可測関数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 可測関数の意味・解説 

可測関数

(可測函数 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/10/07 17:07 UTC 版)

数学の、特に測度論の分野における可測関数(かそくかんすう、: measurable function)とは、(積分論を展開する文脈として自然なものである)可測空間の間の、構造を保つ写像である。具体的に言えば、可測空間の間の関数が可測であるとは、各可測集合に対するその原像可測であることを言う(これは位相空間の間の連続関数の定義の仕方と似ている)。


  1. ^ a b c d Strichartz, Robert (2000). The Way of Analysis. Jones and Bartlett. ISBN 0-7637-1497-6 
  2. ^ 小谷眞一『測度と確率 1』岩波講座 現代数学の基礎, 岩波書店, 1997年
  3. ^ Folland, Gerald B. (1999). Real Analysis: Modern Techniques and their Applications. Wiley. ISBN 0-471-31716-0 
  4. ^ Royden, H. L. (1988). Real Analysis. Prentice Hall. ISBN 0-02-404151-3 
  5. ^ Dudley, R. M. (2002). Real Analysis and Probability (2 ed.). Cambridge University Press. ISBN 0-521-00754-2 





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「可測関数」の関連用語

可測関数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



可測関数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの可測関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS