有理関数 不定積分

有理関数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/07/06 17:09 UTC 版)

不定積分

実係数の一変数有理関数

が与えられたとき、分母 Q(x) の最高次係数が 1k 個の相異なる実根 r1, …, rk をもつならば、既約多項式の積

に分解できる。このとき有理関数 f(x) は以下の形をした関数を用いて表せる(部分分数分解)。

したがって有理関数 f(x)不定積分fi(x) の不定積分 Fi(x) を用いて表せる。

特に有理関数の不定積分は有理関数を用いて表せるとは限らないが、有理関数に加えて対数関数 log逆正接関数 arctan を用いれば必ず表せる。

一方で複素係数の一変数有理関数が与えられたとき、その不定積分は有理関数と対数関数さえ用いれば必ず表せるので、より簡明である。(対数関数多価関数偏角に由来する不定性があるが、不定積分では積分定数への影響しかない。)




「有理関数」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「有理関数」の関連用語

有理関数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



有理関数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの有理関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS