実験法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/13 06:09 UTC 版)
実験法としては、電極を組織表面、組織内(細胞外)、細胞表面、あるいは細胞内などに固定して電圧または電流の制御および測定を行う。 電極の種類には古典的な固体電極のほか、プリント基板、またガラスピペットなどの管に緩衝液を満たしたものがあり、目的に応じた形とサイズの電極が利用される。 測定方法には、電圧を固定し電流を記録するボルテージクランプ(電位固定)法と、一定の電流を流して電圧を記録するカレントクランプ(電流固定)法とがある。前者は一定の膜電位でのイオンチャネルの活動を調べるのに適している。後者は神経伝達物質の作用によりイオン流が生じた際の細胞の反応を調べるのに適している。ボルテージクランプ法は電気信号を増幅器で増幅して測定するが、カレントクランプ法は増幅器を用いず直接測定することが多い。 マイクロメートル単位の小さい電極を使えば、単一細胞の電気活動を記録できる。現在では細胞の活動に影響を与えにくい微小なガラスピペットを用いることが多い。これは先端の直径が1マイクロメートル以下、電気抵抗が数メグオームのものである。これにより分子レベルの測定もできる。
※この「実験法」の解説は、「電気生理学」の解説の一部です。
「実験法」を含む「電気生理学」の記事については、「電気生理学」の概要を参照ください。
実験法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/05/29 03:24 UTC 版)
実験法としては、外部からの磁気雑音を除くためにシールドルーム内で高感度磁気センサを体の表面などに固定して磁気の計測を行う。磁気センサとしては超伝導量子干渉素子 (SQUID) や光ポンピング磁力計が使用される。また、近年では極低温への冷却が不要でSQUIDよりもダイナミックレンジの大きいトンネル磁気抵抗効果素子の高感度化が進む事により、シールドルームの不要な測定法も開発されつつある。
※この「実験法」の解説は、「磁気生理学」の解説の一部です。
「実験法」を含む「磁気生理学」の記事については、「磁気生理学」の概要を参照ください。
- 実験法のページへのリンク