線型写像
(線型変換 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/14 23:07 UTC 版)
数学の特に線型代数学における線型変換(せんけいへんかん、英: linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、英: linear mapping)は、ベクトルの加法とスカラー倍を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。
- ^ 一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。
- ^ 加法性から斉一次性が従うベクトル空間もあるが、一般にはそのようなことは期待できない。例えば、実数の全体 ℝ は無限次元 ℚ-線型空間とも一次元 ℝ-線型空間とも見做すことができるが、ℝ 上の加法的函数は必ず ℚ-線型写像となり、しかし必ずしも ℝ-線型でない(この場合はさらに連続性を仮定すれば ℝ-線型になる)ことが示される(コーシーの函数方程式の項を参照)。つまり一般には「加法性」と「斉一次性」は独立した制約条件である。
- ^ 考えている係数体が何であるかは線型性にとって重要である。例えば、複素数全体の成す体 ℂ は ℂ 上一次元のベクトル空間であるとともに、ℝ 上二次元のベクトル空間でもある。各複素数に対し、その複素共軛をとる操作は ℂ 上の ℝ-線型変換であるが、しかし ℂ-線型ではない。
- 線型変換のページへのリンク