
27 27 '

Using Eq. (6.2.6) this reads Ad JU(e*™) = U(—e*™). With the above expression for J

we obtain

Ad JpU(e*™) = Ad{U(—2)J}U(e*™) = U(—e*™).

By analytic continuation we obtain the second relation of statement 2. Finally with
AdAi/’{AS = Sy and AdAS = S we obtain AdC(—#)S = S;. Inserting Eq. (6.2.6)
we find AdU(e ™ — 1)S = S;. With So = limyy00 St = limyyoo AdU(e™2™ — 1)S we
get S; = AdU(e™?™)S or AdU(5)Se0 = S_ s > 0. This proves the theorem. D

1
5 log 57

From Thm. 6.2.2 one can draw several conclusions. We start with the following result:

6.2.8 Corollary:

Let M be a von Neumann algebra on H with cyclic and separating vector Q and let Sy
be the Tomita conjugation of M. Let S be a generalized Tomita conjugation and assume
Sam 1s an extension of S. Assume also that S 1s an extension of A%SA/_\j{t fort <0. If
we have wn addition

SM = lim St,
t—o0

then S is the Tomita conjugation of a von Neumann algebra N which has Q as cyclic and
separating vector. Moreover, on has

N = U(1)MU(-1).

6.2.9 Remark:

Unfortunately I could not show that A is a von Neumann subalgebra of M, although it
is suggested by the fact that Siq is an extension of Syr. Up to now one needs additional
information in order to conclude that A is a subalgebra of M.
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Proof of the Corollary: With S = lim;—, o S; we know from Thm. 6.2.2 the relation
S =U(1)ScU(—1). With Soc = Saq it follows S = U(1)SpmU(—1). Since M is a core
for S it follows with V' = U(1)MU(—1) that N'Q is a core for S. Hence the corollary is
proved. ]

In connection with conditional expectations one can conclude that the algebra A,
described in Corollary 6.2.8, is a subalgebra of M.

A half-sided translation associated with M is a one—parametric unitary group V()
fulfilling:
(i) V() = Q for all t € IR.
(ii) V() has a non—negative generator.
(iii) V(£ )MV (—=t) C M for t > 0 (or for t <0).

With these concepts we show:

6.2.10 Theorem:
Let M be a von Neumann algebra on H with cyclic and separating vector Q. Assume N

is @ modular covariant subalgebra of M and & the associated conditional expectation. (See

Thm. 6.1.3.) Denote by N resp. £ the restriction of N resp. € to the cyclic subspace of
N. Assume V(t) is a +half-sided translation for M. Then:

(1) EV()MV (—t)) is dense in the von Neumann algebra {E(V (t)MV (—1))}".

(1) There exists a +half-sided translation for N = g(./\/l) with

o~

UONU(=t) = {E(VENMV (~1))}.

o~

Proof: From Thm. 6.1.3 and from E = [N'Q] we get the relation E(V ({)MV (—1))Q =
EV(t)MQ. Since V(t) has a non—negative generator we conclude that EV (¢) M is dense

in EH. Let S_ be the map EV()AV (—t)Q —s EV(1)A*V(—t)Q. Since JuN T
is the commutant of A’ in EH it follows that S—%logt is pre—closed. Denote the closure
Llog - Since V(H)MV (—t) C V(to)MV (—tg) for t > ty we obtain with
A V(s)AL = V(e?7s) and with Ai/e, = Al |[EH that Sy, is an extension of Sy which
is an extension of A%[SOA/_(;t for t < 0. Hence the family {S;} fulfils the conditions of
Thm. 6.2.2. Consequently exists a +half-sided translation U(t) of N with

1
5 log t

again by S_

Sy = U(eX™)S  U(—e2™).

Since {EV (e?™)AQ; A € M} is a core for S; there exists an operator B affiliated with A
such that U(e?*™)BU(—e*™)Q = EV(e?™)AV (—e?™)Q holds. (See [BR79] Prop. 2.9.5.)
Since () is separating for N we obtain U(e*™)BU (—e?™) = EV(e*™) AV (—e*™)E which
implies || B|| < ||A||. Hence we get EV(e?™ )MV (—e*™)E C U(ezﬂt)./vU(—eZ”t). The sets
EV(e*™)MQ and U(ezﬂt)./vﬂ are both a core for Sy which implies that EV(e*™)MQ
is dense in U(ezm)./vﬁ in the graph topology of S;. Since the graph topology of S; is
stronger than the Hilbert space topology we get the density in the Hilbert space topol-
ogy. Since Q is separating and since EV (e*™ )MV (—e?*™)F is convex we conclude that
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EV(e2™ )MV (—e*™)E is strongly dense in U(ezﬂt)./(\/U(—eZ”t). Hence the theorem is
proved. ]

6.3) Construction of sub—theories

If we start with a wedge W and assume the algebra M (W) has a modular co-
variant subalgebra N (W). Let &w be the associated conditional expectation and Eyy
the projection onto [N(W)]. If we now change the wedge to AW + x then of course
U(A, o) N(W)U(A,z)* is a modular covariant subalgebra of M(AW + z). But in order
to obtain a decomposition of the global field theory the projections Ew and Exw .y, have
to coincide. If this is the case then we also need conditional expectations for the algebras
M(D) associated with double cones. In order to be able to construct such conditional
expectations the algebras must be closely related to the algebras of wedges. Therefore, we
set

M(D) = {Mawiz; D CAW + 2}
Now we can define what we mean by the coherence property.

6.3.1 Definition:

Assume we deal with a quantum field theory in the vacuum sector. Assume with every
double cone D and every wedge W is associated a modular covariant subalgebra N (D) C

M(D) and N (W) C M(W). Then we call this family coherent if the projections Ep and
Ew coincide for all double cones D and for all wedges W.

Unfortunately it is not always possible to transport the conditional expectation from

one wedge to all others in a coherent way. Half-sided translations can only be used if the
positive linear maps L;(A4) : M — N defined by

Li(A) = U(—t)EV(t)AV(—t)EU ()

are trivial. These half-sided translations of M(W') would be necessary in order to transport
the conditional expectation to the shifted wedges or to pass to other wedges with one light
ray in common. (See Sect. 4.4.)

In case one knows that the translations in the characteristic two—plane of the wedge
W commute with Fyw one can conclude more:

6.3.2 Lemma:

Let the dimension of the Minkowski space be larger than 2. Let N'(W) be a modular covari-
ant subalgebra of M(W). Assume Evw commutes with the translations in the characteristic
two—plane of W. Then Ew commutes with all translations.

Proof: From the projection Ew we define the projection Ew(a) by Ew(a) =
AdU(a)Ew. For x in the characteristic two—plane we get AdU(x)Ew(a) = Ew(a). Let
P be the von Neumann algebra generated by all Ew(a). This algebra is invariant under
the group U(a). Since this group fulfils the spectrum condition it is inner, i.e there exists

a unitary group V(a) € P with V(a)AV(—a) = U(a)AU(—a) for all A € P. The group
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V(a) fulfils also the spectrum condition and maps € onto € [Bch96]. Moreover, we get
V(z) = 1 for = in the characteristic two—plane. Denote the spectral family of V(a) by
F(A). Let F(w) be the spectral projection associated with the set {p;pg < w} then the
constance of V(z) implies F(w) = F({0}). Hence for every compact set A not containing
the origin we get F(A) = 0. This implies V(a) = 1 and hence the lemma. i

Assume we have a coherent family of modular covariant subalgebras for all wedges.
It remains to construct a modular covariant subalgebra for every double cone.

6.3.3 Lemma:
Let N(W) be a coherent family of modular covariant subalgebras of M(W). Define for

any double cone

N(D) = {N(W); D c W}

Then N (D) 1s a modular covariant subalgebra of
M(D)=n{M(W); D C W}

Moreover, one has

Proof: Because of the coherence we know that Eyw is independent of W. Therefore,
we call it E. For every W we know by Lemma 6.1.2 V(W) = M(W)N{E,1}. Hence we
obtain by definition of V(W) the relation

N(D) = M(D)n {E,1}". (6.3.1)

This shows that A (D) is a subalgebra of M(D). For A € M(D) and a wedge W D D
one has Eyw (A4)Q = EAQ. Since the right side is independent of W we obtain N(D)Q2 =

EM(D)Q. Hence Q is cyclic for ./(\/(D) in E'H. Since this vector is also separating for A/
and since E commutes with A (D) it follows that the central carrier of E in N is 1, i.e.
the map

oz:N(D)—L/V(D)

is an isomorphism of von Neumann algebras. Define for A € M(D)
Ep(A) = a Y (FAE)

then Eq. (6.3.1) implies that £p is a conditional expectation. This implies by Thm.
6.1.3,4 that EH is invariant under the modular group of M (D). Hence N (D) is a modular
covariant subalgebra of M(D). This shows the lemma. O

We saw that the coherence property is not automatic. Therefore we have to assume
this in the future. Next we show:
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6.3.4 Lemma:

Let {M(D),U(A,x),Q} be a theory of local observables fulfilling the Bisognano—-Wichmann
property. Let {N(W),N(D)} be a coherent family of modular covariant subalgebras and
E = Ew be the associated projection. Then EH is invariant under the Poincaré
transformations U(A, x). Moreover, for every wedge the restrictions All, and U(Aw(t),0)
coincide. Here Ay (t) denotes the Lorentz boosts which map W onto itself.

Proof: We know that E commutes with the modular group of every wedge. Since the
theory has the Bisognano—Wichmann property it follows that the modular group coincides
with the corresponding Lorentz boosts and hence E commutes with these boosts. Since
the Lorentz boosts and the translations generate the whole (connected part of the iden-
tity) Poincaré group (see Sect. 4.4), the projection E commutes with all U(A,x). Since
U(Aw(t),0) and Alf, coincide it follows that also their restrictions to EH coincide. i

We collect the main results of this section in the following

6.3.5 Theorem:
Let {M(D),U(A,x),H,Q} be a theory of local observables fulfilling the assumptions of

the introduction. Assume there ewists a coherent family of modular covariant subalgebras
N(W) of M(W). Then a local quantum field theory {N( ) (A x), EH,Q} exists which

fulfils the azioms listed in the introduction. In particular one has for every wedge

N(W) = V{N(D);D c W}

Proof: Let {N(D),N (W)} be the coherent family of modular covariant subalgebras
where N'(D) is constructed as in Lemma 6.3.3. Let {N(D), N (W)} be the restriction

of this family to the Hilbert space E'H and let (7(/\,:1;) be the restriction of the unitary
representation of the Poincaré group described in Lemma 6.3.4. From AdU(A, )M (W) =
M(AW + z) and V(W) = M(W) N {1, E} we obtain AdU(A, )N (W) = N(AW + z).
Since N (D) is the intersection of {NV(W); D C W} it follows AdU(A, )N (D) = N(AD +
z). Finally from M(W) = V{M(D);D C W} we get M(W) = n{M(D)";D C W}.

Hence

A{N(D):D c W} =n{M(D) v {1L,EV:Dc W}
—c {N{M(D) :Dc W}V I{LEY} = MW)VI{LEY = N(W)

implies
NW)cV{M(D)n{L,E}Y;D c W} =V{N(D);D Cc W} C N(W).

Since all (D), and U(A,x) commute with E and € is cyclic for ./V(D) in E'H the set
{N(D),{U(A,z), EH,Q} defines a theory of local observables as described in the intro-

duction.
O
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6.4) Decomposition of the global algebra

The investigations of this subsection are based on a result of Takesaki [Tak72]. Notice
if A is a modular covariant subalgebra of M, then this is also true for N := A" N M.

The existence of the two conditional expectations £ and £° has some important con-
sequences.

6.4.1 Theorem:

Let M be a von Neumann algebra with cyclic and separating vector Q. Assume N €
Mes(M) is a von Neumann subfactor. Let N© be the relative commutant of N in M and
let R = N VN€ be the von Neumann algebra generated by N and N°. Then the map

w:ZAi®BieN®NC—>ZAiBieRCM

extends to an isomorphism of NQN € onto R = NVN€. Moreover the vacuumstate (2, .2)
is a product-state on R, i.e. A€ N and B € N°¢ implies

(Q, ABQ) = (Q, AQ)(Q, BQ).

Proof: Let A € N and B € N°¢ and let £ be the conditional expectation from M
onto /. Then one finds

AE(B) = £(AB) = £(BA) = £(B)A.
Since A is a factor and £(B) € N we see that £(B) is a scalar. This implies in particular
£(B) = (2, BQ).
Hence we obtain by Lemma 6.2.2
(Q, ABQ) = (QE(AB)Q) = (Q, AE(B)Q) = (2, AQ)(Q, BQ)

implying that (£2,.9) is a product-state on R. Let A; € N be such that {A4;Q} forms an
orthonormal basis of Har and B; € N be such that {B;} forms an orthonormal basis of
Hare. Then one finds

(AiBjQ, AL Bi) = (2, AL A Q)(Q, BIBiQ) = 6 43;.1.

Because of the separating property of  the set {A;} is weakly total in A and {B;} is
weakly total in A'¢. This implies that {A;B;} is weakly total in R. This shows that

U : AZQ & B]‘Q — AZB]Q
defines a unitary map from Ha @Ha- onto Hg. Hence
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extends to a normal isomorphism of von Neumann algebras. O

In order to apply Takesaki’s result on tensor products we have to know that the
modular covariant subalgebra N (W) of M(W) is a factor, which will be show under the
assumption that M(W) itself is a factor. This is known to be the case if the global
algebra is a factor. Since the factor property for M(D) is not known we are not able to
show that V(D) is a factor. Hence we can not use Takesaki’s result. Here we will use a
characterization of tensor products due to Ge and Kadison [GK66].

For the factor property of N (W) we use Lemma 5.2.2: Let U(t) be a half-sided
translation of the von Neumann algebra M. Denote by Ey the projection onto the U(t)
invariant vectors and by Fj the projection onto the eigenvectors of A 4 to the eigenvalue
1. Then one has

F, < Ejp.

From this we conclude:

6.4.2 Proposition:

Let {M(D),U(A,z),H,Q} be a theory of local observables. Assume the global algebra is a
factor and hence M(W) is a factor. Then every modular covariant subalgebra of M(W)
1s a factor.

Proof: Let N (W) be a modular covariant subalgebra of M(WW) and let Z be in the
center of N (W). Then Z is in the center of ./V(W) and hence it commutes with ﬁ}fv Since
the map V(W) — ./V(W) is an isomorphism we find that Z commutes with Alf,. This
implies ZQ € FiyH C EqH. As the group generated by half-sided tranlations for M (W)
contains the time translation it follows EgH = Cf2. Hence Z) = 2Q, z € C and the
separability of  implies Z = z1. This shows the proposition. ]

Knowing that AN(W) is a factor, we can use Takesaki’s result for the construction of
tensor products. But first we have to look at the relative commutants.

6.4.3 Lemma:

Assume {N (W)} is a coherent family of modular covariant subalgebras of {M(W)}. Let
NE(W) be the relative commutant of N(W) in M(W). Define N?(W) = N(W)VN(W).
Then {N (W)} and {NP(W)} are both coherent families of subalgebras of {M(W)}.

Proof: We know that the two families {M(W)} and {NV(W)} are covariant under the
Poincaré group. Hence the family {N (W)} is covariant under the Poincaré group. Since
NEW +a) C N9(W) for a € W we obtain by a Reeh—Schlieder type argument that the
projection [N¢(W)Q] commutes with the translations. In order to show that it commutes
also with the Lorentz transformations we use the half-sided translations of M(W') which
are explained in Sect. 4.4 and which are connected with Lorentz transformations.

Let W(l,01),W(l,{3) be two wedges with the same first vector then the algebra
MW (L, 00)NW (L, 05)) fulfils the condition of half-sided modular inclusion with respect to
both algebras M(W((, (1)) and M(W({,(3)) (See Thm. 4.4.3). Since the same arguments
are true for the algebras {NV (W)} and since [N'Q] commutes with Poincaré transformations
we conclude that the unitary groups Vi(¢) which map M(W((,¢;)) onto M(W((, (1) N
W(l,lz)) commute with [N(W)Q]. Hence V; maps N(W({,{;)) onto N(W (L, (1) N
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W(l,lz)). Since the groups V;(t) fulfil the spectrum condition we get by a Reeh—Schlieder
type argument that [N(W (¢, (;))Q] and [N (W ({,01) N W (L, (2))Q] are the same projec-
tions. Since one can repeat these arguments we obtain that [N ¢(W)Q] commutes also with

all Lorentz transformations. Hence {AN (W)} is a coherent family. The same method can
be used the corresponding result for {N?(W)}. o

6.4.4 Remark:

The relative commutant of N?(W) is trivial, because (A?(W))¢ belongs to the center of
the factor N'?(W) (see Prop. 6.4.1).

Since we do not know whether or not M(D) and N (D) are factors, we will define
N¢(D) and N?(D) differently.

6.4.5 Definition:

With the assumptions as before we set for double cones

N¢(D) = n{N(W); D c W}, 6.1
N?(D) = n{N?(W); D C W}. -

Since these definitions are similar to those in Lemma 6.3.3, the conclusion of that lemma

holds for N'¢(D) and N'?(D) with the obvious changes.

Next we have to look at conditions which imply that M(D) is isomorphic to a tensor
product. For the proof of such condition we need a result of Ge and Kadison which is based
on the tensor slice mapping introduced by Tomijama [Tmj57]. First we have to explain
this concept.

Let R and S be von Neumann algebras acting on the Hilbert spaces ‘H and K. Let
w and p be normal linear functionals on R and S respectively. Then their product w @ p
defines a linear functional on R®S which is defined on H@K. Keeping w fixed and taking
Y, x € K and choosing T' € R®S then the expression w @ py (') defines a sesquilinear
form on K. This form is continuous and defines by the Riesz representation theorem a
linear operator ¥, (7). Since the commutant of RS is R'QS’ it is easy to see that
U, (T) belongs to §. This is the tensor slice mapping introduced by Tomijama. In the
same manner there exists a mapping ¥, : R@S — R.

With this concept the following result of L. Ge and R. Kadison [GK66] holds, which

we quote without proof:

6.4.6 Proposition:

Let M be a von Neumann subalgebra of RQS, then M splits, 1.e. M = R1®8; with
Ri1i C R and 81 C S exactly if every tensor slice mapping sends M into M.

Using this result we obtain:

6.4.7 Proposition:
Let N (D) be defined as in Lemma 6.3.3 and N°(D), N?(D) as in Eq. (6.4.1) then one has

N?(D) 2= N(D)SN(D)
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Proof: Assume D C W then N?(D) is a subalgebra of N'(W)@N(W). Since  is
cyclic and separating for N'¢ restricted to Hase, every normal functional p of A€ is of the
form p = (¢, .¢) with ¢,¢ € Hae. Looking at ¥ ,(A) is equivalent to looking at

(Exn @ Po)A(Ex @ Py)

where P, and Py, are the projections onto ¢ and ¢ respectively. This shows by Eq. (6.3.1)
that U ,(A) is proportional to £p(A), and hence ¥ ,(A) € NP(D). By symmetry we get
also U, (A) € NP(D). So we find N?(D) 2 N(D)@N(D). O

Collecting the results of this section we obtain:

6.4.8 Theorem:
Let {M(O),U(A,x),H,Q} be a theory of local observables fulfilling the assumptions listed

in the introduction. Assume that {N (W)} is a coherent family of modular covariant sub-
algebras of {M(W)}. Let N(W) be the relative commutant of N(W) in M(W) and
NP(W) = N(W)V N(W). Then:

(1) There exists on H a sub—theory of local observables
{NP(D), NP (W), U(A, z)}

covariant under the existing unitary group U(A,z). Moreover, {NP(D),N?(W)} are mod-
ular covariant subalgebras of {M(D), M(W)} such that N?(W) has a trivial relative com-
mutant in M(W). If EP denotes the projection onto [NP(W)Q] then EP commutes with
NP(D),NP(W) and the group-representation U(A,x). Moreover, Q is cyclic for N?(D)
in EPH. If we denote the restriction of N?(D) and U(A,z) by ./(\/p(D) and (7(/\, T) respec-
tively then

(P(D), B (A, ), EPH, 0}

defines a theory of local observables satisfying the axioms listed in the introduction.

(2) There exists two coherent families {N(D), N (W)} and {N°(D),N¢(W)} of modular
covariant subalgebras of {M(D), M(W)}. If E and E° are the projections onto [N (W)]
and [N¢(W)] respectively then these projections commute with U(A,z) and E with N'(D)
and E° with N¢(D). With this we obtain:

{N?(D),U(A,2), BPH,Q} = {N°(D)GN(D),U°(A,2) @ U*(A,x), BHEEH,Q° © Q}.

In this formula XO denotes the restriction to EH and X¢ the restriction to E°H.
Proof: The existence of the local field theory {NP?(D), N?(W),U(A,z)} such that its

restriction to EPH is a theory of local observables with cyclic vector has been shown in
Lemma 6.4.3. That the relative commutant of N?(W) in M(W) is trivial follows from

Remark 6.4.4. That the restrictions ./Vp(W) and ./VP(D) split into a tensor product has
been shown in Lemma 6.4.3 and Prop. 6.4.7. From the coherence property shown in Thm.
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6.3.2 we conclude that also the Hilbert space EPH splits into a tensor product EH@EH.
Since this splitting is independent of the domains W and D the theorem is proved. ]

6.5) The hidden charge problem

If we look at the modular covariant subalgebras N (W) of M(W), then it can happen
that the relative commutant N (W) of N (W) in M(W) is trivial, i.e. N°(W) = C1. This
is called the hidden charge problem because of the following reason: If we start with a
theory of local observables {N(O),U(A,z),H, 2} such that the theory has charged sectors
which are connected by localized Bose fields, then we can add these Bose fields and obtain
a field algebra {F(0), U(A ), 7—[ Q} Wthh also fulfils the assumptions of the theory of
local observables. Knowing only the latter theory one would like to discover the local net
{N(0),U(A,z),H,} and the structure of the charged fields. The simplest case has been
discussed in [Bch65] namely that the charged fields are covariant under the action of a
compact abelian group. In this case one has unitary operators in M(W) which define
automorphisms of V' (WW). This is no longer true in the general situation. The next, more
complicated case is described by Doplicher, Haag and Roberts [DHR69]. Here, or more
general in the situation described by Buchholz and Fredenhagen [BF82], the commutant of
N(W) Vv N(W') is generated by minimal projections. In general one has to cope with the
situation where the commutant of N'(W)V N (W') is not generated by minimal projections.
In both cases, the tensor product decomposition and the hidden charge situation, one has
to look at sub—theories. Therefore, both problems are mingled and one has to disentangle
and to solve them.

Let {NV(W)} be a coherent family of modular covariant subalgebras of { M (W)} and
assume that the relative commutant AN¢(W) of N (W) in M(W) is trivial. Let E be the
projection onto [N (WW)]. We introduce:

6.5.1 Definition:

(1) G denotes the set of wedges, double cones, and spacelike complements of double cones.
(2) For G € G we define
Mi(G) =M(G)Vv{L E}".

(3) N¥(G) denotes the relative commutant of N(G) with respect to M;(G). Since by
Remark 6.0.1 duality holds inside G one has

M1 (G) = N(G).
(4) N denotes the von Neumann algebra generated by all V(G).

The following properties of M;(G) are easy to derive.

6.5.2 Lemma:

Let M1(G) be the algebra defined in 6.5.1. Then:
(1) For every wedge the algebra My(W) is a factor.
(2) For the relative commutant of M(G) in M1(G) one has

My (G) N M(G) = M(G) NN (G = N(G).

138



HJB—Apr./99

Hence for every wedge My(W) N M(W) is trivial.
(3) For the relative commutant N{(G) one has

NI(G) = My (G) 0 My (G') = NE(G).

(4) Ad Ai(t;./\/l (G) = M1(G) and hence
AdALNE(G) = NE(G).

Proof: (1) Prop. 6.4.2 implies that N(W') = M{(W)' is a factor. (2) The relative
commutant of M(G) in M1(G) is trivial if N¢(G') is trivial. This is the case for all wedges
by assumption and Lemma 6.4.3.(3). The definition of N](G) implies together with Def.
6.5.1.(3) N{(G) = M1 (G) NN'(G)) = M1 (G) N M1(G'). Since this is symmetric in G
and G’ we get the statement. (4) Eg commutes with All (Lemma 6.1.2). [

Our first goal is to look at partial isometries in M(W).

6.5.3 Definition:

Let N(W) be a modular covariant subalgebra of M(W). We set:

(1) J(W) =4V € M(W); V partial isometry with V*V =1, VV* = R(V)}.
(ii) P(W) ={VEV* = F; V € J(W)}, where E = [N (W)Q] = [N (W")Q].
(iii) By U(W) we denote the set of unitaries in M(W).

With this notation we show:

6.5.4 Lemma:
1) Let F € P(W) and P be a projection in My(W) with P < F. Then:

a P e P(W), i.e. there exists an element Vi € J(W) with P =V, EV}.

B There exists an element W € J(W)NN(W) with Vi = VW where V is defined by
F=VEV*.

~ If F = P then W 1s unitary.

2) Let Fy = ViEV Fy = Vo EVY be in P(W). Assume (VAV*)(VaV5') = 0. Then exists
an element V. € J(W) with VEV* = Fy + F5.
3) Let F € P(W) then exists a unitary element U € U(W) with F < UEU*.

Proof: 1.a) By assumption one has Vi* PV; < E. Since V}* PV} commutes with V(W)
there exists a projection H € N (W) with Vi*PV; = HE. Since N (W) is a factor of type
IIT exists a partial isometry W € N(W) with W*W = 1 and WW* = H. The operator
ViAW belongs to J(W) and one finds ViWEW*V* = ViEHV* = V;V* PV V¥ = P. This
implies also (3.

l.v) From ViEV}* = Fy = F, = VL,EV) we obtain V;*ViEV*V, = E. Hence V;'V;
commutes with F which implies V;*V; = W € N, Since V; and V, have the same range it
follows that W is unitary.

2) Choose a projection H € N (W) with H # 0 # (1 — H). Choose Wy € N(W) with
WiW =1, WiW, = H and Wy € N(W) with WoWy = 1, WSW, = (1 — H). Define

V=" + VW,
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then we find with V5*Vy = 0 and with W, W5 =0

VAV = (VW + VoW ) (Vi + Va W) =W VEVL IV, + WSV Va T, =
H+(1-H)=1,

VV* = (MWL + VaWe)(ViTVy 4+ VaTla)* =ViW WiV + VaWa Wi V5 =
R(V1) + R(Va).

Moreover, since W; commutes with E we obtain
VEV* = (VW + VoWo)E(ViW, + VoWs)* = VIEV] + VLbEV) = Fy + F.

3) Let F = Vi EV with R(V1) # 1. Since M(W) is of type III exists an element V3 €
J (W) with R(Vz) = (1 — R(V4)). From this follows 3) by statement 2). ]

By the result of the last lemma it is sufficient to look at unitary elements in 7 (W), i.e.
at elements of U(W). Now we introduce the sectors associated with elements V € J(W).

6.5.5 Definition:

Let {NV(W)} be a coherent family of modular covariant subalgebras of { M (W)}.
1) For V € J(W) we set
S(V) = [N(W)VEH].

2) NI, = ON(DY QN (WY

Notice that the projection S(V') does not only belong to (W)’ but also to N (W')’
Since the Hilbert space EH is invariant under N (W'). We observe

6.5.6 Theorem:

Let {N' (W)} be a coherent family of modular covariant subalgebras of {M(W)}. Then for
every V. € J(W) the projection S(V') belongs to N._.

Proof: The proof of this theorem consists of three parts. First assume V belongs to
J(W + a) where a belongs to the interior of the wedge W, then the statement is true.
Next we have to show that S(AdU(Aa)V') depends weakly continuous on A. The third
part consists of showing that the statement remains true if one takes limits of elements
desribed in the first part.

The first part follows from the fact that Dy = W N (W' + a) is not empty. Let
D be contained in Dy such that D + x is contained in Dy for some open set N. Hence
U{N(D+z); D+x C WU(W'+a)} commutes with S(V'). Next we look at the commutator
between S(V) and AdU(x)A with A € NV(D). Taking matrix elements of this commutator
between vectors which are entire analytic for the translations then one obtains with help of
the Jost—Lehmann—Dyson representation (Thm. 1.4.6.) that these vanish for all « € RY.
Since the analytic vectors are dense in H, the commutator vanishes everywhere. Hence
S(V) belongs to N/_.

For the second part we write Sy (V) in order to indicate that S depends on W.
Let a € W then the coherence implies the commutativity of E with U(Aa). The re-
lation Sw(AdU(Na)V)H = closure N(W)U(Aa)VU(—=Na)EH = U(Aa) closure N (W —
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Na)VEH = AdU(Aa)Sw—xa(V)H. Since N (W —M\a) is a continuous monotonous increas-
ing family of von Neumann algebras it follows that [N (W — \a)V EH] is a strongly continu-
ous monotonous increasing family of projections. Also U(Aa) depends strongly continuous
on A. Since H is invariant we conclude that Sy (AdU(Aa)V) is weakly continuous in A.
Notice: In order that Sy (Ad U(\a)V') belongs also to N'(W')’ one has to keep A > 0.
For the third part choose a € W. Then for A > 0 the projection S(AdU(Aa)V')
belongs to V. Hence for A € N, we obtain [A, S(AdU(\a)V')] = 0. Since S(AdU(\a)V)
depends weakly continuous on A for A > 0 we get [4, S(V)] = 0. This implies S(V) € N/ .0

Before we continue the investigation of N (W) we need the following preparation:

6.5.7 Lemma:

Assume V € U(W) and set P =V EV*. Then:

(1) The vector VQ s cyclic and separating for M(W).

(17) An element A € M(W) belongs to VN'V*, iff [P, A] = 0.
(171) Let ~ be the isomorphism v : VNV* — VNV*P then

Ev(A) ==~ 1 (PAP), (6.5.1)

defines a normal faithful conditional expectation from M(W) onto VN (W)V*.

Proof: (i) Since V€ M(W) is unitary we get M(W)VQ = M(W)Q. Next assume
A e M(W) and AVQ =0 then we get AV =0 and hence A = 0.
(ii) The equation [A, P] = 0 implies AVEV* — VEV*A = 0 and hence [V*AV, E] = 0.
This holds only if V*AV € N(W). This implies [4, P] =0iff A € VA(W)V*.
(iii) Since the vector V§ is separating for M (W) it follows that the map v(VNV*) =
VNV*P, N € N(W) is an isomorphism. This implies that £y (A) := v 1(PAP) is a
normal, faithful, positive linear map from M (W) onto VN(W)V*. Since the elements
in VN(W)V* commute with P we see by the definition of ~, that £y is a conditional
expectation. ]

Little is known about the structure of NY. A special situation appears if one has

S(V)=VEV*. In this case we obtain

6.5.8 Proposition:

Assume V € J(W) is such that S(V) = VEV*. Then it fulfils the following properties:
(1) V s unitary.
(17) S(V) is a minimal in NF(W).

(171) V* induces an isomorphism of N, i.e.
VINW)V = N(W).
Proof: (i) Since E'H contains the cyclic vector one obtains together with the previous
lemma R(V) = [VH] = [VMW"EH| = [ M(W")VEH] =1

(i) Assume P; € N{ (W) is such that P; < P = S(V) then by Lemma 6.5.4.(1./3) exists
a partial isometry W € N(W) with W*W = 1 and P, = VIWEW*V*. From the first
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statement we get VW is unitary. Since V' is unitary we get W is unitary. Hence we get
P; = P and P is minimal.

(iii) For N € N (W) one has V*NV € M(W). Moreover, one finds EV*NV = VS(V)NV
= V*NS(V)V = V*NVE. Hence V¥*NV commutes with F which implies V*NV € N.
Hence y(N) := V*NV is an endomorphism of N (W). Since P is minimal in N7 (W) =
NW)Y N NW') we get PN(W)V N(W') = B(PH). The relation [V*PV,N(W)] =
0 implies [P, VN (W)V*] = 0. Since VN(W)V* commutes with N (W') we conclude
PVN(W)V* € PN(W). Let 8 be the isomorphism N(W) — PN (W), then §(N) :=
BTH PV NV*) defines a second endomorphism of N'(W). We get § o y(N) =
B~HPVV*NVV*) = N. Moreover, we find Eyo 3(N) = EV*3~ (PVNV*)V =
EV*P3~Y(PVNV*)V = EV*P(VNV*)V = EV*VNV*V = EN. This inplies 7 o
B(N) = N. Hence ~ is an isomorphism. O

Finally we are interested in the structure of the set of V’s such that S(V;) = S(V2)
holds. We obtain a result only if S(V7) is a minimal projection in Ny (W).

6.5.9 Theorem:

Assume Vi, Vy € UW) such that S(Vi) = S(V2) # E holds. If in addition S(V1) is a
minimal projection in N{(W) then there exist two unitary operators Wi, Wy € M(W)
with

Vo = WhiViWa.

Proof: f ViEV)* = S(V4). Assume Vo, EV, < S(V1). Then one has V¥V, EVSV) < E.
Since this operator commutes with N (W') we obtain Vi*V,EV;V, € N(W)E. Hence
exists a partial isometry W € N(W) with domain 1 and range such that E.range W
coincides with Vi*VoEV,*V4. But this implies W*V, € AV(W). This is only possible for
S(Vi) = E. If this is not the case then Lemma 6.6.4,y implies V3 = Vi W with a uni-
tary W in N(W). If S(V4) # E and VL EV}* # S(V4) then one has also Vo EVy # S(17).
Next notice that the minimality implies S(V1)NF(W)S(V1) = CS(Vi). Hence we find
SVONFW)S(WV)V;EH = V,EH, @ = 1,2. Therefore, V;EH, i = 1,2 are invari-
ant under S(V1)N(W') v N (W)S(V1) which implies V,EV* € S(V1)N(W)S(V71). Since
S(VI)N(W)S(V7) is of type III there exists a unitary W e N (W)S(V;) with WV, EH =
Vo EH. Since the map M(W) — N(W)S(V1) is an isomorphism we can replace W by its in-
verse image in N'. The relation WV, EH = V3 E'H implies by Lemma 6.6.4,y Vo, = WV, W;.
O

From this result we learn that the “minimal sectors” S(V') are characterized by the
left—right co—sets U(N(W))VU(N(W)). Hence one can multiply minimal sectors and
decompose the product into sectors. Unfortunately it is not known whether or not the

algebra N (W) is of type L.

142



HJB—Apr./99

6.6) Structure of decomposable theories

In this section it will always be assumed that {NV (W)} is a coherent family of modular
covariant subalgebras of {M(W)}.

Having solved the decomposition problem for tensor products and the hidden charge
problem we shall have a look at the situations which might occur.
1. The simplest case is that, where V(W) and V(W) together generate M(W). In this

situation the theory is the tensor product of two “simpler” theories.

2. The other extreme is the case where N'°(W) consists of multiples of the identity. This
is the pure hidden charge situation.

3. f N (W) is not trivial then N (W) and N (W) are not necessarily the same. Since the
relative commutant of V(W) in V(W) is trivial, the passage from N (W) to N (W) is
again a hidden charge problem. If we have solved this problem, then there are again two
possibilities:

3.a. N¢(W) and N°(WW) generate the whole algebra M(W). This is the same as situation
1.

3.b. N¢(W) and N°(W) generate only a subalgebra N?(W) = N¢(W)QN(W). In
order to get to M (W) one has to solve the hidden charge problem for the algebra N'?(W).
4. Starting from N (W) and V(W) then it can happen that N (W)QN (W) = NP(WW) is
not the whole algebra M (). In this situation one has to solve the hidden charge problem
for N'P(W).

The discussion of the cases 1—4 can be summarized in the following diagram:

Ne=MnN.

(Ve B e ey

Et.p. Et.p.

Ncc@/\/c
E /B (B f

NN — 2%

t.p. stands for the construction of the tensor product.
B.f. stands for the construction of the Bose field.

If we have reached the algebra N (W)@N (W) then one has to solve a hidden charge
problem in order to get to M(W). But the algebra N (W)@N (W) is a subalgebra of
NCC(W)@NC(W). If these algebras are different then the relative commutant of
N(W)@NC(W) mn NCC(W)@NC(W) consists again of the multiples of the identity. Hence
the passage from N(W)@NC(W) to NCC(W)@NC(W) is a hidden charge problem.

It remains to explain why the algebra N °(W)@N (W) does not need to coincide with
M(W), although we have solved a hidden charge problem in order to pass from N (W)
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to N°¢(W). It might happen that both theories constructed from N<¢(W) and N¢(WW)
have sectors associated with Fermi fields. Let us denote these theories by {F°°(0)} and
{F°(O)}. Now let us take the tensor product {F°°(O)2F°(0)}. In this situation the
theory N °(W)@N (W) has as well Bose— as Fermi sectors because the tensor product of
two Fermi fields is a Bose field. If we restrict the theory to all Bose sectors, then there
are sectors which are Bose sectors but not tensor products of Bose sectors. Therefore,

Ne(W)RN (W) do not need to coincide with M (W).

6.7) Remarks, additions and problems

(i) The decomposition theory is based on the existence of modular covariant subalgebras
N (W) € M(W). Therefore, the structure of this set Mes(M) defined in 6.1.2 is of inter-
est. In particular one would like to know whether or not two different modular covariant
subalgebras must have a non—trivial intersection.

(ii) The main problem of the decomposition theory is the construction of coherent families
of modular covariant subalgebras. In Sect. 6.2 we have investigated the relation of half-
sided translations to modular covariant subalgebras. Thm. 6.2.10 indicates that the family
of modular covariant subalgebras obtained from one such subalgebra by means of Poincaré
transformations is often coherent. But conditions are missing implementing that this is
the case.

(iii) If N¢(W) is trivial then only little is known about the algebra N7 (). In the usual
theory of superselection sectors (d=4) one finds that S(V)N7(W) is of type I. Is this
true in the general case of hidden chargesI' If this holds then with help of the method of
Doplicher and Roberts [DR89] one should be able to construct the compact gauge group.
However, if S(V)N{ (W) is of type I or I11 then this implies that the gauge group cannot
be compact.

(IV) Nothing has been said about the statistics of sectors. It would be nice if one could
repeat the arguments of Doplicher, Haag and Roberts in the scheme presented here.

(V) During the investigation of the hidden charge problem we have envisaged the possibility
of a continuous family of charged sectors. Can one construct such an example, eventually
with help of Guichardet’s continuous tensor product [Geh69]' During the construction
one has to face the problem that the field algebra shall be countably decomposable. The
opposite possibility is the case where the center of N (W) is purely atomic. To answer
these questions further investigations are needed.

(VI) Although we derived the structure of the superselection sectors only for Bose fields,
it should be possible to do the same also for Bose— and Fermi Fields. In this case F(O) is
a graded algebra which can be handled with small modifications as the pure Bose case.

(VII) The content of Sect. 6 has partly be explained in [Bch99]. The structure of sub—
theories of QFTLO has also been investigated by D.R. Davidson in his thesis [Dav88].
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7. Problems for the future

At the end of every section we have mentioned some problems. Nevertheless, there are
some questions which should be discussed because they are, in my opinion, of importance

for the future development of QFTLO.

7.1) About the restriction to lower dimensions

Axiomatic approach to QFTLO has, compared to the Lagrangean setting, the disad-
vantage, that there exist mathematical operations, which allow to construct new theories
out of two or more given ones. These new theories do not contain any new physics. Exam-
ples of such operations are the direct sum, direct product, and additions of charged Bose
fields to the observables. Therefore, one is interested in characterizing theories which are
indecomposable with respect to such operations. However, there is one operation which is
of different nature. This is the restriction to lower dimensions. For Wightman fields it is
known [Bch64] that the field operators are C'*°—functions in spacelike directions with values
in the space of operator valued distributions (in the time direction). Hence one can restrict
Wightman fields to lower dimensions, as long as the lower dimensional space contains the
time direction. The restriction in x—space corresponds to integration in momentum space.
Therefore, if the orginal theory has an isolated mass, then such information gets lost by
this operation. Hence also this operation is unwanted.

In QFTLO exists a similar operatlon Assume {./\/l( ) RIT! ,at is a given theory,
then one can construct a theory on IR? as follows: Let D be a double cone in R? , then this
is the intersection of a double cone D(D) in R with IRY. On the other hand denote
by K(D) the cylindrical set obtained by choosing the first d variables in D and the last
variable arbitrary. D is again the intersection of K (D) with IRY. Now we choose N(D)
such that

M(D(D)) C N(D) c M(K(D))
holds. Then {N(ﬁ),IRd,a} defines a QFTLO provided we choose that N(B) fulfils co-

variance (in IRd) and isotony. But these conditions are easily fulfilled. Therefore, there
exist many different restrictions. Notice that for the wedge—algebras all these different
restrictions coincide and are equal to M(W). This follows from the double cone theorem.
Thm. 1.4.4.

Since the restriction leads to unwanted effects one would like to reconstruct the original
theory. I hope, that with help of Tomitas modular theory this will be possible one day.
Let us look at examples, in order to see, that my hope is not completely unjustified.

7.1.1 Example: Take a conformal QFT in two dimensions. Choose a fixed timelike
direction and restrict the theory to this line. As algebra of an interval take the algebra of
the associated double cone, i.e. if (a,b),a < b is the interval then we associate to it the
algebra of the double cone (a + V)N (b—V*) where VT denotes the forward light—cone.
By this we obtain a theory on the line.

The algebra M(V+ +a) with a not on the line fulfils the condition of half-sided mod-

ular inclusion with respect to the algebra of IRT. This algebra is not associated with
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any set of IR'. Moreover, the associated translation commutes with the translation along
the time—axis. From the two—dimensional group of translations it should be possible to
reconstruct the orginal theory on IR?.

7.1.2 Example: Take a standard QFTLO in three dimensions and restrict it to two
dimensions. Then one should be able to recover the original theory since the algebra

M <W(€1,€2) N W(€1,€3)> fulfils the condition of half-sided modular inclusion with re-

spect to the wedge algebra. This algebra is not associated to a subset of IR?*. But the
corresponding half-sided translations allow to reconstruct the translational part of the
stabilizer group of ¢1. Also here one should be able to reconstruct the orginal theory on
IR®.

In order to be able to reconstruct the original theory one has to understand the
spaces of thalf-sided translations (and the spaces of half-sided modular inclusions) for
the algebras of the wedge domains. In conformal field theories one has to look also at the
algebra of the forward light—cone.

When we constructed the Poincaré group from the modular groups of the wedges
(section 4.4) we were able to show that certain half-sided translations commute. One has
to understand better the principle behind this phenomenon.

Looking at the example of the forward lightcone in conformal field theory one sees,
that the algebras of any subdomain S fulfilling S + VT = § belong to Hsmi(M(VT))~.
Hence there exists a half—sided translation associated with it. For a € S one has the half-
sided translation of M(V™T + a) with its generator denoted by H,. It should be possible
to express the generator of the group associated with M(S) in terms of the family {H,}.

The spaces Hsmi(M)™ and Hsmi(M)T have certain order and convexity properties.
These are explaind in [Bch96a]. Moreover, one can introduce an equivalence relation in

Hsmi(M)~ (and also in Hsmi(M)T) as follows:

7.1.3 Definition:

Let N1, Ny € Hsmi(M)™ and U,(t), 1 = 1,2 their associated translations. Then
AdU;(t — 1)N; will be denoted by N;(t). We call A7 and N> equivalent

Ny~ Ny
if there exist two non-zero positive numbers A\{, Ay with
Ni(A1) C Ny CNi(Ag).
Because of the decreasing monotony of A7(\) one must have Ay < Ay,

It is interesting to notice that this order structure survives if one passes to the space of
equivalence classes. This discussion shows that Hsmi(M)™ has a rich structure, but up to
now it is not clear how to get to the geometric structure on which the algebra M is based.

In the example of the wedge one has to construct the algebra M(W ({y,(3)) from

the knowledge of the algebra M <W(€1,€2) N W(€1,€3)>. This is possible since the half—
sided translation connecting M(W ({1, 05)) with M <W(€1,€2) N W(€1,€3)> is also a half-

sided translation of the latter algebra. Knowing this translation one can reconstruct
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M(W(ly,03)). The only problem here is the normalization of the group. If U(t) €
Hstr(M)T and A > 0, then U(\t) € Hstr(M)t. Therefore, A has to be fixed for the

correct application.

7.2) Vacuum states on the hyperfinite 111, algebra

As discussed in Thm. 5.3.9 the Buchholz—Wichmann nuclearity property Cond. 5.3.7
implies that the local algebras are hyperfinite I11; algebras. Therefore, the algebras be-
longing to wedges are also hyperfinite and of type I1I;. By a result of Haagerup [Hgr87]
there exists (up to unitary equivalence) only one hyperfinite I71; factor. Therefore, it is
tempting to ask wether or not the vacuum state of a QFTLO can be characterized by
algebraic means. What I have in mind is the structure of the set of half-sided translations,
or equivalently half—sided modular inclusions connected with the vacuum state of the given
theory. The situation shall be explained by examples.

7.2.1 Example: The QFTLO on the line.

Here the wedge algebra is associated with the half-line IR™ = {(0,00)}. If we look
at the algebra associated with the set (1, 00), then this fulfils the condition of —half-sided
modular inclusion and the algebra belonging to (0, 1) fulfils the condition of +half-sided
modular inclusion. In this situation M((0, 1)) is the relative commutant of M((1,00)) in
M(IRT) and the corresponding half-sided translations together with the modular group
of M(IRT) generate the Mdbius group.

7.2.2 Example: QFTLO on the d—dimensional Minkowski space, d > 1.

For d = 2 one has for the algebra of the wedge two half—sided translations with opposite
sign. These are the translations along the two lightlike directions. In this case the two
translations commute and the two translations together with the modular group of the
wedge—algebra generate the two—dimensional Poincaré group. In higher dimension we will
restrict to theories fulfilling the Bisognano—Wichmann property. In this situation we know
from Thm. 4.4.3 that the algebra M(W[(,(1]) N W[l,(5]) fulfils the condition of —half-
sided modular inclusion with respect to the algebras M(W|[(,(1]) and M(W(,l5]). In
this situation we obtain for M(W/(, (1]) a family of half-sided modular inclusions labeled
by the direction of ¢3. A precise characterization of this situation is still missing. This
is due to the fact that one is looking for Loerentz transformations and not for the group
generated by the half-sided translations.

7.2.3 Example: Conformal field theories in higher dimension.

In this situation the set of half-sided modular inclusions is much larger. This is due
to the fact that one has timelike commutativity. Let G be a set with G + VT = G then it
is easy to see that M(G N W) fulfils the condition of —half-sided modular inclusion with
respect to the algebra M(W). But the importance of the associated half-sided translations
is not known.

7.2.4 Example: QFT on the two dimensional de Sitter space.
The two—dimensional de Sitter space is isomorphic to the one—sheeted hyperboloid
in the three—dimensional Minkowski space. A wedge in this space is the intersection of
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the wedge in the ambient space with the hyperboloid. It turns out, that also in this
situation the translations along the the lightlike directions are half-sided translations. But
the situation is different as well from the field theory on the two—dimensional Minkowski
space as from the field theory on the line. Since the ”shifted wedges” of the de Sitter
space can have an empty intersection it follows that the vacuum vector is not cyclic for the
corresponding algebras. This implies that the two translations do not commute. Hence the
situation is different from the Minkowski space theory. The situation is probably different
from that of the line, because it is unlikely, that the different subalgebras fulfilling the
condition of thalf-sided modular inclusion are relative commutants of eachother. (For

details on QFT on de Sitter see e.g. [BB9S].)
7.2.5 Problems:

1) Can one characterize those states on a hyperfinite I1]; factor which permit one or more
+half-sided modular inclusionsI’

2) If a state permits at least one half-sided modular inclusion, what are the different
families of such inclusions which can appearl’

3) Can one discriminate different theories of local observables by means of the set of half—
sided modular inclusionsI’

7.3) Can one interprete the local modular groups as local
dynamics?

For many questions in quantum physics it is advantageous to have a local dynamics.
This is in particular the case if one is interested in defining Gibbs states of a system. If
one starts from the usual quantum theory one chooses as subsystems the particle in a box
with reflecting walls or periodic boundary conditions. This defines a quantum system and
the corresponding Hamiltonian is considered as the local one. In Lagrangean quantum
field theory the energy is usually given as an integral over a Hamiltonian density. In this
situation one takes as local energy the integral of the energy density over the region one is
interested in. Sometimes one has to take for the integration a smooth testfunction which
is one in the domain of interest and which tends to zero in a small neighbourhood of that
region. In the theory of local observables a definition of a local dynamics or an energy
density is up to now only possible if the theory fulfils the nuclearity condition of Buchholz
and Wichmann [BW86]. For the construction of a local dynamics see e.g. Buchholz and
Junglas [BJ89] and for the energy density see Buchholz, Doplicher and Longo [BDL86].
Since for a general QFTLO there exists no concept which could be used as local dynamics,
it 1s tempting to interprete the properly scaled modular groups of local regions as local
dynamics.

First we have to explain what we want to understand by a local dynamics. Let us fix
a vector zg in the forward light cone V* with 23 = 1. The double cones D%’ are defined
by

Dy ={Rxo —VT}Nn{—Rao + V1L (7.3.1)

Let Ug(t) be a family of unitary groups depending continuously on R such that the
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group Ad URg(t) belongs to the automorphisms of M(D7%’). Then we say that these groups
define a local dynamics if for every bounded set O the expression

Ur(t)AQ, A e M(0)

converges for R — oo to T'(txg)AS in the topology of the Hilbert space and this uniformly
on every compact of the t—axis.

That the modular groups might be a good candidate is indicated by the following two
examples.

7.3.1 Example: For a fixed double cone we choose D = {x;|2°] + ||Z]] < 1} and the
running double cone will be replaced by a running family of wedges Wgr := W — Ra! with
R > 1 and 2! is a fixed vector perpendicular to the time direction 2% with (z1)? = —1. If
we denote the modular group of Wg by Alf then we choose as local dynamics

Because of A;# = T(—Rxl)Agi#T(Rxl) this becomes with Remark 2.5.3

= T((Aw(—525) — 1)R:1;1)A0_1ﬁ, where T'(x) denotes the representation of the transla-
tions. With Eq. (1.5.3) we find:

ot A Opu.p b 1 St o
(Aw( —27TR) L)Rx ==z RsmhR—l—x R(cosh( R) 1) =2a"t+ O(

1
2
This implies
1 it
Ur(t)AQ = T(t2° + O(E))AO 2R AQ).

Since Al is strongly continuous we obtain by the unitarity of the operators

s— lim Up(t)AQ = T(HAQ, A€ M(D).

R—oo

7.3.2 Example: As a second example we look at conformal field theory, where the modular
groups of the double cones are known (Thm. 3.2.2). We choose as running domains the
double cones of radius R and choose

With the notation of Thm. 3.2.2 this corresponds to the transformation

—(1 = 2% /R) 4 ¥/ B(1 4+ 2% /R)
(1 —a2%/R)+e2/B(1+a*/R)

For small ¥ and large R we obtain

1

I O().

TR
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Since the representation of the conformal group is continuous it follows, also in this exam-
ple, that U(¢) converges for large R to the time translation.

There is one essential difference between the two examples, namely the scaling of the
corresponding modular groups differs by the facter 2. I think that one has to understand

it
the origin of the difference in the scaling factors before one is able to prove that ARIWR
converges to the time translation also in the general case.

7.4) Modular theory in charged sectors

Almost all the results described in this review are based on the fact that cyclic and
separating vector €2 for the local algebras is at the same time the only vector which is
invariant under the representation of the Poincaré group. We do not have this situation
in the charged sectors. But if we take a vector ¥» which has compact energy contribution
and if ¢ is one of the lightlike vectors defining the wedge W ((, ('), then U(N), A € R is
again a group with positive generator which maps M (W (/,(") into itself. Moreover the
vector U (M) is again a vector which is cyclic and separating for M(W). In addition the
modular group of U(A)y can be computed from that of ¢» with help of the cocycle Radon
Nikodym derivative [DU (M) : D)y, [CoT3b], [CTT7]. If we denote the Radon Nikodym

derivative for a moment by u;, then the cocycle relation means
Ustt = USU{Z(Ut)- (7.4.1)

The action of the modular group belonging to U(Al)y can be computed with help of the
formula

ohanulA) = [DUNOY : DYliol,(A)DUA)Y : DYJ;, A€ M(W). (7.4.2)

7.4.1 Problems:

(i) We know that the group U(A) has an analytic continuation into the upper complex
half-plane. What does this imply for the Radon Nikodym derivative [DU (M) : D] I’
Note that for complex A the vector U(Al)y is again cyclic and separating for M(O), which
implies that the Radon Nikodym derivative is also defined for those values of A.

(ii) Does there exist any relation between Ailz, [DU (M) : D)y and U(M) besides the

known standard onesI’
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Appendix 1 (K-H. Rehren)

Bibliography on the algebraic theory of superselection sectors in low dimen-
sions

In the last decade, the algebraic theory of superselection sectors was supplemented by a vast reservoir
of examples originating in two-dimensional conformal quantum field theory. As is well known, in low
dimensions the possibility of braid group statistics is a new feature beyond the original DHR analysis,
which is however easily incorporated into the original framework.

The following is a list of prominent references in the algebraic theory of superselection sectors in low
dimensions.

The DHR theory was adapted to the case of braid group statistics in [FRS89], [FG91]. The local
von Neumann algebras for specific models based on non—abelian current algebras were constructed and
analysed in [Wa95], [Wa98], [Lo94]. Modular theory was applied to a general study of global properties
of chiral nets concerning Haag duality, conformal covariance, spin-statistics theorem and CPT theorem in
[BGLI3], [GLI6]. Models with a breakdown of Haag duality and the construction of the associated dual net
were discussed in [BSM90], [Mi98a], [GLW98]. Sufficient conditions to reconstruct, using modular theory
[Bch92], a chiral net with conformal symmetry and spectrum condition from a single half-sided modular
inclusion of von Neumann algebras were formulated by [Wie94]. For models with Haag duality in two
dimensions it was shown that the split property for wedges (presumably related to a mass gap) excludes
the existence of localized superselection sectors at all [Mu98b], while solitonic sectors will generically
emerge. Properties of the latter were studied in [Sch98], [Mu98c], [Re98].

158



HJB—Apr./99

The issue of charged fields which create superselection sectors from the vacuum, and of an underlying
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obvious obstruction. In the abelian case, an anyonic field algebra was constructed in [BMT88]. The reduced
field bundle (RFB) of intertwining non—local fields was introduced as a general construction in [FRS89],
and conformal covariance properties of these algebras were analysed in [FRS92]. Pointlike exchange fields
associated with the RFB were constructed in [FJ96], and the weak C* Hopf symmetry of the RFB was
discovered in [Ni94], [Re97]. Other, ultimately unsatisfactory, symmetry concepts were discussed in [MS90],
[Re90]. A theory of sector induction and restriction between a theory and a subtheory equipped with a
global conditional expectation was initiated in [LR95] and was further elaborated with a view on specific
chiral models in [BE98].
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Appendix 2 (R. Verch)

References for applications of Tomita-Takesaki theory in quantum field theory
on curved spacetime

Listed below are references containing applications of Tomita-Takesaki theory to quantum field theory

on curved spacetime.

On a generic curved spacetime, there are in general no symmetries (spacetime isometries) present,
and hence there is no natural candidate for a vacuum state. Likewise, in a generic curved spacetime, it is
in general not clear which spacetime regions, if any, play a similar role as the wedge regions in Minkowski

spacetime in the sense that the modular objects corresponding to von Neumann algebras associated with
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these regions and preferred vacuum-like vectors act in a suitable sense geometrical. Therefore, most appli-
cations of Tomita-Takesaki theory to quantum field theory in curved spacetime so far have been restricted
to a class of spacetimes possessing a structure which to certain extent mimics the geometrical features
underlying the Bisognano-Wichmann situation, i.e. there are natural wedge-regions and Killing flows leav-
ing these wedge regions invariant. In this case, a variety of versions of a geometric action of modular
objects associated with wedge-regions and certain preferred states has been investigated in the works
[BB99],[BEM98],[BDFS98],[GLRV99],[Kay85],[KW91],[Sew82],[SV96]. The pioneering work of this list is
[Sew96], where a situation analogous to the Bisognano-Wichmann setting is modelled on Schwarzschild-
Kruskal spacetime. An operator-algebraic version of it appears in [SV96]. The works [Kay85],[KW91]
deal with an investigation of this Bisognano-Wichmann-like situation on black-hole spacetimes for free
scalar field models. In [BB99],[BEM98], Bisognano-Wichmann-like scenarios are investigated on de Sitter

spacetime.

An attractive line of thought is to try and characterize vacuum states on a generic spacetime by a
suitable form of geometric modular action with respect to von Neumann algebras associated with a class of
distinguished regions (e.g. wedge regions, cf. also [BB99]). On a generic spacetime without isometries such
a geometric action of modular objects cannot be expected to be given by point-transformations on the

underlying spacetime-manifold. A more general approach addressing this issue is developed in [BDFS98].

In [CR94] a somewhat different approach, compared to the works just cited, is taken towards the

physical interpretation of modular objects in generally covariant quantum theories.

The type of the local von Neumann algebras of a quantum field theory is related to the spectra of
their associated modular operators (Connes’ invariant) and can, like on Minkowski spacetime, be fixed
on curved spacetime via assumptions on the quantum field theory’s short-distance scaling limits. This
question is considered in [Ver97],[Wol92].
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