コーヒーリング効果とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > コーヒーリング効果の意味・解説 

コーヒーリング‐げんしょう〔‐ゲンシヤウ〕【コーヒーリング現象】

読み方:こーひーりんぐげんしょう

コロイド溶液液滴固体表面上で乾燥させたとき、含まれていた微粒子リング状に現れる現象。名称は、コーヒー染みリング状になることに由来する。コーヒーリング効果。


コーヒーリング効果

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/09 17:25 UTC 版)

物理学においてコーヒーリング: coffee ring)とは、粒子を含む液体が蒸発した後に現れる、リング状の蒸発残渣物で、1997年にロバート・D・ディーガンらにより報告された[1]。こぼれたコーヒーが蒸発した後に、このような特徴的なリング状の析出物が現れることから名付けられた。ただし、これはコーヒーだけに見られる現象ではなく、例えば赤ワインをこぼした場合などでも見ることができる。これらや類似のリングの形成の背後にある機構はコーヒーリング効果(コーヒーリングこうか、: coffee ring effect)として、他の例ではコーヒーステイン効果もしくは単にリングステインとして知られている。


  1. ^ a b Deegan, Robert D.; Bakajin, Olgica; Dupont, Todd F.; Huber, Greb; Nagel, Sidney R.; Witten, Thomas A. (1997). “Capillary flow as the cause of ring stains from dried liquid drops”. Nature 389 (6653): 827–829. Bibcode1997Natur.389..827D. doi:10.1038/39827. 
  2. ^ a b Ooi, Yuto; Hanasaki, Itsuo; Mizumura, Daiki; Matsuda, Yu (2017). “Suppressing the coffee-ring effect of colloidal droplets by dispersed cellulose nanofibers”. Science and Technology of Advanced Materials 18 (1): 316–324. doi:10.1080/14686996.2017.1314776. PMC 5439399. PMID 28567177. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439399/. 
  3. ^ Hu, H; Larson, R. G. (2006). “Marangoni Effect Reverses Coffee-Ring Depositions”. Journal of Physical Chemistry B 110 (14): 7090–7094. doi:10.1021/jp0609232. PMID 16599468. 
  4. ^ Savino, R.; Paterna, D.; Favaloro, N. (2002). “Buoyancy and Marangoni Effects in an Evaporating Drop”. Journal of Thermophysics and Heat Transfer 16 (4): 562–574. doi:10.2514/2.6716. ISSN 0887-8722. 
  5. ^ Jafari Kang, Saeed; Vandadi, Vahid; Felske, James D.; Masoud, Hassan (2016). “Alternative mechanism for coffee-ring deposition based on active role of free surface”. [Physical Review E] 94 (6): 063104. Bibcode2016PhRvE..94f3104J. doi:10.1103/PhysRevE.94.063104. 
  6. ^ Coffee-ring phenomenon explained in new theory. phys.org (December 20, 2016)
  7. ^ Gençer, A.; Schütz, C.; Thielemans, W., Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films. Langmuir 2017, 33 (1), 228-234 http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b03724
  8. ^ de Gans, Berend-Jan; Schubert, Ulrich S. (2004). “Inkjet Printing of Well-Defined Polymer Dots and Arrays”. Langmuir 20 (18): 7789–7793. doi:10.1021/la049469o. ISSN 0743-7463. 
  9. ^ Soltman, Dan; Subramanian, Vivek (2008). “Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect”. Langmuir 24 (5): 2224–2231. doi:10.1021/la7026847. ISSN 0743-7463. 
  10. ^ Patil N. D., Bange P. G., Bhardwaj R., Sharma A, Effects of Substrate Heating and Wettability on Evaporation Dynamics and Deposition Patterns for a Sessile Water Droplet Containing Colloidal Particles Langmuir, Vol. 32 (45), Pages 11958–11972, 2016 DOI: 10.1021/acs.langmuir.6b02769
  11. ^ a b McBride, Samantha; Dash, Susmita; Varanasi, Kripa (2018-04-01). “Evaporative Crystallization in Drops on Superhydrophobic and Liquid-Impregnated Surfaces”. Langmuir XX (XX): XXXX. doi:10.1021/acs.langmuir.8b00049. 
  12. ^ Eral, H.B.; Mampallil-Agustine, D.; Duits, M.H.G.; Mugele, F. (2011). “Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting”. Soft Matter 7 (10): 7090–7094. Bibcode2011SMat....7.4954E. doi:10.1039/C1SM05183K. 
  13. ^ Weon, Byung Mook; Je, Jung Ho (2010). “Capillary force repels coffee-ring effect”. Physical Review E 82: 015305(R). Bibcode2010PhRvE..82a5305W. doi:10.1103/PhysRevE.82.015305. 
  14. ^ Shen, X; Ho, C. M.; Wong, T. S. (2010). “Minimal Size of Coffee Ring Structure”. Journal of Physical Chemistry B 114 (16): 5269–5274. doi:10.1021/jp912190v. PMC 2902562. PMID 20353247. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2902562/. 
  15. ^ Yunker, P. J.; Still, T; Lohr, M. A.; Yodh, A. G. (2011). “Suppression of the coffee-ring effect by shape-dependent capillary interactions”. Nature 476 (7360): 308–311. Bibcode2011Natur.476..308Y. doi:10.1038/nature10344. PMID 21850105. 
  16. ^ Coffee-ring effect explained”. ScienceDebate.com. 2011年8月21日閲覧。
  17. ^ Pack, Min; Hu, Han; Kim, Dong-Ook; Yang, Xin; Sun, Ying (2015). “Colloidal drop deposition on porous substrates: competition among particle motion, evaporation and infiltration”. Langmuir 31 (29): 7953–7961. doi:10.1021/acs.langmuir.5b01846. 
  18. ^ Bhardwaj, R; Fang, X; Somasundaran, P; Attinger, D (2010). “Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram”. Langmuir 26 (11): 7833–42. arXiv:1010.2564. doi:10.1021/la9047227. PMID 20337481. 
  19. ^ Prevo, Brian G.; Velev, Orlin D. (2004). “Controlled rapid deposition of structured coatings from micro-and nanoparticle suspensions”. Langmuir 20 (6): 2099–2107. doi:10.1021/la035295j. 
  20. ^ Kumnorkaew, Pisist; Ee, Yik-Khoon; Tansu, Nelson; Gilchrist, James F. (2008). “Investigation of the Deposition of Microsphere Monolayers for Fabrication of Microlens Arrays”. Langmuir 24 (21): 12150–12157. doi:10.1021/la801100g. 
  21. ^ Dimitrov, Antony S.; Nagayama, Kuniaki (1995). “Steady-state unidirectional convective assembling of fine particles into two-dimensional arrays”. Chemical Physics Letters 243 (5–6): 462–468. Bibcode1995CPL...243..462D. doi:10.1016/0009-2614(95)00837-T. 
  22. ^ Hosein, Ian D.; Liddell, Chekesha M. (2007-08-01). “Convectively Assembled Nonspherical Mushroom Cap-Based Colloidal Crystals”. Langmuir 23 (17): 8810–8814. doi:10.1021/la700865t. PMID 17630788. https://doi.org/10.1021/la700865t. 
  23. ^ Hosein, Ian D.; John, Bettina S.; Lee, Stephanie H.; Escobedo, Fernando A.; Liddell, Chekesha M. (2008-12-24). “Rotator and crystalline films viaself-assembly of short-bond-length colloidal dimers”. Journal of Materials Chemistry 19 (3): 344–349. doi:10.1039/B818613H. 
  24. ^ Hosein, Ian D.; Liddell, Chekesha M. (2007-10-01). “Convectively Assembled Asymmetric Dimer-Based Colloidal Crystals”. Langmuir 23 (21): 10479–10485. doi:10.1021/la7007254. PMID 17629310. 
  25. ^ Meng, Linli; Wei, Hong; Nagel, Anthony; Wiley, Benjamin J.; Scriven, L. E.; Norris, David J. (2006-10-01). “The Role of Thickness Transitions in Convective Assembly”. Nano Letters 6 (10): 2249–2253. Bibcode2006NanoL...6.2249M. doi:10.1021/nl061626b. 
  26. ^ Hosein, Ian D.; Lee, Stephanie H.; Liddell, Chekesha M. (2010-09-23). “Dimer-Based Three-Dimensional Photonic Crystals”. Advanced Functional Materials 20 (18): 3085–3091. doi:10.1002/adfm.201000134. 


「コーヒーリング効果」の続きの解説一覧


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「コーヒーリング効果」の関連用語

1
コーヒーリング現象 デジタル大辞泉
76% |||||

2
38% |||||


4
10% |||||

コーヒーリング効果のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



コーヒーリング効果のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのコーヒーリング効果 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS