量子的な重ね合わせ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/18 03:27 UTC 版)
「重ね合わせの原理」の記事における「量子的な重ね合わせ」の解説
詳細は「en:Quantum superposition」および「重ね合わせ」を参照 量子力学では、ある種の波の伝播や振る舞いを計算することが最重要な問題である。この波は波動関数によって表され、その振る舞いを規定する方程式はシュレーディンガー方程式と呼ばれる。ある波動関数の振る舞いを計算する基本的なアプローチは、定常状態と呼ばれるシンプルな性質を持つ波動関数を複数(時には無限個)重ね合わせたものとして書き表すことである。シュレーディンガー方程式は線形なので、問題の波動関数の振る舞いは定常状態の振る舞いの重ね合わせとして計算できる。 量子力学的な状態はヒルベルト空間のベクトルだと見なされることが多い。しかし、量子状態を基底ベクトル等のベクトルの重ね合わせとして表す場合、重ね合わされたベクトル間の相対位相にのみ物理的意味があると考えられており、ある状態に絶対値1の複素位相因子 eiθ をかけても同じ状態だと解釈される。また、向きは同じで絶対値のみが異なるベクトルは同じ量子状態を表す。つまり、量子状態はベクトルではなく、ヒルベルト射影空間(英語版)の元、すなわち射線で表される。射線とはあるベクトルを複素定数倍したものをすべて同値と見なす同値類である。ただし、量子状態を重ね合わせる場合には相対位相が異なる重ね合わせは異なる量子状態となるため、位相情報を失った射線の間に「重ね合わせ」は定義できず、適当な位相を持ったベクトルを用いる必要がある。実際ディラックは、射線ではなく位相を持ったブラベクトルやケットベクトルを重ね合わせることによって量子状態を表現している。それにもかかわらずディラックは射線の考えに基づき「量子力学において見られる重ね合わせは、古典理論における重ね合わせとは本質的に異なった性質を持つ」と述べているが、例えば、偏光状態を表すブロッホ球(ポワンカレ球)は古典偏光状態も量子偏光状態(量子ビット状態)も表すことができ、古典偏光状態と量子ビット状態は一対一に対応する。
※この「量子的な重ね合わせ」の解説は、「重ね合わせの原理」の解説の一部です。
「量子的な重ね合わせ」を含む「重ね合わせの原理」の記事については、「重ね合わせの原理」の概要を参照ください。
- 量子的な重ね合わせのページへのリンク