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Abstract The distribution of linear combinations of inde-
pendent Gumbel random variables is of great interest
for modeling risk and extremes in the most different
areas of application. In this paper we develop near-exact
approximations for the distribution of linear combination of
independent Gumbel random variables based on a shifted
generalized near-integer gamma distribution and on the
distribution of the difference of two independent generalized
integer gamma distributions. These near-exact distributions
are computationally appealing and numerical studies con-
firm their accuracy, as assessed by a proximity measure used
in related studies. We illustrate the proposed approximations
on applied problems in networks engineering, computational
biology, and flood risk management.
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1 Introduction

The Gumbel distribution is a particular case of the Gener-
alized Extreme Value distribution and it has been widely
used for modeling risk and extremes (Gumbel 1941; Tiago
de Oliveira 1963; Hosking et al. 1985; Balakrishnan et
al. 1992; Wang 1995; Arnold et al. 1998; Castillo et al.
2005; Antal et al. 2009). Linear combinations of Gum-
bel related random variates arise naturally in applications
whenever there is the need to model the combination of
extremes of several variables, and this has been a topic of
considerable attention in diverse applications (Bailey and
Gribskov 1997; Cetinkaya et al. 2001; Loaiciga and Leip-
nik 1999; Burda et al. 2012). Despite the wide range of
applications in which the distribution of linear combina-
tions of independent Gumbel random variables may be use-
ful, few results are available on this distribution. Nadarajah
(2008) presents the exact distribution of the linear combina-
tion of p independent Gumbel random variables, using Fox
H and Meijer G functions, but the computational invest-
ment required by these functions limits the practical use-
fulness of this result. This was already remarked by Burda
et al. (2012, p. 189), who claimed that the exact distribu-
tion proposed by Nadarajah is “extremely complicated to be
used.”

In this paper we propose three accurate, manageable, and
computationally appealing near-exact distributions for the
linear combination of independent Gumbel random vari-
ables; the first one for positive linear combinations, and
the second and third ones can be applied regardless of the
sign of the coefficients of the linear combination. Our near-
exact distributions have links with phase-type approxima-
tions (Aldous and Shepp 1987; O’Cinneide 1990) and, as
we discuss below, their accuracy can be controlled effec-
tively through a precision parameter. Our first near-exact
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distribution is based on the generalized integer gamma
(GIG) and generalized near-integer gamma (GNIG) distri-
butions, which have a wealth of applications in multivari-
ate analysis (Marques and Coelho 2008; Coelho and Mar-
ques 2010, 2012; Marques et al. 2011; Coelho et al. 2013).
The GIG distribution corresponds to the distribution of the
sum of independent Gamma random variables with integer
shape parameters (Amari and Misra 1997; Coelho 1998),
while the GNIG distribution corresponds to the distribu-
tion of the sum of a GIG random variable with an inde-
pendent Gamma random variable with a non-integer shape
parameter (Coelho 2004); further details on the GIG and
GNIG distributions are given in Appendix 1. We show
that the exact distribution of a positive linear combination
of independent Gumbel random variables can be decom-
posed as the sum of two independent random variables:
the first corresponding to a linear combination of indepen-
dent logarithmized Gamma random variables, and the sec-
ond to a shifted GIG (SGIG) random variable. Our sec-
ond near-exact distribution is based on the so-called SDGIG
distribution, which corresponds to the distribution of the
shifted difference of two independent GIG distributions
(Coelho and Mexia 2010, Chap. 2). Hence, in the context
of our second near-exact distribution, we show that the lin-
ear combination of independent Gumbel random variables
can be decomposed as the sum of two independent ran-
dom variables: the first corresponding to a linear combi-
nation of independent logarithmized Gamma random vari-
ables, and the second corresponding to a SDGIG random
variable. The third near-exact distribution is also based
on the previous decomposition, and on the fact that the
DGIG distribution can be represented as a particular mix-
ture of integer Gamma distributions. These decompositions
are extremely useful as they allow us to construct near-
exact distributions by using a shifted version of the GNIG
distribution—in the case of positive linear combinations—
and by using the SDGIG distribution—in the case where
the coefficients of linear combination are arbitrary real
numbers.

We illustrate our near-exact approximations by revisiting a
problem in network engineering, first addressed by Cetinkaya
et al. (2001), a problem in computational biology, earlier con-
sidered by Bailey and Gribskov (1997), and by addressing
the problem of interval estimation of the location parame-
ter of a Gumbel distribution in a real data application on
flood risk management, earlier discussed in Hosking et al.
(1985).

The structure of our paper is as follows. In Sect. 2 we
introduce the exact and near-exact distributions of interest.
In Sect. 3 we conduct numerical experiments to assess the
level of accuracy of our near-exact approximations. In Sect. 4
we illustrate our methods in applied modeling issues, and we
conclude in Sect. 5.

2 The exact and near-exact distributions

2.1 Exact distribution

Let X1, . . . , X p be p independent Gumbel random variables,
with location parameter µ j ∈ R and scale parameter σ j ∈
R∗

+, i.e.

X j
ind.∼ Gumbel(µ j , σ j ),

FX j (x) = exp[− exp{−(x − µ j )/σ j }], x ∈ R, (1)

for j = 1, . . . , p. Here and below we use the notations R∗
+

and A to respectively denote the sets {x ∈ R : x > 0} and
{n ∈ N : n ≥ 2}. The characteristic functions of X j and
W = ∑p

j=1 α j X j , for α j ∈ R, are respectively defined as

ΦX j (t) = Γ (1 − itσ j ) exp{itµ j },

ΦW (t) =
p∏

j=1

Γ (1 − itσ jα j ) exp{itµ jα j }, t ∈ R.

The next theorem provides a characterization of the exact
distribution of the linear combination of independent Gumbel
random variables.

Theorem 1 Let X j
ind.∼ Gumbel(µ j , σ j ), with µ j ∈ R

and σ j ∈ R∗
+. The exact characteristic function of W =∑p

j=1 α j X j , with α j ∈ R, j = 1, . . . , p, can be written as
ΦW (t) = ΦW1(t)ΦW2(t), where for any γ ∈ A,

ΦW1(t) =
p∏

j=1

Γ (γ − itσ jα j )

Γ (γ )
, t ∈ R, (2)

and

ΦW2(t) =
{ p∏

j=1

γ−2∏

k=0

(
1 + k
σ jα j

)(
1 + k
σ jα j

− it
)−1}

× exp
{

it
p∑

j=1

µ jα j

}
, t ∈ R. (3)

Proof The proof follows by noticing that we can write the
characteristic function of W as

ΦW (t) =
p∏

j=1

Γ (1 − itσ jα j ) exp{itµ jα j }

=
{ p∏

j=1

Γ (γ − itσ jα j )

Γ (γ )

Γ (γ )

Γ (γ − itσ jα j )

×Γ (1 − itσ jα j )

Γ (1)

}
exp

{
it

p∑

j=1

µ jα j

}

=
p∏

j=1

Γ (γ − itσ jα j )

Γ (γ )

{ p∏

j=1

γ−2∏

k=0

(1 + k)
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×
(
1 + k − itσ jα j

)−1
}

exp
{

it
p∑

j=1

µ jα j

}

=
p∏

j=1

Γ (γ − itσ jα j )

Γ (γ )

{ p∏

j=1

γ−2∏

k=0

(
1 + k
σ jα j

)

×
(

1 + k
σ jα j

− it
)−1}

exp
{

it
p∑

j=1

µ jα j

}
.

⊓(
Some comments are in order.

(i) We can write W = ∑p
j=1 X ′

j , where X ′
j = α j X j ∼

Gumbel(α jµ j ,α jσ j ), and hence an alternative para-
meterization can be considered by taking (µ′

j , σ
′
j ) =

(α jµ j ,α jσ j ) and setting the corresponding coefficients
of the linear combination as α′

j = 1; in addition, to sim-
plify the expressions we can consider µ j = 0, in which
case we would be working with a similar distribution
apart from a shift.

(ii) Our results can be readily applied to the product of
powers of independent Weibull and Fréchet random
variables, through simple transformations; actually if
X j ∼ Gumbel(µ j , σ j ), then Y j = exp{−X j } ∼
Weibull(exp{−µ j }, σ−1

j ), with distribution function

FY j (y) = 1 − exp

{

−
(

y
exp(−µ j )

)1/σ j
}

,

and thus
∏p

j=1 Y
α j
j = exp{−∑p

j=1 α j X j }. If

Y ∗
j = exp{X j } then Y ∗

j ∼ Fréchet(exp{µ j },σ−1
j ), with

distribution function

FY ∗
j
(y) = exp

{

−
(

y
exp(µ j )

)−1/σ j
}

,

and thus
∏p

j=1(Y
∗
j )
α j = exp{∑p

j=1 α j X j }. Using simi-
lar transformations it is also possible to apply our results
to more complex distributions, such as the Generalized
Gamma distribution (Marques 2012).

2.1.1 Positive linear combinations (α j > 0)

If all α j are positive, the exact distribution of W is the same
as that of the sum of two independent random variables, W1
and W2, where

W1 = −
p∑

j=1

σ jα j log Z j , Z j
ind.∼ Gamma(γ , 1), (4)

with γ ∈ A, is a linear combination of p independent loga-
rithmized Gamma random variables and W2 is distributed

according to a shifted sum of p × (γ − 1) independent
Exponential distributions with parameters (1 + k)/(σ jα j ),
for j = 1, . . . , p and k = 0, . . . , γ −2, with shift parameter∑p

j=1 µ jα j .
If some of the Exponential distributions in (3) have the

same parameter we can sum them, obtaining in this way
Gamma distributions, so that equation (3) can be written as

ΦW2(t) =
{ ℓ∏

j=1

(λ j )
r j (λ j − it)−r j

}
exp

{
it

p∑

j=1

µ jα j

}
, (5)

where ℓ is the number of Exponential distributions with dif-
ferent rate parameters, λ j are the parameters of these dis-
tributions, and r j is the number of such distributions with
the same rate parameter λ j , for j = 1, . . . , ℓ. We have thus
established the following corollary to Theorem 1.

Corollary 1 Let X j
ind.∼ Gumbel(µ j , σ j ), with µ j ∈ R and

σ j ∈ R∗
+. If W = ∑p

j=1 α j X j , with α j ∈ R∗
+, j =

1, . . . , p, then it holds that W = W1 + W2, with W1 as
in (4) and

W2 ∼ SGIG
(

r,λ, ℓ,

p∑

j=1

µ jα j

)
,

where r = (r1, . . . , rℓ) and λ = (λ1, . . . , λℓ).

Here and below we use the letter ‘S’ to denote a shifted distri-
bution, and we follow the convention that the last parameter
in a shifted distribution is the shift parameter; see Appendix 1
for further details.

It is instructive to consider the case of the sum of p
independent Gumbel random variables when σ j = σ, j =
1, . . . , p, for which simple expressions of the character-
istic functions are readily available, as a consequence of
Corollary 1,

ΦW1(t) =
(
Γ (γ − itσ )

Γ (γ )

)p

,

ΦW2(t) =
{ γ−2∏

j=0

(λ j )
r j (λ j − it)−r j

}
exp

{
it

p∑

j=1

µ j

}
, (6)

with r j = p, λ j = (1 + j)/σ , for j = 0, . . . , γ − 2; this
implies that in such case

W2 ∼ SGIG
(

p1T
γ−1, σ

−1(1, . . . , γ − 1), γ − 1,

p∑

j=1

µ j

)
,

where 1γ−1 denotes a γ − 1 vector of ones. The parameter
γ is related with the depth of the SGIG distribution and it
may be used as a precision parameter, since, as we will see
in Sect. 3, larger values of γ lead to more accurate near-exact
approximations.
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2.1.2 General linear combinations (α j ∈ R)

If we have q positive α j and p − q negative α j , the charac-
teristic function in (3) can be written as

ΦW2(t) =
{ ∏

{ j :α j >0}

γ−2∏

k=0

(
1 + k
σ jα j

)(
1 + k
σ jα j

− it
)−1}

×
{ ∏

{ j :α j <0}

γ−2∏

k=0

(
1 + k
σ jα j

)(
1 + k
σ jα j

+ it
)−1}

× exp
{

it
p∑

j=1

µ jα j

}
,

so that similarly to (5), we obtain

ΦW2(t) =
{ ℓ+∏

j=1

(λ+
j )

r+
j (λ+

j − it)−r+
j

ℓ−∏

j=1

(λ−
j )

r−
j

×(λ−
j + it)−r−

j

}
exp

{
it

p∑

j=1

µ jα j

}
. (7)

where r+ = (r+
1 , . . . , r+

ℓ+) and λ+ = (λ+
1 , . . . , λ+

ℓ+), are
respectively the shape and rate parameters corresponding
to the positive α j , and r− = (r−

1 , . . . , r−
ℓ−) and λ− =

(λ−
1 , . . . , λ−

ℓ−) are respectively the shape and rate parame-
ters corresponding to the negative α j . In this case the exact
distribution of W is the distribution of the sum of two inde-
pendent random variables, W1 and W2, where W1 is as in (4)
and W2 follows a SDGIG distribution. This gives rise to the
following corollary.

Corollary 2 Let X j
ind.∼ Gumbel(µ j , σ j ), with µ j ∈ R and

σ j ∈ R∗
+. If W = ∑p

j=1 α j X j , with α j ∈ R, j = 1, . . . , p,
then it holds that W = W1 + W2, with W1 as in (4) and

W2 ∼ SDGIG
(

r+, r−,λ+,λ−, ℓ+, ℓ−,

p∑

j=1

µ jα j

)
, (8)

where r+ = (r+
1 , . . . , r+

ℓ+) and λ+ = (λ+
1 , . . . , λ+

ℓ+) are
respectively the shape and rate parameters corresponding
to the positive α j and r− = (r−

1 , . . . , r−
ℓ−) and λ− =

(λ−
1 , . . . , λ−

ℓ−) are respectively the shape and rate parame-
ters corresponding to the negative α j .

2.2 Near-exact distributions

2.2.1 First near-exact distribution (α j > 0)

Our first near-exact distribution is based on replacing ΦW1

by an asymptotic approximation ΦW ⋆
1
, such that for γ suffi-

ciently large

ΦW ⋆(t) = ΦW ⋆
1
(t)ΦW2(t),

approximates the exact characteristic function ΦW ; the dis-
tribution of the random variable W ⋆ is said to be a near-exact
distribution of W (Coelho 2004). Based on the characteriza-
tion of the exact distribution of W in Corollary 1, we take

ΦW ⋆
1
(t) =

(
l

l − it

)ρ
exp{itθ}, (9)

which is the characteristic function of a random variable
W ⋆

1 ∼ SGamma(ρ, l, θ), and replaces asymptotically ΦW1

in (2), for increasing values of γ ; see Appendix 1 for details
on the shifted Gamma distribution. Our choice is based on
the fact that a single logarithmized Gamma random variable
may be represented as an infinite sum of independent shifted
Exponential random variables (see Appendix 2 for details),
and as such the sum of independent logarithmized Gamma
random variables, eventually multiplied by a parameter, may
be represented as an infinite sum of shifted Gamma distrib-
utions. Instead of this infinite sum of shifted Gamma distri-
butions, to avoid computational difficulties, we use a single
shifted Gamma distribution, which matches the first three
exact moments. Hence, the parameters ρ, l, and θ , are deter-
mined by solving the system of equations

∂ jΦW ⋆
1
(t)

∂t j

∣∣∣∣∣
t=0

= ∂ jΦW1(t)
∂t j

∣∣∣∣
t=0

, j = 1, 2, 3, (10)

so to ensure that the first three of moments of the exact and
approximating distributions are equal. The solution to (10)
is

ρ = 4(ψ1Σ2)
3(ψ2Σ3)

−2,

l = 2(ψ1Σ2)|ψ2Σ3|−1,

θ = −ψ0Σ1 − 2(ψ1Σ2)
2|ψ2Σ3|−1. (11)

where we use the following notation throughout the paper

ψi ≡ ψi (γ ) = ∂ i+1

∂γ i+1 log{Γ (γ )},

Σi ≡ Σi (α) =
p∑

j=1

(α jσ j )
i , α = (α1, . . . ,αp). (12)

The resulting near-exact distribution is established in the
next theorem.

Theorem 2 Let X j
ind.∼ Gumbel(µ j , σ j ), with µ j ∈ R and

σ j ∈ R∗
+. If we use as an asymptotic approximation of

ΦW1(t) in (2) the characteristic function ΦW ⋆
1
(t) in (9), we

obtain as near-exact distribution for W = ∑p
j=1 α j X j , with

α j ∈ R∗
+, j = 1, . . . , p, the shifted GNIG distribution

SGNIG
(

r⋆,λ⋆, ℓ+ 1, θ +
p∑

j=1

µ jα j

)
,
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with r⋆ = (r1, . . . , rℓ, ρ) and λ⋆ = (λ1, . . . , λℓ, l), and
where the r j , λ j , and ℓ are given in (5) and ρ, l, and θ
are given by (11).

Proof It is enough to note that for each t ∈ R, it holds that

ΦW ⋆
1
(t)ΦW2(t) =

(
l

l − it

)ρ
exp{itθ}

{ ℓ∏

j=1

(
λ j

)r j

×(λ j − it)−r j

}
exp

{
it

p∑

j=1

µ jα j

}

=
{ ℓ∏

j=1

(λ j )
r j (λ j − it)−r j

}(
l

l − it

)ρ

× exp
{

it
(
θ +

p∑

j=1

µ jα j

)}
.

⊓(

It is again instructive to consider the particular case
addressed in (6), that is when we consider the case of the
sum of independent Gumbel random variables with the same
scale parameter. In this case we obtain the near-exact distri-
bution

SGNIG
(

r⋆,λ⋆, γ , θ +
p∑

j=1

µ j

)
, (13)

where r⋆ = (p1T
γ−1, ρ) and λ⋆ = σ−1(1, . . . , γ − 1, lσ ),

with ρ, l, and θ given by (11).
Using Corollary 2, and following two interesting rec-

ommendations made by an anonymous reviewer, we next
develop two near-exact distributions for the case where the
sign of the coefficients needs not to be positive.

2.2.2 Second near-exact distribution (α j ∈ R)

We now develop a near-exact distribution, that although less
accurate, it is computationally fast and can be applied to the
case of an arbitrary real α j . To do so, we approximate the
distribution of W = W1 + W2 in Corollary 2, with the dis-
tribution of W⋆ = E(W1) + W2, where E(W1) = −ψ0Σ1
with ψ0 and Σ1 as defined in (12). The distribution of W⋆

corresponds to our second near-exact approximation, and as
described in the next theorem W⋆ follows a SDGIG distrib-
ution with shift parameter E(W1) + ∑p

j=1 µ jα j .

Theorem 3 Let X j
ind.∼ Gumbel(µ j , σ j ), with µ j ∈ R and

σ j ∈ R∗
+. If we replace W1 by E(W1) we obtain as near-

exact distribution for W = ∑p
j=1 α j X j , with α j ∈ R, j =

1, . . . , p, the shifted DGIG distribution

SDGIG
(

r+, r−,λ+,λ−, ℓ+, ℓ−, E(W1) +
p∑

j=1

µ jα j

)
,

where r+, r−, λ+, and λ− are as in Corollary 2.

2.2.3 Third near-exact distribution (Σ3(α) ̸= 0)

Our third near-exact distribution can be applied when
Σ3 ̸= 0, where Σ3 is defined in (12); below we assume
that W ⋆

1 ∼ SGamma(ρ, l, θ) and that Σ3 ̸= 0, so that either
sign(Σ3) = 1 or sign(Σ3) = −1, with sign(·) denoting the
sign function. This near-exact distribution is also based on
Corollary 2, but here we approximate the distribution of W1
in (4) with the distribution of sign(Σ3) × W ⋆

1 , whose char-
acteristic function isΦsign(Σ3)×W ⋆

1
(t) = ΦW ⋆

1
(sign(Σ3)× t),

and whereΦW ⋆
1
(t) is as in (9). Here, the parameters ρ, l, and

θ are determined by solving the system of equations

∂ jΦW ⋆
1
(sign(Σ3) × t)

∂t j

∣∣∣∣∣
t=0

= ∂ jΦW1(t)
∂t j

∣∣∣∣
t=0

, (14)

for j = 1, 2, 3, which has a solution if and only if Σ3 ̸= 0,
in which case

ρ = 4(ψ1Σ2)
3(ψ2Σ3)

−2,

l = 2(ψ1Σ2)|ψ2Σ3|−1,

θ = −sign(Σ3)ψ0Σ1 − 2(ψ1Σ2)
2|ψ2Σ3|−1. (15)

The following theorem holds.

Theorem 4 Let X j
ind.∼ Gumbel(µ j , σ j ), with µ j ∈ R and

σ j ∈ R∗
+. If we use as an asymptotic approximation ofΦW1(t)

in (2) the characteristic function ΦW ⋆
1
(sign(Σ3) × t) in (9),

we obtain as near-exact distribution for W = ∑p
j=1 α j X j ,

withΣ3 ̸= 0, the distribution of sign(Σ3)× W ⋆
1 + W2 where

W ⋆
1 ∼ SGamma(ρ, l, θ) and W2 are as in (8), and where ρ,

l, and θ are given by (15).

Technical details on the distribution of sign(Σ3)× W ⋆
1 + W2

can be found in the Appendix 1.

3 Numerical studies

3.1 Measuring accuracy

To study the quality of our near-exact approximations we
use a measure of proximity between characteristic functions,
that is also a measure of the proximity between distribution
functions, and which is defined as

∆ = 1
2π

∫

R

∣∣∣∣
ΦW (t) −ΦW ⋆(t)

t

∣∣∣∣ dt . (16)

This is measure is known to be related with the Berry–Esseen
upper bound (Berry 1941; Esseen 1945; Loève 1977; Hwang
1998), and can be shown to verify the inequality
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Table 1 Values of ∆ for Scenarios i–iii

γ Scenario i Scenario ii Scenario iii
(µi, σ i,αi) (µii, σ ii,αii) (µiii, σ iii,αiii)
p = 2 p = 4 p = 5

4 1.4 × 10−4 1.8 × 10−4 3.4 × 10−4

10 8.0 × 10−6 1.0 × 10−5 2.0 × 10−5

15 2.3 × 10−6 2.9 × 10−6 5.8 × 10−6

20 9.4 × 10−7 1.2 × 10−6 2.4 × 10−6

50 5.8 × 10−8 7.4 × 10−8 1.5 × 10−7

100 7.1 × 10−9 9.1 × 10−9 1.8 × 10−8

500 5.6 × 10−11 7.2 × 10−11 1.4 × 10−10

∥FW − FW ⋆∥∞ ≤ ∆ ≤ 1
2π

∫

R

∣∣∣∣
ΦW1(t) −ΦW ⋆

1
(t)

t

∣∣∣∣ dt,

where ∥FW − FW ⋆∥∞ = supw∈R |FW (w) − FW ⋆(w)|. Here
FW ⋆ denotes a near-exact distribution function, which, for
example in the case of our first near-exact distribution is

FW ⋆(w) = FV ⋆

(
w − θ −

p∑

j=1

µ jα j ; r⋆,λ⋆, ℓ+ 1
)

, (17)

where r⋆ and λ⋆ are as in Theorem 2, and FV ⋆ denotes the
distribution function of the random variable V ⋆ with a GNIG
distribution, as defined in (23) in Appendix 1. For our sec-
ond near-exact distribution all follows analogously, butΦW ⋆

needs to be replaced by ΦW⋆ , with W⋆ distributed as in The-
orem 3, and FW ⋆ in (17), must be accordingly replaced with
the distribution function

FV⋆

(
w − E(W1) −

p∑

j=1

µ jα j ; r+, r−,λ+,λ−, ℓ+, ℓ−
)

.

Here r+, r−, λ+, and λ− are defined as in Theorem 3, and
FV⋆ is the distribution function of a random variable V⋆ with
a DGIG distribution. For our third near-exact distribution,
which can be applied whenΣ3 ̸= 0, ΦW ⋆ should be replaced

by Φsign(Σ3)×W ⋆
1

and FW ⋆ replaced by the distribution func-
tion of sign(Σ3) × W ⋆

1 + W2 in Theorem 4 (see expressions
(25) and (26) in Appendix 1 for details on this distribution
function).

We note that when γ → ∞, we have ∆ → 0 and W ⋆ !
W , where ‘!’ is used to denote weak convergence. Paren-
thetically, we further note that to be ensured that we accu-
rately approximate the tail of the exact distribution, we need
to keep increasing the precision parameter γ as we move
towards higher quantiles; further details on the measure ∆
can be found in Grilo and Coelho (2007), Marques and
Coelho (2008), and Coelho and Marques (2010, 2012).

3.2 Numerical results

3.2.1 First near-exact distribution (α j > 0)

In Tables 1 and 2 we report numerical results conducted
according to the following Scenarios:

– Scenario i: µi = (2, 3), σ i = (5, 6), and αi = 1T
2;

– Scenario ii: µii = (−4,−1, 2, 3), σ ii = (0.1, 0.2, 0.3,

0.4), and αii = (1, 2, 3, 4);
– Scenario iii: µiii = (−10, 10, 20, 30, 40), σ iii = (1, 2,

3, 4, 5), and αiii = (1/2, 1, 3/4, 5, 1).

In Table 1 it can be observed that the values of ∆ are
quite low—indicating a good approximation—and that the
parameter γ is inversely related to∆. In addition, it can also
be noticed that ∆ is unresponsive to changes in µ j , and the
same happens if we multiply all the σ j by the same constant.
The quality of the near-exact approximations is patent from
the extremely reduced values of ∆.

The parameter γ may be chosen according to the desired
precision. Higher values of γ entail however a higher compu-
tational investment, and hence the selection of this parameter
involves a precision–burden tradeoff. In Table 2 we present
the computation time, in seconds, for the calculation of the

Table 2 Computation time (in
seconds) for the near-exact
cumulative distribution
functions for Scenarios i–iii

γ Scenario i Scenario ii Scenario iii
(µi, σ i,αi) (µii, σ ii,αii) (µiii, σ iii,αiii)
p = 2 p = 4 p = 5

p values p values p values

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

4 0.02 0.02 0.02 0.05 0.03 0.03 0.05 0.03 0.03

10 0.08 0.08 0.08 0.39 0.41 0.33 0.38 0.39 0.41

15 0.17 0.17 0.20 1.17 1.28 1.14 1.48 1.62 1.08

20 0.30 0.31 0.36 2.87 3.09 2.82 2.93 2.90 2.95

50 2.62 2.50 3.00 64.2 70.9 65.8 72.6 68.3 70.7
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Fig. 1 QQ-plots for Scenarios i–iii. The near-exact quantiles, 0.80,
0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995 and 0.999, were computed
using the near-exact distribution function in (17) for γ = 10 and the cor-

responding exact quantiles were computed using the Gil-Pelaez (1951)
inversion formulas and the bisection method

Table 3 Values of ∆ for
Scenario a γ p = 2 p = 10 p = 20 p = 30 p = 50

4 1.4 × 10−4 1.5 × 10−5 6.7 × 10−6 4.2 × 10−6 2.4 × 10−6

10 8.0 × 10−6 8.1 × 10−7 3.5 × 10−7 2.2 × 10−7 1.3 × 10−7

15 2.3 × 10−6 2.3 × 10−7 9.9 × 10−8 6.3 × 10−8 3.6 × 10−8

20 9.4 × 10−7 9.4 × 10−8 4.1 × 10−8 2.6 × 10−8 1.5 × 10−8

50 5.8 × 10−8 5.8 × 10−9 2.5 × 10−9 1.6 × 10−9 8.9 × 10−10

100 7.1 × 10−9 7.1 × 10−10 3.1 × 10−10 1.9 × 10−10 1.1 × 10−10

500 5.6 × 10−11 5.6 × 10−12 2.4 × 10−12 1.5 × 10−12 8.8 × 10−13

p values 0.10, 0.05 and 0.01, using the near-exact quantiles.
These calculations were done using an Intel i7 2GHz proces-
sor; for values of γ larger than 50 the computation times start
to increase steadily. In most computations below we use the
value γ = 10 as a reference value, as it provides a sensible
computation time/∆ ratio for our first near-exact distribution.

It is also possible to observe from Table 2 that, as expected,
when we increase p the computation time also grows, being
this growth less steep for small to moderate values of γ .

To compare the exact and near-exact quantiles we present
in Fig. 1 QQ-plots for Scenarios i–iii. The extreme closeness
between the exact and near-exact quantiles is sustained by
the fact that all the points are extremely close to the line of
equation y = x ; the exact quantiles were computed using
the Gil-Pelaez (1951) inversion formulas and the bisection
method which is very time consuming, numerically unstable,
and hence inappropriate for a regular use.

It is also interesting that the near-exact approximations
tend to slightly improve with an increasing number of vari-
ables, as can be seen from Table 3, where we consider a
Scenario a with parameters µa = ((−1) j 2 j, j = 1, . . . , p),

σa = (5/j, j = 1, . . . , p) andαa = (2 j + 1, j = 1, . . . , p)

for p = 2, 10, 30, 50.

3.2.2 Second near-exact distribution (α j ∈ R)

In Tables 4 and 5 we report numerical results conducted
according to the following scenarios:

– Scenario iv: µiv = µi = (2, 3), σ iv = σ i = (5, 6), and
αiv = (1,−1);

– Scenario v: µv = µii = (−4,−1, 2, 3), σv = σ ii =
(0.1, 0.2, 0.3, 0.4), and αv = (1,−2, 3,−4);

– Scenario vi: µvi = µiii = (−10, 10, 20, 30, 40), σvi =
σ iii = (1, 2, 3, 4, 5), and αvi = (1/2,−1,−3/4,−5, 1).

From Tables 4 and 5 we can observe that the near-exact
approximation obtained using the result in Theorem 3 is not
as accurate as the one obtained with Theorem 2, although it
presents faster computation times for the same values of γ .
To achieve in Scenarios iv–vi similar performances as the
ones obtained for Scenarios i–iii we need to consider at least
γ = 500 as can be seen in Table 4. Again, for Scenarios
iv–vi, it can be ascertained from Table 5, that for higher
values of p we obtain a higher computational cost.

From the QQ-plots in Fig. 2 it can be noticed that, for
Scenarios iv–vi, the near-exact quantiles approximate rea-

123



Stat Comput

Table 4 Values of ∆ for Scenarios iv–vi

γ Scenario iv Scenario v Scenario vi
(µiv, σ iv,αiv) (µv, σv,αv) (µvi, σvi,αvi)
p = 2 p = 4 p = 5

Second near-exact distribution

4 4.7 × 10−2 4.6 × 10−2 5.5 × 10−2

10 1.5 × 10−2 1.5 × 10−2 1.7 × 10−2

15 9.8 × 10−3 9.8 × 10−3 1.1 × 10−2

20 7.2 × 10−3 7.2 × 10−3 8.3 × 10−3

50 2.8 × 10−3 2.7 × 10−3 3.2 × 10−3

100 1.3 × 10−3 1.4 × 10−3 1.6 × 10−3

500 2.7 × 10−4 2.7 × 10−4 3.1 × 10−4

Third near-exact distribution

4 5.3 × 10−4 4.0 × 10−4 3.9 × 10−4

10 3.0 × 10−5 2.2 × 10−5 2.3 × 10−5

15 8.5 × 10−6 6.4 × 10−6 6.6 × 10−6

20 3.5 × 10−6 2.6 × 10−6 2.7 × 10−6

50 2.1 × 10−7 1.6 × 10−7 1.7 × 10−7

100 2.6 × 10−8 2.0 × 10−8 2.1 × 10−8

500 2.1 × 10−10 1.6 × 10−10 1.6 × 10−10

sonably well the exact ones. In these QQ-plots we consider
γ = 100, given that it provides a reasonable computation
time/∆ ratio for our second near-exact distribution.

From Table 6 it can be ascertained that the accuracy of our
second near-exact approximation also tends to improve as the
number of variables increases, although in this case the decre-
ments in ∆ occur at a much slower rate; in Table 6 we con-
sidered a Scenario b with µb = ( j/2, j = 1, . . . , p), σ b =
(3 j − 1, j = 1, . . . , p), and αb = ((−1) j+1 j

3 , j =
1, . . . , p) for p = 2, 10, 20, 30, 50.

3.2.3 Third near-exact distribution (Σ3(α) ̸= 0)

We assess the performance of the third near-exact distribution
on Scenarios iv–vi. Tables 4 and 6 reveal that our third near-
exact distribution possesses similar asymptotic properties as
our second approach, although—as reflected by its lower val-
ues of∆—it is much more precise. The computation time of
our third near-exact distribution increases however as a func-
tion of γ , in some cases beyond the realms of practicality.
From Table 5 it is possible to observe that our third near-
exact distribution presents higher computing times than our
second one, and thus we propose γ = 4 as a reference, as it
provides a sensible computation time/∆ ratio, to be used in
practical applications. Note that for γ = 4, the value of ∆
is slightly lower than the one for our second approach with
γ = 100, but even with this difference the near-exact quan-
tiles of both approaches would be virtually indistinguishable
if plotted simultaneously in Fig. 2.

Our third near-exact distribution can also be applied to the
case of positive linear combination coefficients. In practice
we have found that although both our first and third near-exact
distributions have tantamount precision, the third approach
requires a higher computational investment.

4 Examples and illustrations

All examples in this section entail positive linear combina-
tions, and hence for conciseness only our first near-exact
approximation is used.

4.1 Network engineering

The real time management of massive data streams in large-
scale networks leads to a number of challenging problems in
computational statistics (Domingos and Hulten 2003). One
of such problems entails achieving at least a minimum level
of quality-of-service, and a well-known method for achieving
this goal is the so-called egress admission control algorithm
(Cetinkaya et al. 2001). A full description of this algorithm
is beyond the scope of our paper. What is relevant for our
purposes is that their algorithm is based on the sum of two
independent Gumbel distributed random variables, and quot-
ing the authors (Cetinkaya et al. 2001, p. 76):

“Approximating the sum of two Gumbel distributed
random variables by a Gumbel random variable, the
admission control test follows.”

Thus, Cetinkaya et al. (2001) inadequately use a single
Gumbel distribution to approximate the sum of two indepen-
dent Gumbel distributions, as already remarked in Nadara-
jah and Kotz (2008). In Fig. 3 we illustrate the reliability of
our SGNIG-based near-exact approximation, introduced in
Sect. 2.2, and the inadequacy of the approach in Cetinkaya et
al. (2001), as assessed by the pointwise difference to the exact
density obtained using the inversion formulas in Gil-Pelaez
(1951).

Fig. 3 clearly provides evidence to support the claim that
the egress admission control algorithm could benefit from
using our near-exact approximation. To give a more complete
view of the comparison between our approach and the one in
Cetinkaya et al. (2001), we revisit Scenario i from Sect. 3, and
to assess the performance of both approaches we again use
the measure∆, as defined in (16). The results are reported in
Fig. 4, and again provide evidence suggesting that our near-
exact approximation would yield more precise and reliable
egress admission control algorithms.

Parenthetically, we note that Nadarajah and Kotz (2008)
present an expression for the exact distribution of the sum
of two independent Gumbel random variables, but only for
the cases where the ratio between the scale parameters is a
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Table 5 Computation time (in seconds) for the near-exact cumulative distribution functions for Scenarios iv–vi

γ Scenario iv Scenario v Scenario vi
(µiv, σ iv,αiv) (µv, σv,αv) (µvi, σvi,αvi)
p = 2 p = 4 p = 5

p values p values p values

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

Second near-exact distribution

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

10 0.00 0.02 0.00 0.02 0.02 0.03 0.03 0.03 0.02

15 0.02 0.02 0.02 0.05 0.05 0.05 0.08 0.06 0.08

20 0.03 0.02 0.02 0.09 0.08 0.09 0.13 0.13 0.14

50 0.16 0.13 0.12 0.75 0.73 0.73 1.22 1.23 1.22

100 0.89 0.87 0.86 5.76 5.77 5.76 12.4 12.5 12.4

500 44.6 44.9 45.2 526.3 628.5 630.2 2540.0 2550.0 2545.0

Third near-exact distribution

4 0.23 0.20 0.17 0.22 0.22 0.19 0.44 0.41 0.34

10 2.56 1.75 1.28 2.62 2.59 2.12 12.50 11.65 8.42

15 7.72 5.69 4.17 13.44 6.37 5.68 46.84 47.11 39.61

20 15.88 13.74 11.29 29.03 12.59 11.45 173.46 190.15 166.89

50 130.96 102.31 72.76 260.52 241.05 110.67 ∗ ∗ ∗
* Above 1 h. The same applies for γ = 100 and γ = 500
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Fig. 2 QQ-plots for Scenarios iv–vi. The near-exact quantiles, 0.80,
0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995 and 0.999, were computed
using the near-exact distribution function in (17) for γ = 100 and

the corresponding exact quantiles were computed using the Gil-Pelaez
(1951) inversion formulas and the bisection method

rational number. However, the expression they use for their
function J ( · , · , · , · ) is not valid when its first and third
arguments are symmetrical, which means that their expres-
sions for the cumulative distribution and probability density
functions simply do not work.

4.2 Computational biology

Our second example is on motif discovery in biological
sequences. Some interesting computational and statistical
issues arising in modeling these problems are documented in
Keich and Nagarajan (2006), and the huge literature on the

topic is reviewed by Sandve and Drabløs (2006). Our analy-
sis focuses on a method proposed by Bailey and Gribskov
(1997) for calculating p values for the test of simultaneous
matching of p DNA sequences in a database. More precisely,
the authors consider the test statistic

Wp(n) =
p∑

i=1

Xi (n), (18)

where for each i, Xi (n) is a sequence of random variables
converging in distribution to a standard Gumbel distribution
Xi , as n → ∞; here n should be understood as the number
of DNA sequences in the database. Under the assumptions in
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Table 6 Values of ∆ for
scenario b γ p = 2 p = 10 p = 20 p = 30 p = 50

Second near-exact distribution

4 6.0 × 10−2 3.7 × 10−2 3.3 × 10−2 3.2 × 10−2 3.1 × 10−2

10 1.9 × 10−2 1.3 × 10−2 1.2 × 10−2 1.1 × 10−2 1.1 × 10−2

15 1.2 × 10−2 8.2 × 10−3 7.6 × 10−3 7.3 × 10−3 7.1 × 10−3

20 8.7 × 10−3 6.1 × 10−3 5.6 × 10−3 5.4 × 10−3 5.3 × 10−3

50 3.4 × 10−3 2.4 × 10−3 2.2 × 10−3 2.1 × 10−3 2.1 × 10−3

100 1.7 × 10−3 1.2 × 10−3 1.1 × 10−3 1.0 × 10−3 1.0 × 10−3

500 3.3 × 10−4 2.3 × 10−4 2.1 × 10−4 2.1 × 10−4 2.0 × 10−4

Third near-exact distribution

4 4.2 × 10−4 1.7 × 10−4 7.7 × 10−5 4.8 × 10−5 2.7 × 10−5

10 2.6 × 10−5 9.3 × 10−6 4.0 × 10−6 2.5 × 10−6 1.4 × 10−6

15 7.4 × 10−6 2.6 × 10−6 1.1 × 10−6 7.1 × 10−7 4.0 × 10−7

20 3.1 × 10−6 1.1 × 10−6 4.7 × 10−7 2.9 × 10−7 1.6 × 10−7

50 1.9 × 10−7 6.7 × 10−8 2.9 × 10−8 1.8 × 10−8 1.0 × 10−8

100 2.3 × 10−8 8.2 × 10−9 3.6 × 10−9 2.2 × 10−9 1.2 × 10−9

500 1.8 × 10−10 6.5 × 10−11 2.8 × 10−11 1.7 × 10−11 9.8 × 10−12
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Fig. 3 Pointwise difference between the exact density of the
sum of two independent Gumbel random variables

(
(µ1, σ1) =

(0, 1) and (µ2, σ2) = (0, 10)
)

and the densities obtained through our
near-exact approximation (gray lines), as well as the difference between
the exact density and the approximation in Cetinkaya et al. (2001) (black
line). The exact density was obtained using the inversion formulas in
Gil-Pelaez (1951), and for our approach we take a precision parameter
of γ = 4, 7, 10, respectively corresponding to the dotted, dashed, and
solid gray lines

Bailey and Gribskov (1997), X1, . . . , X p is thus a sequence
of independent standard Gumbel random variables, so that
the limiting distribution of the test statistic (18) is

Wp(n)! W =
p∑

i=1

Xi .

The authors then propose
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g 
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)

Fig. 4 Comparing our near-exact approximation with the approxima-
tion in Cetinkaya et al. (2001), on the basis of the measure∆, as defined
in (16), over several values of the precision parameter γ ; the solid and
dashed lines respectively correspond to our near-exact approximation
and the approach in Cetinkaya et al. (2001) for Scenario i

FW (w) = P(W ≤ w)

≈ (p − 1)! − exp{−w}w p−1

(p − 1)! = P̃(W ≤ w), (19)

as an approximation to the distribution function of W . In
opposition, our near-exact approximation for W can be
obtained from (13), and it is based on the shifted GNIG dis-
tribution

SGNIG
(

r⋆ = (p1T
γ−1, ρ), λ⋆ = (1, . . . , γ − 1, l), γ , θ

)
,
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Fig. 5 Pointwise difference between the exact distribution function of
the sum of six independent Gumbel random variables

(
(µ1, σ1) = · · · =

(µ6, σ6) = (0, 1)
)

and the distribution function obtained through our
near-exact approximation (gray line), as well as the difference between

the exact density and the approximation in Bailey and Gribskov (1997)
(black line). The exact distribution function was obtained using the
inversion formulas in Gil-Pelaez (1951), and for our approach we take
a precision parameter of γ = 10. Here a, b correspond to different
windows of interest

with ρ, l, θ given in (11). In Fig. 5 we consider the case
p = 6 with γ = 10. As it can be observed the pointwise
differences between the exact distribution function and the
distribution function (19) corresponding to the Bailey and
Gribskov approximation, are much larger in absolute value
than the ones provided by our near-exact approximation.

To make direct comparisons with the results obtained by
Bailey and Gribskov, we use the ‘percent error’, which they
define as

err%(w) = 100 × P̃(W ≥ w) − P(W ≥ w)

P(W ≥ w)
, (20)

and where we replace P̃(W ≥ w) by P(W ⋆ ≥ w) corre-
sponding to our near-exact approximation, which is given
by

P(W ⋆ ≥ w) = 1 − FW ⋆(w)

= 1 − FV ⋆

(
w − θ; r⋆,λ⋆, γ

)
, (21)

where r⋆ = (p1T
γ−1, ρ) and λ⋆ = (1, . . . , γ − 1, l), and

where FV ⋆ is the distribution function of a random variable
V ⋆ = W ⋆−θ with a GNIG distribution, as defined in (23) in
Appendix 1. To evaluate P(W ≥ w) we use the Gil-Pelaez
inversion formulas.

The resulting ‘percent error’ is plotted in Fig. 6. Compar-
ing this figure with Fig. 5 in Bailey and Gribskov (1997) it
is possible to observe the differences of scales in the ver-
tical axis which show that the percent errors for the near-
exact approximations are extremely low when compared to
the ones obtained for the approximation in Bailey and Grib-

skov (1997). These results reinforce the proximity, already
assessed in Sect. 3, between the near-exact distributions
developed and the exact distribution.

Although the computation times for the Bailey and Grib-
skov approximation are comparable with those for the near-
exact approximations developed for γ = 4 or γ = 6, the
precision obtained has no comparison.

4.3 Flood risk management

In this section we first show how our results can be used to
obtain simple confidence intervals for the location parame-
ter of a Gumbel distribution, and then we apply our results
to a real data set of annual maximum floods of the river
Nidd in Yorkshire, UK, used by Hosking et al. (1985). Let
(X1, . . . , Xn) be a random sample from a population with
Gumbel(µ, σ ) distribution, so that

E(Xi ) = σγ ∗ + µ, var(Xi ) = π2

6
σ 2,

where γ ∗ is the Euler–Mascheroni constant. There are two
cases to be considered: i) σ is known, and ii) σ is unknown.

4.3.1 Case I

If σ is known, the classical moment estimator of µ,

µ̂ = X − σγ ∗,

is unbiased and consistent in quadratic mean, and as such a
good candidate to build confidence intervals for µ. Based on

123



Stat Comput

0 5 10 15 20 25 30

−0
.0

06
−0

.0
02

0.
00

2
0.

00
6

w

N
ea

r−
E

xa
ct

 P
er

ce
nt

 E
rr

or

Fig. 6 Percent error, as defined in (20), for near-exact distributions.
The near-exact distribution functions were obtained using (21), where
we take a precision parameter of γ = 10. The solid, dashed, dotted, and
dashed-dotted black lines respectively correspond to p = 2, 3, 4, 5; the
solid gray line corresponds to p = 6

our near-exact approximations in Sect. 2, we can compute for
a given level of confidence α, the near-exact quantiles qα/2
and q1−α/2 of µ̂ − µ, such that

1 − α = P
(
qα/2 < µ̂ − µ < q1−α/2

)

= P
(
µ̂ − q1−α/2 < µ < µ̂ − qα/2

)
,

and thus

[
µ̂ − q1−α/2, µ̂ − qα/2

]

is a near-exact level α confidence interval for µ. Note that the
α quantile of µ̂ − µ is the α quantile of n−1 ∑n

i=1 X∗
i , where

X∗
i ∼ Gumbel(−σγ ∗, σ ), and a close approximation to this

may be obtained through the near-exact quantiles determined
using the near-exact distribution function in (17).

4.3.2 Case II

If σ is unknown, for S2 = (n − 1)−1 ∑n
i=1(Xi − X)2, we

have

E(S2) = var(Xi ) = σ 2π2

6
, S2 p−→ var(Xi ) = σ 2π2

6
,

so that
√

6
π

√
S2 p−→ σ .

Thus, we propose using the estimator

Û = X −
√

6
π

√
S2γ ∗,

to build confidence intervals for µ, given that Û is consistent
for µ, since

Û = X︸ ︷︷ ︸
p−→σγ ∗+µ

−
√

6
π

√
S2

︸ ︷︷ ︸
p−→σ

γ ∗ p−→ µ .

As such, an approximate confidence interval for µ is given
by
[
Û − q1−α/2, Û − qα/2

]
, (22)

where qα/2 and q1−α/2 are respectively the α/2 and the
1 − α/2 quantiles of Û − µ, where we have that Û − µ =
n−1 ∑n

i=1 X∗∗
i , with

X∗∗
i ∼ Gumbel

(

−
√

6
π

√
S2γ ∗,

√
6
π

√
S2

)

.

Based on a first impression, one could be tempted to infer
from (22) that changes in the value of S2 would not affect
the width of the confidence interval, but we note that

√
S2

appears multiplying in both parameters of the Gumbel dis-
tribution of X∗∗

i , and hence the larger the S2 the wider the
confidence interval.

To show that these confidence intervals yield the due cov-
erage probabilities, we performed some simulation studies
for coverage probabilities of 0.90, 0.95 and 0.99; the results
are reported in Tables 7–8. For each case we have simulated
50 batches of 100 samples of size 5 for the case of σ known
and of size 10 for the case of σ unknown and we counted
the number of times, out of 100, that the true value of µ

fell into the respective confidence interval. The near-exact
quantiles, needed to determine the confidence intervals, were
calculated using the near-exact distribution function in (17)
taking γ = 4 for both cases of known and unknown σ .

For the case of known σ , using µ = 5 and σ = 5.6, confi-
dence intervals for the proportion of times that the true value
of µ fell into the corresponding confidence interval, based
on the asymptotic distribution of the maximum likelihood
estimator of the proportion p∗ in a Binomial (100, p∗) dis-
tribution, for a sample of size 50, gave, respectively for the
nominal coverage probabilities of 0.90, 0.95 and 0.99,

[0.8944, 0.9108] , [0.9414, 0.9538] , [0.9863, 0.9921] ,

being clear that in each case the nominal coverage probability
falls in the respective confidence interval.

For the case of unknown σ , we also used µ = 5 and
σ = 5.6 to simulate the samples, and then we estimated σ
as described above. A similar procedure as described above,
gave the following confidence intervals for the proportion
of times that the true value of µ fell into the corresponding
confidence interval

[0.8975, 0.9137] , [0.9482, 0.9598] , [0.9875, 0.9929] ,
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Table 7 Number of times, out of 100, that the true value of µ fell into the corresponding confidence interval, in the case of known σ

Coverage probability Number of times

0.90 93, 90, 84, 90, 85, 93, 89, 88, 98, 91, 87, 94, 91, 88, 97, 88, 90, 87, 92, 95, 90, 93, 86, 93, 89, 88, 92, 90,
89, 90, 85, 92, 86, 92, 91, 92, 91, 93, 84, 90, 87, 89, 93, 91, 87, 97, 93, 91, 89, 90

0.95 96, 94, 96, 95, 95, 95, 95, 91, 93, 97, 98, 98, 95, 95, 95, 89, 93, 97, 97, 98, 92, 94, 93, 97, 95, 97, 94, 92,
96, 97, 94, 99, 97, 92, 95, 91, 95, 96, 92, 92, 98, 97, 93, 94, 89, 96, 92, 95, 95, 97

0.99 100, 100, 97, 99, 99, 99, 99, 99, 100, 98, 100, 100, 98, 99, 100, 98, 100, 96, 97, 99, 100, 96, 100, 99, 99,
100, 99, 99, 100, 98, 98, 99, 100, 100, 99, 99, 100, 99, 97, 98, 99, 98, 99, 100, 100, 99, 98, 99, 100, 98

Table 8 Number of times, out of 100, that the true value of µ fell into the corresponding confidence interval, in the case of unknown σ

Probability Number of times

0.90 91, 93, 91, 91, 92, 84, 92, 84, 91, 89, 96, 96, 93, 92, 89, 89, 90, 89, 93, 89, 93, 97, 86, 90, 94, 89, 89, 86,
91, 87, 90, 88, 89, 91, 95, 93, 91, 90, 89, 95, 87, 93, 87, 95, 88, 87, 94, 91, 92, 87

0.95 92, 94, 96, 99, 96, 99, 93, 97, 97, 95, 98, 94, 97, 97, 95, 97, 93, 95, 97, 93, 95, 96, 96, 92, 98, 92, 93, 97,
97, 96, 92, 95, 95, 96, 94, 98, 97, 94, 97, 99, 90, 97, 97, 97, 96, 97, 92, 92, 94, 95

0.99 100, 99, 98, 99, 98, 97, 96, 100, 100, 99, 98, 99, 97, 99, 99, 100, 97, 99, 98, 100, 99, 99, 100, 100, 98, 100,
99, 99, 100, 100, 99, 100, 100, 99, 100, 100, 99, 99, 100, 100, 99, 99, 100, 98, 99, 99, 99, 100, 97, 99

being once again clear that in each case the nominal coverage
probability falls indeed in the respective confidence interval.
The above results show the adequacy of the confidence inter-
vals proposed even for very small sample sizes.

To illustrate the utility of the interval estimation proce-
dure developed above, we consider 35 annual maximum
annual maximum floods of the river Nidd in Yorkshire,
UK, taken from the Natural Environment Research Council
NERC (1975, p. 235). As mentioned by Hosking et al. (1985,
p. 258) these data “may reasonably be assumed to come from
a Gumbel distribution.” For these data we have as estimates
for the parameters µ and σ respectively µ̂ = 109.33 and
σ̂ = 47.34. The near-exact quantiles, qα/2 and q1−α/2, were
determined using the near-exact distribution function in (17)
and taking γ = 4. Hence for 1 − α = 0.90, 0.95, 0.99 we
have

q0.05 = 11.03, q0.95 = 44.76,

q0.025 = 8.15, q0.975 = 48.38,

q0.005 = 2.69, q0.995 = 55.68,

and thus the confidence intervals for µ, and for 1 − α =
0.90, 0.95, 0.99, are respectively given by

[91.91, 125.64] , [88.29, 128.52] , [80.99, 133.98] .

The coverage probabilities obtained for samples of size 5
and 10, show that the confidence intervals obtained in this
way may be applied even for small sample sizes; these are
usually situations in which maximum-likelihood estimation
procedures, are not always satisfactory, even for moderate
sample sizes as pointed out by Hosking et al. (1985).

5 Discussion

In this paper we develop precise, tractable, and computation-
ally appealing near-exact approximations for the distribution
of the linear combination of independent Gumbel random
variables. The precision parameter γ plays a key role in mod-
ulating the desired reliability of our approximations, with
larger values of γ leading to a higher accuracy. The value
of γ can hence be chosen according to the targeted level
of precision, but this entails a precision–burden tradeoff as a
higher value of γ requires a larger computational investment.
Although our illustrations focused mostly on the case of sums
of independent Gumbel variates, our approaches are tailored
for linear combinations in general, and their accuracy seems
to be mildly uniform over a different set of weights and sev-
eral combinations of shape and scale parameters. From the
point of view of modeling extremes, more complex struc-
tures of dependence—other than exact independence—are
certainly of interest, as well as tails which are heavier than
the Gumbel. As discussed by Albrecher et al. (2011) sim-
ple and manageable models—such as the Cramér–Lundberg
model—are based on restrictive independence assumptions,
but still can be used as a natural starting point for modeling.

Although not explored here, our near-exact approxima-
tions have the potential to be used as a baseline model—say as
a centering distribution in a Bayesian nonparametric setting
(Müller and Quintana 2004)—and from that point of view
it can be understood as a computationally appealing starting
point for modeling linear combinations of heavy-tailed data
with more complex structures of dependence. In this context,
it seems for example natural ‘centering’ a Dirichlet process
DP(M, FW ⋆) at our near-exact approximation FW ⋆ , where
M > 0 controls the variability of the random distributions
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F generated according to the DP prior, such that we have
F ∼ Beta(M FW ⋆, M(1 − FW ⋆)). Since E(F) = FW ⋆ ran-
dom realizations of the DP process would on average coin-
cide with our near-exact distribution, and the role played by
the parameter M can be better understood by noticing that
var(F) = FW ⋆(1− FW ⋆)/(M +1). Hence, by taking a small
value of M the contribution to the inference of the paramet-
ric model FW ⋆ would be large, whereas larger values of M
will give more priority to the data, which may hopefully be
informative on the tails and on the structure of dependence
to be revealed.

6 Supplementary material

The supplemental files include additional numerical reports,
and Mathematica programs which can be used to imple-
ment the methods described in the article.
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Appendix

Appendix 1: Results and definitions on distributions of
interest

Part I: The GIG and GNIG distributions
Let X j

ind.∼ Gamma(r j , λ j ) with shape parameters r j ∈ N
and rate parameters λ j ∈ R∗

+, all different, for j = 1, . . . , ℓ.
The GIG distribution of depth ℓ ∈ N, introduced by Coelho
(1998), is defined as the distribution of Y = ∑ℓ

j=1 X j , and
we denote this by Y ∼ GIG(r,λ, ℓ), for r = (r1, . . . , rℓ) and
λ = (λ1, . . . , λℓ). The density and distribution functions of
Y are

fY (y; r,λ, ℓ) = K
ℓ∑

j=1

π j (y) exp{−λ j y},

and

FY (y; r,λ, ℓ) = 1 − K
ℓ∑

j=1

Π j (y) exp{−λ j y},

where y > 0, K = ∏p
i=1 λ

ri
i ,

⎧
⎪⎪⎨

⎪⎪⎩

π j (y) =
r j∑

k=1
c j,k yk−1,

Π j (y) =
r j∑

k=1
c j,k(k − 1)!

k−1∑
i=0

yk

i !λk−i
j

,

and the c j,k are given in (11)–(13) in Coelho (1998). The
GNIG distribution of depth (ℓ + 1) ∈ N, introduced by
Coelho (2004), is defined as the distribution of Y ⋆ =
X⋆ + ∑ℓ

j=1 X j , where X⋆ is independent of
∑ℓ

j=1 X j ,
and X⋆ ∼ Gamma(ρ, l), with ρ ∈ R∗

+\N. We denote this
by Y ⋆ ∼ GNIG(r⋆,λ⋆, ℓ + 1), where r⋆ = (r, ρ) and
λ⋆ = (λ, l), and the corresponding density and distribution
functions are

fY ⋆(y; r⋆,λ⋆, ℓ+ 1)

= Klρ
ℓ∑

j=1

exp{−λ j y}

×
r j∑

k=1

{
c j,k

Γ (k)
Γ (k+ρ) yk+ρ−1

1 F1(ρ, k+ρ,−(l−λ j )y)

}
,

and

FY ⋆(y; r⋆,λ⋆, ℓ+ 1)

= lρ yρ
Γ (ρ+1) 1 F1(ρ, ρ+1,−ly) − Klρ

ℓ∑

j=1

exp{−λ j y}

×
r j∑

k=1

c∗
j,k

k−1∑

i=0

yr+iλi
j

Γ (ρ+1+i) 1 F1(ρ, ρ+1+i,−(l − λ j )y),

(23)

for y > 0 and where c∗
j,k = (c j,kλ

k
j )/Γ (k); in the above

expressions 1 F1(·) denotes the Kummer confluent hyperge-
ometric function.

The random variable X∗ = X + θ is a shifted Gamma
distribution with rate λ ∈ R∗

+, shape r ∈ R∗
+, and shift

θ ∈ R, if X ∼ Gamma(r, λ), and we denote this by X∗ ∼
SGamma(r, λ, θ); the shifted GIG and GNIG distributions
are analogously defined and denoted by SGIG(r,λ, ℓ, θ) and
SGNIG(r⋆,λ⋆, ℓ+ 1, θ).

Part II: The DGIG distribution and the sum (and the dif-
ference) of a DGIG random variable with an independent
Gamma random variable

Let X1 ∼ GIG(r1,λ1, p1), with r1 = (r11, . . . , r1p1)

and λ1 = (λ11, . . . , λ1p1), and X2 ∼ GIG(r2,λ2, p2), with
r2 = (r21, . . . , r2p2) and λ2 = (λ21, . . . , λ2p2) be two inde-
pendent random variables with GIG distributions. Let us
then consider the random variable Y = X1 − X2. Y has a
DGIG distribution whose density and distribution functions
are given by (2.12) and (2.15) in Coelho and Mexia (2010),
and we denote this by Y ∼ DGIG(r1, r2,λ1,λ2, p1, p2).
The shifted SDGIG distribution, with shift θ ∈ R, is denoted

123



Stat Comput

by Y ∼ SDGIG(r1, r2,λ1,λ2, p1, p2, θ). Next we obtain
results on the distribution of the sum (and the difference) of
a DGIG with an independent Gamma random variable; these
results are relevant for our third near-exact distribution. One
useful way to look at the distribution of Y is to see it as a
particular mixture of integer Gamma or Erlang distributions.
Indeed, after some rearrangements the density and distribu-
tion functions of Y may be respectively written as

fY (y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki fY jki
(y), y ≥ 0,

p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki fY ∗

jki
(−y), y < 0,

and

FY (y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

+
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki FY jki
(y), y ≥ 0,

p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

−
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki FY ∗

jki
(−y), y < 0,

where, for j =1, . . . , p1; k =1, . . . , r1 j ; i =0, . . . , k − 1,

p jki = K1 K2

λk−i
1 j

c jk

p2∑

ℓ=1

r2ℓ∑

h=1

dℓh
(k − 1)!

i !
(h + i − 1)!

(λ1 j + λ2ℓ)h+i

and, for j = 1, . . . , p2; k = 1, . . . , r2 j ; i = 0, . . . , k − 1,

p∗
jki = K1 K2

λk−i
2 j

d jk

p1∑

ℓ=1

r1ℓ∑

h=1

cℓh
(k − 1)!

i !
(h + i − 1)!

(λ1 j + λ2ℓ)h+i ,

with

K1 =
p1∏

j=1

λ
r1 j
1 j , K2 =

p2∏

j=1

λ
r2 j
2 j ,

and c jk ( j = 1, . . . , p1; k = 1, . . . , r1 j ) given by (2.9)–
(2.11) in Coelho and Mexia (2010), with p replaced by p1 and
r j replaced by r1 j and d jk ( j = 1, . . . , p2; k = 1, . . . , r2 j )

defined in a similar manner, replacing p1 by p2 and r1 j by
r2 j , and where, for y ≥ 0,

fY jki
(y) =

λk−i
1 j

Γ (k − i)
yk−i−1e−λ1 j y,

and

FY jki
(y) = 1 −

k−i−1∑

t=0

λt
1 j

t ! yt e−λ1 j y, (24)

are respectively the density and distribution functions of
Y jki ∼ Gamma(k − i, λ1 j ), while fY ∗

jki
( · ) and FY ∗

jki
( · )

are the density and distribution functions of Y ∗
jki ∼ Gamma

(k − i, λ2 j ).
The weights p jki and p∗

jki verify the relation

p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki +
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki = 1 .

Let now W ∼ Gamma(ρ, λ), where ρ is a positive non-
integer real, be independent of Y . We will consider the ran-
dom variables Z1 = Y + W and Z2 = Y − W and derive
their distribution functions. The distribution function of Z1,
will be given by

FZ1
(z) =

+∞∫

0

FY (z − w) fW (w) dw,

which, for z ≥ 0, using the notation introduced above for
the GNIG distribution function, with r⋆ = (k − i, ρ) and
λ⋆1 = (λ1 j , λ), may be written as

FZ1
(z) =

z∫

0

FY ( z − w︸ ︷︷ ︸
≥0

) fW (w) dw

+
+∞∫

z

FY ( z − w︸ ︷︷ ︸
≤0

) fW (w) dw

=
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

z∫

0

fW (w) dw

+
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki

z∫

0

FY jki
(z−w) fW (w) dw

︸ ︷︷ ︸
distribution function of

G1∼GNIG(r⋆,λ⋆1,2)
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+
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

⎛

⎝1 −
z∫

0

fW (w) dw

⎞

⎠

−
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

+∞∫

z

FY ∗
jki

(w−z) fW (w) dw

︸ ︷︷ ︸
1−F

W−Y∗
jki

(z)

=
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

+
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki FG1
(z, r⋆,λ⋆1, 2)

−
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

(
1 − FW−Y ∗

jki
(z)

)

=
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki FG1
(z, r⋆,λ⋆1, 2)

+
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki FW−Y ∗

jki
(z),

while for z < 0 we have

FZ1
(z) =

+∞∫

0

FY ( z − w︸ ︷︷ ︸
≤0

) fW (w) dw

=
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

+∞∫

0

fW (w) dw

︸ ︷︷ ︸
=1

−
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

+∞∫

0

FY ∗
jki

(w−z) fW (w) dw

︸ ︷︷ ︸
=1−F

W−Y∗
jki

(z)

=
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki FW−Y ∗

jki
(z) .

We thus have

FZ1
(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki FG1
(z; r⋆,λ⋆1, 2)

+
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki FW−Y ∗

jki
(z), z ≥ 0,

p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki FW−Y ∗

jki
(z), z < 0.

(25)

Concerning Z2 = Y − W we have, for z < 0, using the
notation introduced above for the GNIG distribution func-
tion, with r⋆ = (k − i, ρ) and λ⋆2 = (λ2 j , λ),

FZ2
(z) = P(Y − W ≤ z) = P(Y ≤ W + z)

=
−z∫

0

FY ( w + z︸ ︷︷ ︸
≤0

) fW (w) dw

+
+∞∫

−z

FY ( w + z︸ ︷︷ ︸
≥0

) fW (w) dw

=
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

−z∫

0

fW (w) dw

−
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

−z∫

0

FY ∗
jki

(−w−z) fW (w) dw

︸ ︷︷ ︸
distribution function of

G2∼GNIG(r⋆,λ⋆2,2)

+
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

+∞∫

−z

fW (w) dw

+
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki

+∞∫

−z

FY ∗
jki

(w+z) fW (w) dw

︸ ︷︷ ︸
1−FW−Y jki

(−z)

=
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki +

p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki

−
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki FG2

(−z; r⋆,λ⋆2, 2)

−
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p∗
jki FW−Y jki

(−z)

= 1 −
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p∗
jki FW−Y jki

(−z)

−
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki FG2

(−z; r⋆,λ⋆2, 2)

while for z ≥ 0 we have

FZ2
(z) = P(Y − W ≤ z) = P(Y ≤ W + z)

=
+∞∫

0

FY ( w + z︸ ︷︷ ︸
≥0

) fW (w) dw

=
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki

+∞∫

0

fW (w) dw

+
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki

+∞∫

0

FY jki
(w+z) fW (w) dw

︸ ︷︷ ︸
1−FW−Y jki

(−z)

= 1 −
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki FW−Y jki
(−z),
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so that

FZ2
(z) =⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 −
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p jki FW−Y jki
(−z), z ≥ 0,

1 −
p1∑

j=1

r1 j∑

k=1

k−1∑

i=0

p∗
jki FW−Y jki

(−z)

−
p2∑

j=1

r2 j∑

k=1

k−1∑

i=0

p∗
jki FG2

(−z; r⋆,λ⋆2, 2), z < 0 .

(26)

It remains now to obtain the distribution function of
random variables of the type of Z∗ = W − Y ∗, where
W ∼ Gamma(ρ, λ) and Y ∗ ∼ Gamma(r, λ1), where ρ, λ1
and λ2 are positive reals and r is a positive integer. The dis-
tribution function of Z∗ is given by

FZ∗(z) = P(W − Y ∗ ≤ z) = P(−Y ∗ ≤ z − W )

= 1 − P(Y ∗ ≤ W − z)

= 1 −
+∞∫

0

FY ∗(w − z) fW (w) dw

which for z ≥ 0, using the expression in (24) for the distri-
bution function of an integer Gamma or Erlang distribution,
yields

FZ∗(z) = 1 −
z∫

0

FY ∗(w − z︸ ︷︷ ︸
≤0

)

︸ ︷︷ ︸
=0

fW (w) dw

−
+∞∫

z

FY ∗(w − z) fW (w) dw

= 1 −
+∞∫

z

{1 − P(Y ∗ > w − z)} fW (w) dw

= 1 −
+∞∫

z

fW (w) dw

+
+∞∫

z

P(Y ∗ > w − z) fW (w) dw

= FW (z) + λρ

Γ (ρ)
eλ1z

{
r−1∑

t=0

λr
1

t !
+∞∫

z

(w − z)twρ−1 e−w(λ+λ1) dw

⎫
⎬

⎭

= FW (z) + λρ

Γ (ρ)
eλ1z

{
r−1∑

t=0

λr
1

t !
t∑

k=0

( t
k

)
(−z)k

+∞∫

z

wt+ρ−k−1e−w(λ+λ1)dw

⎫
⎬

⎭

= 1−Γ (ρ, λz)
Γ (ρ)

+ λρ

Γ (ρ)
eλ1z

{
r−1∑

t=0

λr
1

t !
t∑

k=0

( t
k

)

(−z)k(λ+λ1)
−t−ρ+kΓ (t+ρ−k, (λ+λ1)z)

}

while for z < 0 it yields

FZ∗(z) = 1 −
+∞∫

0

FY ∗(w − z) fW (w) dw

= 1 −
+∞∫

0

{1 − P(Y ∗ > w − z)} fW (w) dw

= 1 −
+∞∫

0

fW (w) dw

+
+∞∫

0

P(Y ∗ > w − z) fW (w) dw

= λρ

Γ (ρ)
eλ1z

{
r−1∑

t=0

λr
1

t !
t∑

k=0

( t
k

)
(−z)k

+∞∫

0

wt+ρ−k−1e−w(λ+λ1)dw

⎫
⎬

⎭

= λρ

Γ (ρ)
eλ1z

{
r−1∑

t=0

λr
1

t !
t∑

k=0

( t
k

)
(−z)k

(λ+ λ1)
−t−ρ+kΓ (t + ρ − k)

}

,

and as such

FZ∗(z) =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−Γ (ρ, λz)
Γ (ρ)

+ λρ

Γ (ρ)
eλ1z

{
r−1∑

t=0

λr
1

t !
t∑

k=0

( t
k

)

(−z)k(λ+λ1)
−t−ρ+kΓ (t+ρ−k, (λ+λ1)z)

}

, z ≥ 0,

λρ

Γ (ρ)
eλ1z

{
r−1∑

t=0

λr
1

t !
t∑

k=0

( t
k

)
(−z)k

(λ+ λ1)
−t−ρ+kΓ (t + ρ − k)

}

, z < 0.
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Appendix 2: Representation of a logarithmized Gamma
distribution as an infinite sum of shifted exponential
distributions

If X ∼ Gamma(r, λ) its hth moment is given by

E
(

Xh
)

= Γ (r + h)

Γ (r)
λ−h . (27)

Then, the random variable Y = − log X has what we call
a logarithmized Gamma distribution and its characteristic
function may be obtained from (27) in the following way

ΦY (t) = E(Y −it ) = Γ (r − it)
Γ (r)

λit , t ∈ R,

Using the equality

Γ (z) = 1
z

∞∏

n=1

[(
1 + 1

n

)z (
1 + z

n

)−1
]

, z ∈ C,

we have

ΦY (t) = 1
Γ (r)

1
r − it

∞∏

n=1

[(
1 + 1

n

)r−it

×
(

1 + r − it
n

)−1
]

exp{log λit }

=
{

r
r − it

exp{log λit }
}[ ∞∏

n=1

n + r
n + r − it

× exp
{

it
(

− log
(

1 + 1
n

))} ]
.

HenceΦY is also the characteristic function of an infinite sum
of independent shifted Exponential distributions. This shows
that a logarithmized Gamma random variable may be repre-
sented as an infinite sum of independent shifted Exponential
random variables.
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