
RESAR: Reliable Storage at Exabyte Scale
Thomas Schwarz, SJ∗, Ahmed Amer†, Thomas Kroeger‡, Ethan Miller§, Darrell Long§, Jehan-François Pâris¶

∗Marquette University, Milwaukee, WI, tschwarz@jesuits.org
†Santa Clara University, Santa Clara, CA, aamer@scu.edu

‡Sandia National Laboratories, Livermore, CA,1 tmkroeg@sandia.gov
§SSRC, University of California, Santa Cruz, CA, {elm, darrell}@soe.ucsc.edu

¶University of Houston, Houston, TX, jfparis@uh.edu

Abstract—Stored data needs to be protected against device
failure and irrecoverable sector read errors, yet doing so at
exabyte scale can be challenging given the large number of
failures that must be handled. We have developed RESAR
(Robust, Efficient, Scalable, Autonomous, Reliable) storage, an
approach to storage system redundancy that only uses XOR-
based parity and employs a graph to lay out data and parity. The
RESAR layout offers greater robustness and higher flexibility for
repair at the same overhead as a declustered version of RAID 6.
For instance, a RESAR-based layout with 16 data disklets per
stripe has about 50 times lower probability of suffering data loss
in the presence of a fixed number of failures than a corresponding
RAID 6 organization. RESAR uses a layer of virtual storage
elements to achieve better manageability, a broader potential
for energy savings, as well as easier adoption of heterogeneous
storage devices.

I. INTRODUCTION

Large data centers containing exabytes of data on mil-
lions of devices present several important challenges. First,
device failures and latent sector failure become frequent.
Second, it is difficult to administer dynamic, heterogeneous
systems, as such large systems must be. To address these
challenges, we developed RESAR (Robust, Efficient, Scalable,
Autonomous, Reliable) storage, which provides the same two-
failure tolerance as RAID 6, but only uses exclusive-or (XOR)
operations, with the resulting layout weaving through the
storage system. Like EvenOdd, X-codes or row-diagonal parity
codes, the RESAR layout avoids the need for advanced, but
power-hungry processors to perform Galois field-based parity
calculations. RESAR accomplishes this goal using a virtual
layer that simplifies the management of recovery operations,
allows for adjusting stripe sizes, and reduces the complexity
of administering churn in the data center caused by individual
device failure and decommissioning as well as the introduction
of new batches of storage devices.

Ultimately, the value of data, the frequency of storage device
failures, and the size of the installation determine the level
of failure tolerance needed. The consensus for large storage
systems is that two-failure tolerance is the right level of
tolerance, assuming that data stripes are not large. We need
two-failure tolerance because failure of a complete disk can
uncover latent sector failure—failure of a single or a few
sectors that can only be discovered by trying to read an

1 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

affected sector—when trying to recover from a single disk
failure. General data rarely demand greater failure tolerance if
recovery is sufficiently fast. This greater failure tolerance can
be achieved by using stronger error-correcting codes, where
each data block is covered by more than two parity blocks,
but one can also use mechanisms such as disk scrubbing [26]
and disk health monitoring [15] for disk-based storage systems
to detect failures before they can do harm. Techniques such
as wear leveling [5] and the selection of the error-correction
code in flash memory pages [7] can control component failure
rates for flash-based systems. RESAR, as we present it here,
only aims to provide two-failure tolerance, but more important
data can always be protected by additional redundancy such
as mirroring to a geographically distinct site, or inter-site
parity [4].

The RESAR code is like a grid that weaves through the disk
array, and has superficial similarities to helical entanglement
codes [8] or Weaver codes [11]. A storage system that dis-
covers a device failure reacts by using the RESAR-provided
redundancy data to recover from the failure by reconstructing
the data from the lost device, segment, or page and storing
the reconstructed data elsewhere in the system. This recovery
procedure can generate a sudden load increase if complete
devices are placed into the reliability stripes of an erasure
correcting code. A common solution is declustering [1], [13],
[31], where not complete devices, but only logically (in the
case of SSD) or physically (in the case of disks) contiguous
parts, called disklets are organized into reliability stripes. Now,
if a storage device fails, the data in the (hundreds to tens of
thousands) of disklets it houses is recovered by accessing data
in each disklet’s reliability stripe. Our disklet-to-disk mapping
distributes the other disklets in the reliability stripes over many
disks. The recovery work is then distributed over many disks
and proceeds faster. Faster recovery shrinks the “window of
vulnerability”, starting with a failure and ending when all lost
data is rebuilt, to a few minutes. It is also good for performance
since the storage system spends less time in the degraded mode
where recovery operations interfere with client reads.

The task of defining an organization of disklets in a storage
system is complicated by the dynamic nature of large storage
systems, where batches of new components are added and
where components leave because of failure, decommissioning,
or migration (e.g., when disks are moved to a new rack).
As in Ceph [28], we use a metadata server to manage the



mapping of disklets to disks. This metadata server mediates
between a single, conceptual RESAR layout and the allocation
of RESAR disklets to disklets in actual disks. The RESAR
layout extends to any number of disklets, but only changes
when we alter the number of disklets in a reliability stripe
to change the parity overhead. The metadata server bases its
allocation on the current location of disklets in disks and disks
in racks, and reacts to changes in the physical environment by
reassigning virtual disklets to physical disklets. This can be
done, for example, to balance load, to create “cold” disks, or
to reflect dependence on common components. In the case of
failure, it recovers a conceptual disklet by reconstructing the
data in the failed disklet and placing it in a new location.

The conceptual RESAR layout and its specific form has the
following advantages:

1) RESAR can deal with very large disk arrays consisting
of heterogeneous storage devices.

2) The metadata server can easily balance the load between
already-present disks and a batch of new disks by moving
physical disklets without changing the conceptual layout.

3) Recovery in RESAR is more flexible and can avoid
interference with a read by switching recovery to the other
stripe which contains the disklet.

4) Placing disklets into two different stripes with one parity
disklet each protects data better than placing them in a
single stripe with two parity disklets.

5) RESAR minimizes the number of disks currently
powered-on for writing by making it effective to store
data in a log, despite the complication of having to update
parity in two different reliability stripes.

6) RESAR can efficiently change the size of reliability
stripes, allowing dynamic trade-offs between parity over-
head and the effort needed to recover from disk failures.

7) RESAR recovery from disk failure is on the order of
minutes, compared to hours for a system composed of
classical RAID 6 layouts.

We will first explain how the introduction of the virtual
disklet layer simplifies management of storage systems. We
next describe how to create RESAR layouts and assess RE-
SAR’s reliability and performance. We then compare RESAR
to a declustered data layout that organizes disklets in reliability
stripes of k disklets and two additional parity disklets, showing
that RESAR has both higher reliability and equal performance
compared with RAID 6 layouts. We conclude by suggesting
additional approaches that can build on our RESAR approach.

II. VIRTUAL LAYOUTS

Large data centers are very dynamic. Every so often, a
new batch of hardware is integrated into the system and
constantly, disks and other components fail. In a large system
many storage components share the same support structure.
For example, disks might be arranged in enclosures and the
enclosures themselves are located in racks. Failure within the
same support structure is sometimes correlated, as exemplified
by anecdotes where a change of enclosure lead to a dramatic
lowering of disk failure rates. Sometimes, the whole support

Disklet Layer

Rack and Disk Layer

Fig. 1. A metadata server mediates between a virtual storage system
consisting of data disklets (gray) and parity disklets (blue and cyan).

structure such as a rack can suffer a failure. For example, a
network problem can disconnect all disks in one or more racks
from the rest of the system.

Systems such as Ceph use a metadata server to administer
this complexity [28]. We can use this technique to mediate
between a virtual layout consisting of disklets arranged in
reliability stripes (Figure 1, top) and the actual hardware.
A table maps disklets to “actually existing” disklets found
in disks located in racks. In earlier work [6], we described
this as coloring the virtual disklet with a disk and rack. The
coloring needs to assign disklets in the same reliability stripe
to different disks and possibly, to different racks. The name
‘coloring’ might be somewhat unfortunate since it suggests
the complexity of the four-color theorem for graphs. In our
case however, we have many choices for disks, enclosures,
and racks so that the painting can actually be done ad hoc.
To simplify coloring with racks, all disklets are numbered. If
the number of two disklets differs by more than R = k2 − 1,
then they cannot share a reliability stripe and can therefore be
placed in the same rack.

We therefore distinguish between a virtual disklet layer
and a physical disklet layer. The virtual disklet layer is
concerned with placing disklets into reliability stripes, while
the physical disklet layer is concerned with placing disklets
into disks located in enclosures and racks. Recovery from
device failure is implemented in both layers, but at each layer
the focus is on a more manageable and focused part of the
data placement problem. The virtual layer is concerned with
identifying the logical disklets needed to reconstruct unavail-
able virtual disklets, while the physical layer is concerned with
the mapping between logical disklets and physical devices. As
such, the virtual layer tackles redundancy management and
recovery planning, while the physical layer focuses on the
physical assignment of logical disklets to physical devices.
Naturally there is coordination between the two layers, as it
would be necessary to consult the mapping of physical to
virtual disklets in order to identify the set of virtual disklets



that need to be recovered when a particular physical device
(be it a disk, a rack, or even an individual sector) fails. The
mapping also influences the selection of physical locations
for virtual disklets, as it is important to avoid assignment of
multiple virtual disklets within the same reliability stripe to
the same physical device.

The physical layer gives a list of failed disklets to the
virtual disklet layer, which then begins to plan recovery
operations. It might query the physical disklet layer for the
current availability of disklet layers which reflects the load
of the disk. As the virtual layer assigns reads to disklets,
the physical layer keeps track of the additional load at the
disks in which the disklets are placed. However, even without
this information, the virtual disk layer can plan recovery. In
the case of a major failure, recovery often has to proceed in
stages. For instance, in order to recover the data from a given
disklet, we need to read all other disklets in one of the two
stripes, but there might be missing disklets in both of them.
However, these in turn might be recoverable. Often, there may
be no choice involved in how to recover a particular disklet.
In these complicated situations, the virtual disk layer can act
without knowing, or caring, where the disklets are located. If,
for example, the virtual layer has the opportunity to choose
between two possible paths of recovering a particular data
disklet, then more detailed information from the underlying
physical layer may become more important. For example, it
may be more beneficial to select a recovery path that involves
the most underutilized physical devices as a means of load
balancing. Or, in the interests of energy efficiency, it may
be best to select the physical devices currently active, and
thereby avoid spinning up idle hardware from a low power
state. The option of making such a choice is an advantage of
this virtualization of the disklets, and is increasingly likely to
be useful as systems scale increases in the number of devices.
If a disk fails, the disklets located in it are reconstructed
in other disks,which is represented by repainting the virtual
disklets. This operation leaves the virtual disklet layer intact
and thus does not affect the definition of the reliability stripes.

The introduction of the virtual disklet layer also simplifies
manipulation of the storage system, which offers benefits in
routine management even in the absence of failures. If the sys-
tem needs to rebalance load, for example after incorporating
a batch of new disks, data needs to be copied from a disk
to another disk, but the virtual disklet layer does not need to
change.

If we want to make trade-offs between the failure tolerance
of the array and the storage overhead, we need to change
the parameter k giving the number of data disklets in each
reliability stripe. For example, if we want to halve k, we have
to break reliability stripes in half and then add an additional
parity drive. This is an operation solely in the virtual disklet
layer, which is easy to perform. The result is a generalized
RESAR layout, until the disks are renumbered. However, no
actual data or parity disklets need to change place. Similar
operations are possible to double, increment, or decrement k.

In summary, the introduction of the virtual disk layer

reduces the administrative complexity of dealing with failure
and growth.

III. TWO-FAILURE TOLERANT FLAT XOR CODES

The underlying code for RESAR is a flat XOR-code.
Greenan et al. defined them as codes where parity symbols
are calculated from certain subsets of data symbols with an
exclusive-or operation [10]. We call these subsets reliability
stripes. Each flat XOR-code corresponds directly to a disk
array layout where each data symbol corresponds to a data
disk and each parity symbol to a parity disk.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

P0

P1

P2

P3

D0 D1 D2 D3

P1

P2

P3

D0

D1

D2

D3

P0 0
12 4

5
6

8

9
10

11

13

15
14

3

7

12

Fig. 2. Left: The two-dimensional layout for a disk array. 0, 1, 2, . . ., 15
are data disks and P0, . . ., P3 and D0, . . ., D3 the two set of parity disks.
Right: The corresponding graph visualization, where edges correspond to data
disks. For example, data disk 9 located in the stripes with parities P2 and
D1 corresponds to the edge between D1 and P2 on the right.

Layouts based on flat XOR-codes that tolerate two simul-
taneous failures need to place each data disk in at least two
different reliability stripes. The intersection of two reliability
stripes cannot contain more than a single disklet. We can label
each data disk by the numbers of the two reliability stripes to
which it belongs. Similarly, we can label each parity disk with
the number of the reliability stripe to which it belongs. This
defines a graph structure derived from the disk layout where
each parity disk corresponds to a vertex and each data disk to
an edge between vertices.

We use the graph to visualize the layout of disklets into
reliability stripes and later manipulate them. Fig. 2 gives an
example. In the graph layout, parity disklets corresponds to
vertices and data disklets to edges. To our knowledge, the
graph visualization was first exploited by Xu et al. in the def-
inition of B-codes [32], as precursor to Row-Diagonal parity
codes that only uses exclusive-or operations and gives two
failure tolerance. An observation by Zhou et al. characterizes
minimal failure sets of disks as those containing either a cycle
of edges or a path where the end vertices have also failed [35].
The graph visualization is a good way to determine the failure
resilience of these type of layouts [23].

We base our RESAR layouts on a bipartite graph. RESAR
layouts are scalable and can incorporate an arbitrarily large
number of data disklets (or complete storage devices). In
the graph presentation, the layout consists of two columns
of parity disklets, which we call the P (parity) and the D
(Diagonal parity) disklets, Fig. 3. Each P-parity disklet is
“connected” (by a data disklet) to its opposite D-disklet and



2 3 4 5

8 9 10 11

14 15 16 17

20 21 22 23

26 27 28 29

32 33 34 35

38 39 40 41

44 45 46 47

50 51 52 53

56 57

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

Fig. 3. A small bipartite RESAR layout with k = 4.

the next k − 1 D-disklets (where k is the number of data
disklets in a stripe). If we so desire, we can have the layout
loop around so that all reliability stripes encompass exactly k
data disklets. This however would make it more difficult to
add additional disklets to the ensemble.

Fig. 3 gives a small RESAR layout (with k = 4) on the left
and the graph representation of the layout on the right. In the
layout, the disklets are arranged in rows of k disklets with a
P -parity added to it. The rows are then arranged in columns
and each disklet becomes part of a diagonal stripe with k data
disklets and an additional D-parity.

We use an enumeration of disklets not only to indicate how
the disk array would grow if more disks are added, but also
to control the placement of disklets in disks such that a single
rack failure cannot cause data loss. If the elements in Fig. 3
denote disklets and we place disklets 33, 35, 38, and 40 in the
same disk, then the failure of this disk causes data loss, since
all four disklets share their two reliability stripes with another
one of the four. Similarly, a rack failure can cause data loss
if we place these disklets in different disks, but in the same
rack.

Our enumeration proceeds in two stages. First, we number
all disklets in a RESAR layout by a pair of numbers (i, j)
where i enumerates consecutively the P -parities and j, 0 ≤
j ≤ k + 1. The P -parity gets i = 0, the opposite D-parity
i = 1 and the data disks in the P -reliability stripe values
i = 2, 3, . . . , k + 1, Fig. 3. In the second stage, we convert
the pair of numbers to a single value by the formula (i, j)→
i × (k + 2) + j. For example, the data disk 39 lies in the
parity stripes of P6 and D7. It gets index (6, 3) in the first
stage and 6 × 6 + 3 in the second stage. As we will see,
failure patterns are made up of unavailable disks (or disklets)

P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

D0

D1

D2

D3

D4

D5

D6

D7

D8

D9

2
3
45

0 1

6 78
9
1011
14
15
1617

12 13

18 1920
21
2223

24

30

36

42

48

54

25

31

37

43

49

55

26
27
2829
32
33
3435
38
39
4041
44
45
4647
50
51
5253

56
57

Fig. 4. The graph representation of the RESAR layout in Fig. 3.

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Fig. 5. A small complete RESAR layout in graph form.

that are made up of neighboring elements in the graph. The
indices of the data disks in the stripe of Dj are (j − l, l +
2) → (j − l((k + 2) + (l + 2)) for 0 ≤ l ≤ k. The biggest
difference between the indices of neighboring disks is attained
when both are data disks sharing a stripe with a D-parity Dj.
It is between disks (j − k+1, k+1) and (j, 2), i.e., between
(j−k+1)(k+2)+(k+1) and j(k+2)+2 and is R = k2−1.
If we have R+1 or more racks and assign disklets in a round-
robin manner, then two disklets in the same rack can never be
neighbors. This guarantees that a rack-failure alone can never
cause data loss. The Python code that implements this layout
is:

def diskNumber(i,j):
return i*(k+2)+j

def pair(diskNumber):
return (diskNumber //(k+2), diskNumber % (k+2))

def horizontalParity(diskNumber):
(i,j) = pair(diskNumber)
return i

def diagonalParity(diskNumber):
(a,b) = pair(diskNumber)
return a+b-2



FF

Fig. 6. Left: Failed data disklets with its neighbors. Right: Failed parity
disklet with its neighbors.

(a) (b) (c) (d)

Fig. 7. Cascading recovery of multiple failures in RESAR.

In order to show the flexibility of RESAR layouts, we give
another layout in graph form in Fig. 5. The design consists of a
long sequence of parity disks p0, p1, p2, . . ., pn. The reliability
stripe with parity disk pi consists of k = 2l data disks, which
are located in additional, different reliability stripes with parity
disks pi−l, pi−l+1, . . ., pi−1, pi+1, pi+2, . . ., pi+l. Reliability
groups at the beginning and at the end of the sequence of
course are smaller.

IV. RESAR’S DISK FAILURE RECOVERY

To recover the data from a failed drive we must recover the
data in each of the disklets in the drive. Since each data disklet
is in two reliability stripes (see Fig. 6 for a depiction in the
graph visualization), we can recover using either reliability
stripe if all the other data disklets and the parity disklet in
the corresponding stripe are still available. This flexibility is
useful to avoid using a heavily loaded disk for recovery and
is also a reason for the greater robustness of this layout. A
parity disklet on a failed disk can be reconstructed in another
disk if all its data disklets can be recovered. RESAR can use
both stripes to halve the reconstruction time.

We use the graph visualization to discuss recovery. The
graph represents disklets, not disks, and a single disk failure
results in multiple disklet failures. As we mentioned, a good
disklet-to-disks mapping ensures that these disklet failures
resulting from the failure of a single disk are widely spread
over the (rather large) graph. We can recover the data from
a disklet (and then place the recovered disklet on another
disk drive) if it is represented by a vertex (and is therefore a
parity disklet) if all the edges (data disklets) adjacent to it are
available. We can recover the data from a disklet represented
by an edge (i.e. a data disklet) if one of the adjacent vertices
and all the edges adjacent to it are available. Cascading

Path Barbell

Cycle
Triangle

Fig. 8. Irreducible failure patterns. The barbell and the triangle on the right
are irreducible failure patterns with the minimum number of failed disklets,
namely three.

recovery in a RESAR layout happens if a disklet can only
be recovered after some of its neighbors have been recovered.
Fig. 7 gives in column (a) a case with several failures in our
graph layout. Failed elements are marked in red. In the upper
failure cluster, there is one vertex on the left, which has lost
three adjacent edges. For this reason, this vertex (or to be more
precise, the reliability stripe represented by this vertex) cannot
be used for recovery, but each data element in this stripe is
also located in another reliability stripe. Two of the failed
data elements can be recovered directly in the following step
(column (b)), and the remaining failed element’s data can be
recovered in the third step (column (c)). The failed vertex in
this cluster can only be reconstructed if all its adjacent edges
are available. The lower failure cluster contains a failed vertex
from which a path of failed edges emanates. This pattern
resolves itself only in the fourth step.

Arguments about failure tolerance are made much easier
in the graph visualization than in the layout itself, as was
previously observed [35]. Disk and sector failure induce a
failure pattern in the graph. We are especially interested in
patterns that represent data loss and that are minimal in the
sense that removing one element of the pattern yields a pattern
of failure from which we can recover. Any failure pattern
that implies data loss is or contains at least one minimal
failure pattern. A key observation is that an edge, that is
part of a minimal failure pattern, either has end-vertices that
also have failed or an end-vertex where one other adjoining
edge has also failed. This allows us to classify all minimal
failure patterns. They form either a cycle consisting of failed
edges, or a path that starts and ends at a failed vertex and
otherwise consists of failed edges in between. The smallest
minimal failure patterns are the barbell and the triangle. Fig. 8
illustrates these concepts.



V. RESAR RELIABILITY

We now compare the reliability of a RESAR layout with that
of a layout that organizes all disklets in the stripes of a RAID
Level 6 layout with two parity disklets per stripe and k data
disklets, Fig. 9. The parity overheads in both organizations are
equal (namely 2/k). The RAID Level 6 layout consists simply
of a very large number of these stripes.

0 1 2 3

6 7 8 9

12 13 14 15

18 19 20 21

P0

P1

P2

P3

Q0

Q1

Q2

Q3

Fig. 9. Four RAID Level 6 reliability stripes.

Simulating reliability of even a moderate RESAR layout
is involved, as instances of failure loss are so rare, even
with a reasonable high number of failed disks. Therefore, we
simulated a layout with 100,000 disks with a single disklet
over several months spending about 10000 CPU hours. We
used these results in order to calculate the reliability of disk
layouts with more disklets per disk. In order to do so, we
had to make the following modeling assumptions. Of course,
these assumptions negate the RESAR design philosophy and
assumptions, for instance because an advantage of RESAR is
the capability to deal with heterogeneous disk. An additional
reason for these simplifications is that modeling heterogeneity
is difficult, since modeling it involves making assumptions
such as deciding the distribution of sizes and failure rate within
the disk population.

1) All disks have the same number N of disklets.
2) The disklets are organized in N different cyclic RESAR

layouts. The first disklet in a disk is in the first RESAR
cycle, the second disklet in the second cycle, etc. The
RAID Level 6 layout uses also N different sets of
reliability stripes and assigns a disklet in position i in
the disk to set i.

3) The assignment of disklet i in a disk to a virtual disklet
in the ith RESAR cycle or the RAID reliability stripe set
is random and independent from the the assignment of
the other disklets in the same disk.

We first determine data loss probabilities for non-
declustered layouts, where there is one disklet per disk. We use
combinatorics to count failure patterns based on the irreducible
patterns such as those depicted in Fig. 8. This allows us to
calculate the probability of data loss in a single RESAR cycle
for less than seven failures. The derivations are too involved
to present here. For the data loss probability of a RAID
layout with n disks, a stripe size of k + 2, and f failure and
consequentially s = n/(k+2) number of stripes, we count all
ways of distributing the f failures among the s stripes such
that no stripes has more than two failures. In the following
formula for the probability of dataloss, index i stands for the

number of stripes with one failed element and j for those with
two failed elements.

1−

 ∑
i≥0,j≥0,2j+i=f

(
s
i

)(
s−i
j

)(
k+2
1

)i(k+2
2

)j/(n
f

)
.

Of course, both designs never suffer data loss with 2 or less
failures. If pb(n, k) denotes the probability of data loss for a
RESAR cycle with n disklets and k data disklets per stripe,
then for k ∈ {3, 4, 5, 6}

ρ = lim
n→∞

pr(n, k)

pb(n, k)
=
k(1 + k)(4 + k)

6(2 + k)
,

which is 50.37 for k = 16 and 14.4 for k = 8. The non-
declustered RESAR layout is ρ times more robust than the
non-declustered layout with RAID Level 6 stripes. We used
extensive simulation (10000 CPU hours) to determine the data
loss probabilities for a RESAR layout with 100,008 disks and
k = 16 and up to 510 failures and found that the robustness of
the RESAR layout was at the end only about 30 times better
than the robustness of the RAID layout, as Fig. 11 shows.

If we move to a declustered layout, where there is more
than one disklet per disk, this discrepancy remains, Fig. 12 and
Fig. 11. Since our simulations did not yield very close con-
fidence intervals (at the 99% level calculated using Wilson’s
formula [30]), Fig. 10, we use quadratic curve smoothing for
the RESAR simulation results and exact values for the RAID
layout. Fig. 12 and Fig. 11 gives the results when we place
100 disklets, 1000 disklets and 10,000 disklets per disk. With a
10 TB disk, this corresponds to disklets sizes of 100 GB, 10 GB
and 1 GB. For the number f of failed disks in the depicted
range up to 20, the data loss probabilities for the declustered
RAID are 50 times higher than for the corresponding RESAR
layout.

Of course, we are really interested in reliability, measured
for instance as the annual data loss rate or the annual data
loss probability of a system. Unfortunately, we cannot do
this calculation. First, both organizations can withstand a
large number of disk failures, resulting in absorbing semi-
Markov models that are for us impossible to evaluate or
even to simulate. Modeling would also depend on the details
of the layout. Second, system reliability depends on a large
number of other factors such as the time to detect a failure,
the occurrence of latent sector failures, storage load factor,
reliability of racks, networking, and other shared components,
as well as device characteristics such as the time needed to
completely read a device. Modeling assumptions such as an
unrealistically high rack failure rate can completely hide the
difference in data layout, which we are trying to improve.
The two factors that are different between a RESAR and a
RAID 6 layout are the probability of incurring data loss after
f failures and the reconstruction speed. As we will describe in
the next section, the RESAR layout is has not only a smaller
probability of occurring data loss after f failures, but can also
reconstruct the vast majority of user data on the lost device
almost twice as fast, because each data disklet is located in
two otherwise disjoint stripes.



�����

�������

�����

� �� �� ��
��������

��×��-�

��×��-�

��×��-�

��×��-�

��×��-�

��×��-�
�� ����

k=16, N=100000
Resar

� �� �� ��
��������

��×��-�

�������

��������

�������

��������

�������

�� ����

k=16, N=100000

RAID L6

Fig. 10. Simulation results for the data loss probability (DL Prob) of a RESAR layout (left) and exact values for a declustered RAID Level 6 layout (right),
both with 100,000 disks. On the left, we give the average and the upper and lower value for the 99% confidence interval calculated with Wilson’s formula.
The graph is that of a quadratic function in the number of failures that best fit the simulation results. Note the different scales for the y-axis.

����� � �������

����� �� ��������

����� ��� ��������

����� ���� ��������

� ��� ��� ��� ��� ���
�������������

�����

�����

�����

�����

�����

�����

�����

�� ����

k=16, N=100000
Resar

�

��

���

����

��� ��� ��� ��� ���
��������

���

���

���

���

���

�� ����

k=16, N=100000
RAID L6

Fig. 11. Simulation results for the data loss probability (DL Prob) of a RESAR layout (left) and exact values for a RAID Level 6 layout (bottom) with
100,000 disks. On the left, we give the average and the upper and lower value for the 99% confidence interval. We also added two smoothed curves for
the data loss probability if each disks in the RESAR layout carries 50, 100 and 1000 disklets respectively on the left and the data loss probabilities for the
declustered RAID Level 6 layout with 1, 50, 100, and 1000 disklets. Note the different scales for the y-axis. Fig 12 compares the systems directly.

VI. RECONSTRUCTION SPEED

A declustered RAID 6 layout places two parity disklets in
the same reliability stripe as m data disklets. To reconstruct
the contents of a disklet on a failed disk, the recovery process
needs to read m out of the m + 1 remaining disklets in the
stripe. Instead of selecting m fixed disks to read from, it is
common practice to distribute the reads over all m+ 1 disks,
lowering the amount to be read by a factor of m/(m + 1).
If the recovery wants to avoid writing as a bottleneck, it can
further improve the speed by storing parts of the reconstructed
disklet temporarily elsewhere.

A RESAR layout places the two parity disklets covering a
given data object into two different reliability stripes, giving us
two opportunities to reconstruct. Both stripes have no disklet
in common, allowing us to reconstruct one half of the failed
disklet’s contents using one stripe and the other one using
the other stripe. One of the results of this recovery operation
is written to the location where the replacement disklet is
allocated, while the other result is stored in a temporary
location and later written to complete the reconstructed disklet
at the allocated site. This limits the window of vulnerability
after a disk failure to the time to detection of a disk failure
and about half the time needed to read a disklet.

TABLE I
MAXIMUM ENTANGLEMENT NUMBERS IN A SYSTEM OF 1 MILLION DISKS

USING A STRIPE SIZE OF 8. WE VARY THE NUMBER OF DISKLETS PER
DISK.

Max. Number Probability 95% conf. interval
1000 disklets per disk

2 50.911% ±0.191%
3 48.814% ±0.119%
4 2.727% ±0.018%
5 0.002% ±0.001%

2000 disklets per disk
2 0.504% ±0.028%
3 95.234% ±0.065%
4 4.235% ±0.056%
5 0.028% ±0.007%

5000 disklets per disk
3 20.173% ±0.192%
4 77.335% ±0.172%
5 2.458% ±0.075%
6 0.035% ±0.007%

10000 disklets per disk
4 46.648% ±0.221%
5 51.355% ±0.203%
6 1.956% ±0.051%
7 0.040% ±0.007%
8 0.002% ±0.002%



������ ���

������ ����

������ �����

���� �� ���

���� �� ����

���� �� �����

� � �� �� ��
�������������

�����

�����

�����

�����

�����
�� ����

������ �

������ ��

������ ���

������ ����

���� �� �

���� �� ��

���� �� ���

���� �� ����

� �� �� �� �� ��
�������������

�����

�����

�����

�����

�����
�� ����

Fig. 12. Two comparisons of the data loss probabilities of RESAR and RAID 6 systems in Fig. 11. The system has 100,000 disks and various numbers of
disklets per disk. The curves for RESAR with 1 and 50 disklets are too close to the x-axis to be seen as different.

If a disk fails, the recovery operation needs to recover the
contents of all disklets on the failed disk. However, while the
disklets that can be used for recovery of a single disklet are
guaranteed to be on different physical disks, this is not the case
for all disklets. If A and B are two storage devices, we define
the entanglement of A and B to be number of disklets D on
A such that there is a disklet D′ on B that is a member of
a reliability stripe containing D. If all entanglement numbers
are zero or one, then recovery from a single disk failure in
RESAR can be as fast as the time necessary to read half
of a disklet. If an entanglement number of a failed disk is
2, then complete recovery takes twice that time, though of
course the vast majority of recovery is done in half the time.
Higher entanglement numbers do not mean that the recovery
process has to take proportionally more time, since in the vast
majority of cases, we can forego using one recovery stripe for
reconstruction in order to avoid sending another read request
to the same disk.

It is possible to keep track of entanglement numbers when
creating the layout, but in a large storage system with N
devices, this means maintaining an entanglement number for
N(N − 1)/2 pairs of devices. We now investigate whether
this is a useful enhancement to RESAR by assuming that en-
tanglement is not considered in the layout. We determined the
entanglement numbers for a system with 1 million disks and a
reliability stripe length of 8 data and one parity disklet and give
the corresponding probabilities for maximum entanglement in
Table I.

We determined by simulation of a layout with 1000 disklets
per disk, that about 98.41% of the 2×8×1000 disklet halves
to be read are the only disklet on the disk, that 0.79% of
disks to be read harbor two disklet halves to be read, 0.004%
of disks to be read harbor three disklet halves to be read and
1.8×10−5% harbor four disklet halves. This means that the
vast majority of contents are recovered very quickly.

VII. PERFORMANCE

RESAR is optimized for writes to consecutive data disklets.
The need arises because we want to organize writes such
that we write all data disklets in a reliability stripe and then

update the parity disklet directly. This avoids the “small write”
penalty. With the recent switch to shingled write disks and
the need to save energy by powering off disks, data centers
have new incentives to organize their data into several or
even numerous logs. If they do so, writing to consecutive data
disklets becomes the norm.

In the RAID Level 6 layout, there is only a single reliability
stripe and we need to store the contents of k data disklets “in
flux” before we can calculate the parities. Alternatively, we
can create a buffer for each of the two parity disklets and
maintain the parity of the data disklets in the stripe already
written in it.

Stable Parity 

No parity 

Parity in Flux 

Written Data 

Data in Flux 

Free / unused

Direction of 
log writes

Fig. 13. Log write operation in a RESAR layout (with k = 4).

If we are writing a data disklet in a flat XOR-code, we can
then write another data disklet in the same reliability stripe,
but this leaves k−1 data disklets in the other reliability stripe,
in which the original data disklets was, unwritten. As Fig. 13
shows, the bipartite RESAR layout actually deals quite well
with this problem. We write data disklets in order of their
indices. A parity disklet is in flux, if some, but not all the
adjoining data disklets are in flux. In Fig. 13, there are three
parity disklets in flux, one P -disklet and two D-disklets (the
gray vertices on the right). If we write the next data disklets,



one more D disklet would be in flux, but if we then move on
to the next data disklet, one D disklet can be closed and no
additional one enters a state of flux.

Since we are writing data disklets one at a time, only one
data disklet (per log) can ever be in flux. Unlike for the RAID
Level 6 layout, more than two parity disklets are in flux,
namely a maximum of k + 1.

Dealing with a large number of parity disklets in flux is
in fact not difficult. The simplest mode is to store copies of
data disklets contents in other disks until all data disklets in
a reliability stripe have been written. At this moment, we can
calculate the parity data, place it in a parity disklet and then
free the disklets with the content copies. We do not need to
keep the disks with the data disklets replica powered on, but
only need to power them on if they are needed, first to store
the replicated data, and then in order to be read for the parity
calculation.

The difference in processing writes between the two data
layouts (RESAR and RAID Level 6) only lies in the additional
number of disklets to be stored, which is very small compared
to the total capacity of disklets and costs less than the price
of a single hard drive. The RAID Level 6 layout uses up to
2k disklets for temporary copies of data, while the RESAR
layout would use up to k(k + 1) temporary disklets.

Most of the time, we would write to several data disklets
in parallel in order to digest the amount of incoming data.
The small advantage of the RAID Level 6 layout due to its
compactness would then be even smaller.

VIII. RELATED WORK

Virtualization is of course a standard method to adminis-
ter and organize computer systems and data storage is no
exception. The introduction of a virtual layer as presented
here appears to be novel. We now review some other uses
of virtualization.

Data centers gain agility by integrating server and storage
virtualization. Storage virtualization abstracts physical storage
to present virtual disks to applications and individual users in
a similar manner that server virtualization decouples virtual
machines from underlying physical machines [20]. Harmony
by Singh et al. is an early example of integrating both types of
virtualization. But virtualization by itself is an effective tool to
distribute load over several physical disks while maintaining
quality of service guarantees [27]. Façade presents a small disk
array to applications as a collection of virtual disk and allows
thereby the establishment of performance guarantees [18].
Zhang and colleagues [34] presented AVATAR, a low-level
feedback-driven request scheduler that allows to meet service-
level objectives for a large number of users that are isolated
from each other and therefore can interact with individual
virtual storage systems that share the same hardware. There
is much additional work on how to isolate performance for
different applications and users [3], [16], [17]. The same
virtualization technology becomes even more attractive when
we move from individual data centers to cloud storage [17],
[33].

In this article, we considered a very different type of
virtualization, whose purpose is not agility in order to adhere
more strictly to service level guarantees, but agility in the
reliability layout of large disk (including SSD) farms. Related
work in disk array layout comes mainly from the nineties. A
big difference to the current work is between homogeneous
and inhomogeneous disk arrays and the size of the disk array.
For example, DATUM by Alvarez, Burkhard, and Christian,
only handles small numbers of disks [1]. A large number of
contributions has been made to optimize disk array layouts for
various configurations [2], [14], [21], [22], [24], [25].

In order to administer with large-scale storage sites, more
flexible methods for data layouts are needed. The basic Ceph
architecture includes a meta-data server that is used to translate
requests from a virtual storage interface to the physical disks
[28]. In such systems, changes to meta-data in the server
allows the administrator to migrate easily data blocks from
batches of disks about to be removed to batches of new disks
[29]. Ceph is used in conjunction with replication, though
the basic architecture can easily be extended to work with
reliability mechanisms based on erasure-resilient coding. One
contribution of this paper is the extension of the architecture
to simplify changes in the erasure-resilient codes.

Using only parity data obtained by exclusive-or operations
in order to construct layouts that can tolerate more than a
single failed device has been looked at since the late eighties.
Gibson, Hellerstein and colleagues are to our knowledge the
first ones to place data blocks in a two-dimensional matrix
where each row and columns is augmented with blocks
containing the exclusive-or of the row or column, respectively
[9], [12]. Zhou et al. made for us the crucial observation that
generalizations of this layout can be represented as a graph.
They did not however evaluate the reliability of the resulting
constructions [35].

IX. CONCLUSIONS

We have proposed the introduction of a “virtual disklet
layer” as a consistent abstraction of the underlying data storage
to achieve better manageability of very large data centers and
achieve energy savings. We proposed and evaluated a new
reliable layout for this virtual disklet layer called RESAR.
This layout places every disklet into two reliability groups with
one parity disklet each. It has been designed to avoid small
RAID writes (where we obtain the new parity from the delta
of the new data, old data, and the old parity). We compared
it with a layout organized as a collection of RAID Level 6
reliability stripes and showed the RESAR layout to be much
more resilient. Of course, faulty disk array controller software
has caused many instances of data loss in disk arrays and
this type of error can destroy the reliability of the best layout.
Choosing RESAR and Ceph for the disk layout only simplifies
its implementation.

In the age of fast Galois field calculations [19], the fact that
RESAR only uses exclusive-or operations does not necessarily
speed up parity calculation, but it allows us to use cheaper and
less power-hungry processors.



We have shown that introducing a virtual disklet layer
simplifies administration, that a graph visualization simplifies
argumentation, and that RESAR shows higher robustness and
hence better reliability against disk failures than a layout based
on RAID Level 6 stripes with the same parameters.

In the future, we can investigate the energy savings that
can be realized with RESAR, determine annual data loss rates
and define an interface for adjusting reliability stripe sizes.
Additionally, placing disklets in two different reliability stripes
can also be used to optimize data recovery plans if more than
a single disk has failed. Finally, RESAR allows many different
types of layout, not only the bipartite layout (Fig. 3) yielding
different reliability and performance characteristics.

ACKNOWLEDGMENTS

This research was supported in part by National Science
Foundation Grants CCF-1219163, CNS-1528179, and IIP-
1266400, by the Department of Energy under Award Number
DE-FC02-10ER26017/DE-SC0005417, and by the industrial
members of the Center for Research in Storage Systems.

REFERENCES

[1] G. A. Alvarez, W. A. Burkhard, L. J. Stockmeyer, and F. Cristian,
“Declustered disk array architectures with optimal and near-optimal
parallelism,” ACM SIGARCH Computer Architecture News, vol. 26,
no. 3, pp. 109–120, 1998.

[2] A. Amer, D. D. Long, J.-F. Paris, and T. Schwarz, “Increased reliability
with SSPiRAL data layouts,” in IEEE International Symposium on Mod-
eling, Analysis and Simulation of Computers and Telecommunication
Systems (MASCOTS), 2008.

[3] A. Brinkmann, M. Heidebuer, F. M. auf der Heide, U. Rückert,
K. Salzwedel, and M. Vodisek, “V: Drive-costs and benefits of an out-
of-band storage virtualization system.” in IEEE Symposium on Mass
Storage Systems and Technologies (MSST), 2004.

[4] F. Chang, M. Ji, S.-T. Leung, J. MacCormick, S. Perl, and L. Zhang,
“Myriad: Cost-effective disaster tolerance,” in 14th USENIX Conference
on File and Storage Technologies (FAST), 2002.

[5] L.-P. Chang, “On efficient wear leveling for large-scale flash-memory
storage systems,” in ACM Symposium on Applied Computing, 2007.

[6] I. Corderi, T. Schwarz, A. Amer, D. D. Long, and J.-F. Pâris, “Self-
adjusting two-failure tolerant disk arrays,” in IEEE Petascale Data
Storage Workshop (PDSW), 2010.

[7] G. Dong, N. Xie, and T. Zhang, “On the use of soft-decision error-
correction codes in NAND flash memory,” IEEE Transactions on Cir-
cuits and Systems, vol. 58, no. 2, pp. 429–439, 2011.

[8] V. E. Galinanes and P. Felber, “Helical entanglement codes: An efficient
approach for designing robust distributed storage systems,” in Stabiliza-
tion, Safety, and Security of Distributed Systems. Springer, 2013, pp.
32–44.

[9] G. A. Gibson, L. Hellerstein, R. M. Karp, and D. A. Patterson,
“Failure correction techniques for large disk arrays,” in 3d International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 1989.

[10] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based erasure codes
in storage systems: Constructions, efficient recovery, and tradeoffs,”
in IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), 2010.

[11] J. L. Hafner, “Weaver codes: Highly fault tolerant erasure codes for
storage systems.” in 5th USENIX Conference on File and Storage
Technologies (FAST), 2005.

[12] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A.
Patterson, “Coding techniques for handling failures in large disk arrays,”
Algorithmica, vol. 12, no. 2-3, pp. 182–208, 1994.

[13] M. Holland and G. A. Gibson, “Parity declustering for continuous
operation in redundant disk arrays,” in 5th Conference on Architectural
Support for Programming Languages and Operating Systems, 1992.

[14] M. Holland, G. A. Gibson, and D. P. Siewiorek, “Architectures and algo-
rithms for on-line failure recovery in redundant disk arrays,” Distributed
and Parallel Databases, vol. 2, no. 3, pp. 295–335, 1994.

[15] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan, “Improved
disk-drive failure warnings,” IEEE Transactions on Reliability, vol. 51,
no. 3, pp. 350–357, 2002.

[16] K. Jian, Z. Xu-Dong, N. Wen-wu, Z. Jun-wei, H. Xiao-ming, Z. Jian-
gang, and X. Lu, “A performance isolation algorithm for shared
virtualization storage system,” in IEEE Conference on Networking,
Architecture, and Storage (NAS), 2009.

[17] H. Liu, S. Liu, X. Meng, C. Yang, and Y. Zhang, “LBVS: A load
balancing strategy for virtual storage,” in IEEE International Conference
on Service Sciences (ICSS), 2010.

[18] C. R. Lumb, A. Merchant, and G. A. Alvarez, “Façade: Virtual storage
devices with performance guarantees.” in 3d Usenix Conference on File
and Storage Technologies (FAST), 2003.

[19] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast Galois field
arithmetic using Intel SIMD instructions,” in 11th Usenix Conference on
File and Storage Technologies (FAST), 2013.

[20] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on con-
cepts, taxonomy and associated security issues,” in Second International
Conference on Computer and Network Technology (ICCNT), 2010.

[21] E. J. Schwabe and I. M. Sutherland, “Improved parity-declustered
layouts for disk arrays,” Journal of Computer and System Sciences,
vol. 53, no. 3, pp. 328–343, 1996.

[22] ——, “Efficient data mappings for parity-declustered data layouts,”
Theoretical Computer Science, vol. 325, no. 3, pp. 391–407, 2004.

[23] T. Schwarz, D. D. Long, and J. F. Pâris, “Reliability of disk arrays with
double parity,” in IEEE 19th Pacific Rim International Symposium on
Dependable Computing (PRDC), 2013.

[24] T. Schwarz and W. A. Burkhard, “Almost complete address translation
(acats) disk array declustering,” in 8th IEEE Symposium on Parallel and
Distributed Processing, 1996.

[25] T. Schwarz, J. Steinberg, and W. A. Burkhard, “Permutation develop-
ment data layout (PDDL),” in 5th IEEE International Symposium on
High-Performance Computer Architecture, 1999.

[26] T. Schwarz, Q. Xin, E. L. Miller, D. D. Long, A. Hospodor, and
S. Ng, “Disk scrubbing in large archival storage systems,” in IEEE
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, 2004.

[27] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage virtualiza-
tion: integration and load balancing in data centers,” in ACM/IEEE
Conference on Supercomputing, 2008.

[28] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation. USENIX Association, 2006.

[29] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, “Crush:
Controlled, scalable, decentralized placement of replicated data,” in
ACM/IEEE Conference on Supercomputing, 2006.

[30] E. B. Wilson, “Probable inference, the law of succession, and statistical
inference,” Journal of the American Statistical Association, vol. 22, no.
158, pp. 209–212, 1927.

[31] Q. Xin, E. L. Miller, T. Schwarz, D. D. Long, S. A. Brandt, and
W. Litwin, “Reliability mechanisms for very large storage systems,”
in Proceedings 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSST), 2003.

[32] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner, “Low-density
MDS codes and factors of complete graphs,” IEEE Transactions on
Information Theory, vol. 45, no. 6, pp. 1817–1826, 1999.

[33] W. Zeng, Y. Zhao, K. Ou, and W. Song, “Research on cloud storage
architecture and key technologies,” in Proceedings of the 2nd Inter-
national Conference on Interaction Sciences: Information Technology,
Culture and Human. ACM, 2009, pp. 1044–1048.

[34] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and E. Riedel,
“Storage performance virtualization via throughput and latency control,”
ACM Transactions on Storage (TOS), vol. 2, no. 3, pp. 283–308, 2006.

[35] J. Zhou, G. Wang, X. Liu, and J. Liu, “The study of graph decom-
positions and placement of parity and data to tolerate two failures in
disk arrays: Conditions and existence,” Chinese Journal of Computers
(chinese edition), vol. 26, no. 10, pp. 1379–1386, 2003.


