Introduction to representation theory of braid groups

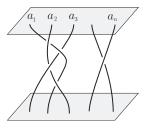
Toshitake Kohno

The University of Tokyo

Peking University, July 2018

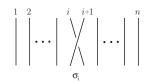
Braid groups

Braid groups were studied by E. Artin in the 1920's.



The isotopy classes of geometric braids as above form a group by composition. This is the braid group with n strands denoted by B_n .

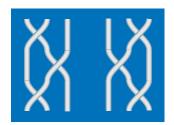
Braid relations



 B_n is generated by σ_i , $1 \le i \le n-1$ with relations

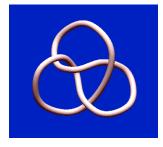
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \quad |i - j| > 1$$

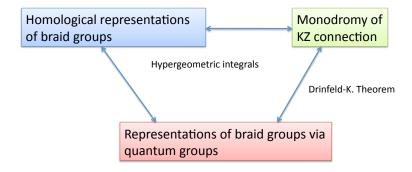


Braid groups

A braid and its closure (figure eight knot):



Quantum symmetry in representations of braid groups



• Monodromy representations of logarithmic connections

- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection

- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Homological representations and KZ connections

- Monodromy representations of logarithmic connections
- Knizhnik-Zamolodchikov (KZ) connection
- Homological representations and KZ connections
- Quantum symmetry in homological representations

Configuration spaces

 $\mathcal{F}_n(X)$: configuration space of ordered distinct n points in X.

$$\mathcal{F}_n(X) = \{(x_1, \dots, x_n) \in X^n ; x_i \neq x_j \text{ if } i \neq j\},\$$

$$\mathcal{C}_n(X) = \mathcal{F}_n(X)/\mathfrak{S}_n$$

Configuration spaces

 $\mathcal{F}_n(X)$: configuration space of ordered distinct n points in X.

$$\mathcal{F}_n(X) = \{(x_1, \dots, x_n) \in X^n ; x_i \neq x_j \text{ if } i \neq j\},\$$

$$\mathcal{C}_n(X) = \mathcal{F}_n(X)/\mathfrak{S}_n$$

Suppose $X = \mathbf{C}$.

$$\pi_1(\mathcal{F}_n(\mathbf{C})) = P_n, \quad \pi_1(\mathcal{C}_n(\mathbf{C})) = B_n$$

We set $X_n = \mathcal{F}_n(\mathbf{C})$

Logarithmic forms

We set

$$\omega_{ij} = d \log(z_i - z_j), \quad 1 \le i \ne j \le n.$$

Consider a total differential equation of the form $d\phi=\omega\phi$ for a logarithmic form

$$\omega = \sum_{i < j} A_{ij} \omega_{ij}$$

with $A_{ij} \in M_m(\mathbf{C})$.

As the integrability condition we infinitesimal pure braid relations

$$\begin{split} [A_{ik},A_{ij}+A_{jk}] &= 0, \quad (i,j,k \;\; \text{distinct}), \\ [A_{ij},A_{k\ell}] &= 0, \quad (i,j,k,\ell \;\; \text{distinct}) \end{split}$$

The following are generalized for the complement of the union of complex hyperplanes.

As the integrability condition we infinitesimal pure braid relations

$$\begin{split} [A_{ik},A_{ij}+A_{jk}] &= 0, \quad (i,j,k \;\; \text{distinct}), \\ [A_{ij},A_{k\ell}] &= 0, \quad (i,j,k,\ell \;\; \text{distinct}) \end{split}$$

The following are generalized for the complement of the union of complex hyperplanes.

• As the holonomy of the flat connection ω we obtain linear representation of the pure braid group P_n .

As the integrability condition we infinitesimal pure braid relations

$$\begin{split} [A_{ik},A_{ij}+A_{jk}] &= 0, \quad (i,j,k \;\; \text{distinct}), \\ [A_{ij},A_{k\ell}] &= 0, \quad (i,j,k,\ell \;\; \text{distinct}) \end{split}$$

The following are generalized for the complement of the union of complex hyperplanes.

- As the holonomy of the flat connection ω we obtain linear representation of the pure braid group P_n .
- The horizontal section of ω is expressed as an infinite sum of iterated integrals of logarithmic forms (hyperlogarithms).

As the integrability condition we infinitesimal pure braid relations

$$\begin{split} [A_{ik},A_{ij}+A_{jk}] &= 0, \quad (i,j,k \;\; \text{distinct}), \\ [A_{ij},A_{k\ell}] &= 0, \quad (i,j,k,\ell \;\; \text{distinct}) \end{split}$$

The following are generalized for the complement of the union of complex hyperplanes.

- As the holonomy of the flat connection ω we obtain linear representation of the pure braid group P_n .
- The horizontal section of ω is expressed as an infinite sum of iterated integrals of logarithmic forms (hyperlogarithms).
- Infinitesimal pure braid relations describe the nilpotent completion of the pure braid group P_n over \mathbf{Q} (Malcev algebra).

KZ connections

 ${\mathfrak g}$: complex semi-simple Lie algebra. $\{I_{\mu}\}$: orthonormal basis of ${\mathfrak g}$ w.r.t. Killing form. $\Omega=\sum_{\mu}I_{\mu}\otimes I_{\mu}$ $r_i:{\mathfrak g}\to End(V_i),\ 1\leq i\leq n$ representations.

KZ connections

g : complex semi-simple Lie algebra.

 $\{I_{\mu}\}$: orthonormal basis of ${\mathfrak g}$ w.r.t. Killing form.

$$\Omega = \sum_{\mu} I_{\mu} \otimes I_{\mu}$$

 $r_i: \mathfrak{g} \stackrel{r}{\to} End(V_i), \ 1 \leq i \leq n$ representations.

 Ω_{ij} : the action of Ω on the i-th and j-th components of $V_1 \otimes \cdots \otimes V_n$.

$$\omega = \frac{1}{\kappa} \sum_{i < j} \Omega_{ij} d \log(z_i - z_j), \quad \kappa \in \mathbf{C} \setminus \{0\}$$

 ω defines a flat connection for a trivial vector bundle over the configuration space $X_n = \mathcal{F}_n(\mathbf{C})$ with fiber $V_1 \otimes \cdots \otimes V_n$ since we have

$$\omega \wedge \omega = 0$$

Monodromy representations of braid groups

As the holonomy we have representations

$$\theta_{\kappa}: P_n \to GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_{\kappa}: B_n \to GL(V^{\otimes n}).$$

Monodromy representations of braid groups

As the holonomy we have representations

$$\theta_{\kappa}: P_n \to GL(V_1 \otimes \cdots \otimes V_n).$$

In particular, if $V_1 = \cdots = V_n = V$, we have representations of braid groups

$$\theta_{\kappa}: B_n \to GL(V^{\otimes n}).$$

We shall express the horizontal sections of the KZ connection : $d\varphi=\omega\varphi$ in terms of homology with coefficients in local system homology on the fiber of the projection map

$$\pi: X_{m+n} \longrightarrow X_n.$$

$$X_{n,m}$$
: fiber of π , $Y_{n,m} = X_{n,m}/\mathfrak{S}_m$

Representations of $sl_2(\mathbf{C})$

 $\mathfrak{g} = sl_2(\mathbf{C})$ has a basis

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), E = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), F = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right).$$

 $\lambda \in \mathbf{C}$

 M_{λ} : Verma module of $sl_2(\mathbf{C})$ with highest weight vector v such that

$$Hv = \lambda v, Ev = 0$$

 M_{λ} is spanned by

$$v, Fv, F^2v, \cdots$$

For a non-negative integer λ we obtain an irreducible irreducible representation V_{λ} of dimension $\lambda+1$ as a quotient of M_{λ} .

KZ equation for $sl_2(\mathbf{C})$

Consider the case $\lambda = 1$. Put $V = V_{\lambda}$.

The monodromy representations of braid groups

$$\theta_{\kappa}: B_n \to GL(V^{\otimes n}).$$

Set $q=e^{2\pi\sqrt{-1}/\kappa}$ and

$$g_i = q^{1/4}\theta_\kappa(\sigma_i)$$

Then we have

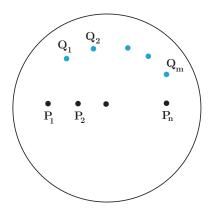
$$(g_i - q^{1/2})(g_i + q^{-1/2}) = 0.$$

The monodromy representations factor through the Iwahori-Hecke algebra $\mathcal{H}(q)$. The above quadratic relation leads to the skein relation of the Jones polynomial.

Relative configuration spaces

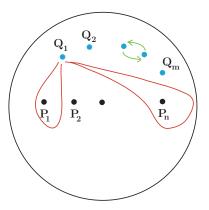
Fix $P=\{(1,0),\cdots,(n,0)\}\subset D$, where D is a 2 dimensional disc. $\Sigma=D\setminus P$

$$\mathcal{F}_{n,m}(D) = \mathcal{F}_m(\Sigma), \quad \mathcal{C}_{n,m}(D) = \mathcal{F}_m(\Sigma)/\mathfrak{S}_m$$



Homology of relative configuration spaces

$$H_1(\mathcal{C}_{n,m}(D); \mathbf{Z}) \cong \mathbf{Z}^{\oplus n} \oplus \mathbf{Z}$$



Abelian coverings

Consider the homomorphism

$$\alpha: H_1(\mathcal{C}_{n,m}(D); \mathbf{Z}) \longrightarrow \mathbf{Z} \oplus \mathbf{Z}$$

defined by
$$\alpha(x_1, \dots, x_n, y) = (x_1 + \dots + x_n, y)$$
.

Abelian coverings

Consider the homomorphism

$$\alpha: H_1(\mathcal{C}_{n,m}(D); \mathbf{Z}) \longrightarrow \mathbf{Z} \oplus \mathbf{Z}$$

defined by $\alpha(x_1, \dots, x_n, y) = (x_1 + \dots + x_n, y)$.

Composing with the abelianization map

$$\pi_1(\mathcal{C}_{n,m}(D),x_0) \to H_1(\mathcal{C}_{n,m}(D);\mathbf{Z})$$
, we obtain the homomorphism

$$\beta: \pi_1(\mathcal{C}_{n,m}(D), x_0) \longrightarrow \mathbf{Z} \oplus \mathbf{Z}.$$

 $\pi:\widetilde{\mathcal{C}}_{n,m}(D) \to \mathcal{C}_{n,m}(D)$: the covering corresponding to $\operatorname{Ker} \beta.$

Homological representations

 $H_*(\widetilde{\mathcal{C}}_{n,m}(D);\mathbf{Z})$ considered to be a $\mathbf{Z}[\mathbf{Z}\oplus\mathbf{Z}]$ -module by deck transformations.

Express ${f Z}[{f Z}\oplus{f Z}]$ as the ring of Laurent polynomials $R={f Z}[q^{\pm 1},t^{\pm 1}].$

$$H_{n,m} = H_m(\widetilde{\mathcal{C}}_{n,m}(D); \mathbf{Z})$$

Homological representations

 $H_*(\widetilde{C}_{n,m}(D); \mathbf{Z})$ considered to be a $\mathbf{Z}[\mathbf{Z} \oplus \mathbf{Z}]$ -module by deck transformations.

Express ${\bf Z}[{\bf Z}\oplus{\bf Z}]$ as the ring of Laurent polynomials $R={\bf Z}[q^{\pm 1},t^{\pm 1}].$

$$H_{n,m} = H_m(\widetilde{\mathcal{C}}_{n,m}(D); \mathbf{Z})$$

 $H_{n,m}$ is a free R-module of rank

$$d_{n,m} = \left(\begin{array}{c} m+n-2\\ m \end{array}\right).$$

 $\rho_{n,m}: B_n \longrightarrow \operatorname{Aut}_R H_{n,m}: \text{ homological representations } (m>1)$ extensively studied by Bigelow and Krammer; they are faithful representations.

$$\Lambda = (\lambda_1, \dots, \lambda_n) \in \mathbf{C}^n$$
, $|\Lambda| = \lambda_1 + \dots + \lambda_n$
Consider the tensor product $M_{\lambda_1} \otimes \dots \otimes M_{\lambda_n}$.

$$\begin{split} & \Lambda = (\lambda_1, \cdots, \lambda_n) \in \mathbf{C}^n, \quad |\Lambda| = \lambda_1 + \cdots + \lambda_n \\ & \text{Consider the tensor product } & M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n}. \\ & m : \text{non-negative integer} \end{split}$$

$$W[|\Lambda| - 2m] = \{x \in M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} ; Hx = (|\Lambda| - 2m)x\}$$

 $\Lambda = (\lambda_1, \cdots, \lambda_n) \in \mathbf{C}^n, \quad |\Lambda| = \lambda_1 + \cdots + \lambda_n$ Consider the tensor product $M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n}$. m: non-negative integer

$$W[|\Lambda| - 2m] = \{x \in M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} ; Hx = (|\Lambda| - 2m)x\}$$

The space of null vectors is defined by

$$N[|\Lambda| - 2m] = \{x \in W[|\Lambda| - 2m] \; ; \; Ex = 0\}.$$

 $\begin{array}{ll} \Lambda=(\lambda_1,\cdots,\lambda_n)\in {\bf C}^n, & |\Lambda|=\lambda_1+\cdots+\lambda_n\\ \text{Consider the tensor product } M_{\lambda_1}\otimes\cdots\otimes M_{\lambda_n}.\\ m: \text{non-negative integer} \end{array}$

$$W[|\Lambda| - 2m] = \{x \in M_{\lambda_1} \otimes \cdots \otimes M_{\lambda_n} ; Hx = (|\Lambda| - 2m)x\}$$

The space of null vectors is defined by

$$N[|\Lambda| - 2m] = \{x \in W[|\Lambda| - 2m] \; ; \; Ex = 0\}.$$

The KZ connection ω commutes with the diagonal action of $\mathfrak g$ on $M_{\lambda_1}\otimes\cdots\otimes M_{\lambda_n}$, hence it acts on the space of null vectors $N[|\Lambda|-2m]$.

The monodromy of KZ connection

$$\theta_{\kappa,\lambda}: P_n \longrightarrow \operatorname{Aut} N[|\Lambda| - 2m]$$

Comparison theorem

We fix a complex number λ and consider the case $\lambda_1 = \cdots = \lambda_n = \lambda$. We have

$$\theta_{\kappa,\lambda}: B_n \longrightarrow \operatorname{Aut} N[n\lambda - 2m].$$

Theorem

There exists an open dense subset U in $(\mathbf{C}^*)^2$ such that for $(\lambda, \kappa) \in U$ the homological representation $\rho_{n,m}$ with the specialization

$$q = e^{-2\pi\sqrt{-1}\lambda/\kappa}, \quad t = e^{2\pi\sqrt{-1}/\kappa}$$

is equivalent to the monodromy representation of the KZ connection $\theta_{\lambda,\kappa}$ with values in the space of null vectors

$$N[n\lambda - 2m] \subset M_{\lambda}^{\otimes n}.$$

Local system over the configuration space

$$\pi: X_{n+m} \to X_n$$
: projection defined by $(z_1, \cdots, z_n, t_1, \cdots, t_m) \mapsto (z_1, \cdots, z_n)$. $X_{n,m}$: fiber of π .

$$\Phi = \prod_{1 \le i < j \le n} (z_i - z_j)^{\frac{\lambda_i \lambda_j}{\kappa}} \prod_{1 \le i \le m, 1 \le \ell \le n} (t_i - z_\ell)^{-\frac{\lambda_\ell}{\kappa}}$$

$$\times \prod_{1 \le i < j \le m} (t_i - t_j)^{\frac{2}{\kappa}}$$

(multi-valued function on X_{n+m}). Consider the local system \mathcal{L} associated with Φ .

Solutions to KZ equation

Notation:

 $W[|\Lambda|-2m]$ has a basis

$$F^J v = F^{j_1} v_{\lambda_1} \otimes \dots \otimes F^{j_n} v_{\lambda_n}$$

with $|J| = j_1 + \cdots + j_n = m$ and $v_{\lambda_j} \in M_{\lambda_j}$ the highest weight vector.

Solutions to KZ equation

Notation:

 $W[|\Lambda|-2m]$ has a basis

$$F^J v = F^{j_1} v_{\lambda_1} \otimes \dots \otimes F^{j_n} v_{\lambda_n}$$

with $|J|=j_1+\cdots+j_n=m$ and $v_{\lambda_j}\in M_{\lambda_j}$ the highest weight vector.

Theorem (Schechtman-Varchenko, Date-Jimbo-Matsuo-Miwa, ...)

The hypergeometric integral

$$\sum_{|J|=m} \left(\int_{\Delta} \Phi R_J(z,t) dt_1 \wedge \cdots \wedge dt_m \right) F^J v$$

lies in $N[|\Lambda|-2m]$ and is a solution of the KZ equation, where Δ is a cycle in $H_m(Y_{n,m},\mathcal{L}^*)$.

Quantum symmetry

Theorem

There is an isomorphism

$$N_h[\lambda n - 2m] \cong H_m(Y_{n,m}, \mathcal{L}^*)$$

which is equivariant with respect to the action of the braid group B_n , where $N_h[\lambda n-2m]$ is the space of null vectors for the corresponding $U_h(\mathfrak{g})$ -module with $h=1/\kappa$.

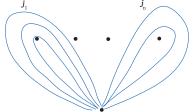
Quantum symmetry for twisted chains

There is the following correspondence:

twisted multi-chains \Longleftrightarrow weight vectors $F^{j_1}v_1\otimes \cdots \otimes F^{j_n}v_n$

twisted boundary operator \iff the action of $E \in U_h(\mathfrak{g})$

$$H_m(Y_{n,m},\mathcal{L}^*) \iff N_h[\lambda n - 2m]$$



twisted multi-chains

