素元とは? わかりやすく解説

素元

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/12/28 17:14 UTC 版)

数学、特に抽象代数学において、可換環素元: prime element)は整数における素数既約多項式と似たある性質を満たす対象である。素元と既約元を区別するよう注意しなければならない。既約元はUFDにおいては素元と同じ概念であるが、一般には異なる。


  1. ^ Hungerford 1980, Theorem III.3.4(i), 定理と証明の下の注意で指摘されているように、結果は完全に一般に成り立つ。
  2. ^ Hungerford 1980, Theorem III.3.4(iii)
  3. ^ Hungerford 1980, Remark after Definition III.3.5


「素元」の続きの解説一覧

素元

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/24 00:06 UTC 版)

離散付値環」の記事における「素元」の解説

離散付値環 R に対し、R の任意の既約元は R の唯一の極大イデアル生成元であり、逆もまた成り立つ。そのような元を離散付値環 R の素元(prime element あるいは uniformizing parameter / uniformizing element / uniformizer; 一意化元)と呼ぶ。 素元 t を一つ固定して R の唯一の極大イデアルを M = (t) と書けば、ほかの任意の零イデアルは M の冪、すなわち適当な整数 k ≥ 0 に対して (t k) の形になる。t の冪はすべて相異なるから、M についてもそうである。R の任意の零元 x は x から一意的に定まる R の単元 α と整数 k ≥ 0 を用いて αt k の形に書けて、その付値は ν(x) = k で与えられる。従って、離散付値環を完全に知るには、R の単元群と、それが t の冪に対して加法的にどう作用するかが分かればよいことになる。

※この「素元」の解説は、「離散付値環」の解説の一部です。
「素元」を含む「離散付値環」の記事については、「離散付値環」の概要を参照ください。

ウィキペディア小見出し辞書の「素元」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「素元」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「素元」の関連用語

素元のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



素元のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの素元 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの離散付値環 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2024 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2024 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2024 GRAS Group, Inc.RSS