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Abstract—Archival data storage systems contain data that
must be preserved over long periods of time but which are often
unlikely to be accessed during their lifetime. The best strategy
for such systems is to keep their disks powered-off unless they
have to be powered up to access their contents, to reconstruct
lost data, or to perform other disk maintenance tasks. Of all
such tasks, reconstructing data after a disk failure is the one
that is likely to have the highest energy footprint and the most
impact on the overall power consumption of the array, because it
typically involves powering up all the disks belonging to the same
reliability stripe as the failed disk and keeping them running for
considerable time at each occurrence.

We investigate two two-failure tolerant disk layouts that have
lower parity overhead than the number of disks read (and hence
powered-on) for recovering data on lost drives would suggest.
Our first organization is a flat XOR code that organizes the data
disks into a rectangle with fewer rows than columns, and adds
a simple parity disk to each row and column. Recovery from a
disk failure proceeds by prefering columns when reconstructing
lost data, and thereby has fewer reads than the parity overhead
would normally suggest.

Our second layout is based on the most basic pyramid code.
We can view this layout as an example RAID Level 6 variant. In
this variant, a stripe has a Q-parity calculated from the data disks
in the stripe, but the data disks are also organized into smaller
groups where each group has a separate P-parity calculated as
the exclusive-or of the data disks in the group.

We compare the two layouts by measuring their robustness
to data loss, their one-year survival rate, and the expected
number of number of disks that must be involved to recover
from both single and multiple disk failures. Our results show that
rectangular layouts are significantly more reliable than layouts
based on the most basic Pyramid codes, but that they also require
more disk accesses to recover from disk failures.

I. INTRODUCTION

Flash technology has conquered an important segment of the

storage market and new storage technologies such as phase-

change memories hold great promise for the future. In the near

and middle term, though, the attractive price-capacity ratio of

magnetic storage technology will mean that a large portion

of the enormous amount of data generated (2.8 zettabytes in

2012) will use it for storage, especially for archival data.

Much of this data has an unknown value and while it will

usually never be accessed, its loss can lead to high costs. A

typical example is an archive of business records or SCADA

data that needs to be presented for litigation.

In an archival storage system, disks would be powered

on only for checking their availability, and possibly for data

scrubbing. For data recovery, other disks need to be powered

on, which increases the energy costs. We investigate here

systems for archival storage that provide two-failure tolerance,

that have a low ratio 1/t of parity to data disks, but which on

average would use less than t disks to recover from a disk

failure or read error.

We compare two different organizations with respect to their

behavior with regards to failed disks. Recovering data on a lost

disk implies reading from other disks in the same reliability

stripe and thus having to power these disks on for the long

period of time it takes to read all their data. On the other

hand, we want to limit the amount of parity data that needs

to be generated and stored. We are thus faced with two horns

of a dilemma. We can make reliability stripes short in order

to limit the energy costs of recovery operations or we can

make reliability stripes large in order to achieve good ratios of

parity over user data. Since latent sector errors are often only

encountered when trying to reconstruct data, their presence

has been recognized as an important source of data loss. Disk

arrays deal with their potential presence by providing two-

failure tolerance. Loosely speaking, each data disks is then

protected by (at least) two parity disks. This allows us to

escape our dilemma. Figuratively speaking, one parity can be

calculated from many data disks in order to give good parity

overhead while the other can be made to cover a few data

disks to make recovery from a single failure very efficient.

Our two disk array organizations differ in whether they use

parity generation based on exclusive-or operations only or

whether they use algebraically more involved codes such as

Reed-Solomon codes.

Our first layout uses a flat XOR code and tolerates all

double, and most triple, disk failures. The layout organizes

r× s disks into a rectangular array consisting of r rows of s
disks each. Each row will have its own row parity disk and

each column will have its own column parity disk, for a total of

r+ s parity disks. The parity overhead is therefore (r+ s)/rs.
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In the case of a single disk failure, this disk can always by

repaired using a reliability stripe of length r with additional

parity disk. Thus, no more than r disks have to be powered

on and read in order to retrieve the data on the failed disk.

The second construction uses the most basic variant of a

Pyramid code defined by Huang, Chen, and Li [10]. It can

be most easily described as a variant of a RAID Level 6.

Each stripe in the RAID Level 6 consists of tu data disks that

are grouped into t groups of u data disks each. The Q-parity

remains as it is and still applies to the entirety of the stripe.

The P-parity disk of the RAID Level 6 stripe is replaced by t
P-parity disks, one for each group, that hold the exclusive-or

parity of the data disks in this group. For t = 1 this is a RAID

Level 6 layout with fixed parity disks. All tu data disks in the

stripe belong to a Q-parity stripe containing all data disks, but

also to a smaller parity stripe with u data disks and a P-parity

disk for the group. The stripe thus counts t + 1 parity disks

and its parity overhead is (1+t)/ut. Like the preceding layout,

our second layout protects its contents against all double and

most triple failures. This layout also provides energy-efficient

repairs of single disk failures, as these repairs will only require

reading data from no more than u disks.

In an archival storage systems, our two layouts have no

operational disadvantages over the two-dimensional or the

RAID Level 6 layout, respectively. Various studies report that

disk drives in a large population fail at an annual rate between

1% to 6% [5], [6], [13], [15], [16], [19]. Higher annual failure

rates of more than 60% for a specific batch have been observed

in a large installation [2]. Reading a 6TB disk at 150MB/sec

takes a little bit more than 11 hours. An installation with 10000

disks has about 500 disk failures to deal with and needs to

power up 500r disks for at least 11 hours, amounting to 231r
disk days, where r is the average number of disks read for a

data recovery. Using an organization that lowers this average

number has a visible impact on the energy consumption of

the installation. We have left dealing with individual sector

errors out of this calculation because recovery of the data in

an unreadable sector only needs to access one sector in, on

average, r disks.

Our results should also be of interest in other situation where

use of Pyramid codes is appropriate, for example in cloud

storage where we might hope to minimize or shape network

traffic.

II. CONSTRUCTION

We introduce two layouts for archival disk arrays that

provide two-failure tolerance and reduce the energy footprint

of disk repairs. To protect against complete or partial failure,

we arrange the disks in reliability stripes to which we add

one or more parity disks. Using the parity disks and reading

other disks in the stripe, we can then recover the data on a

completely or partially failed disk and store it elsewhere.

It is important to point out the usefulness of, and justify

our focus upon, two-failure tolerance schemes for archival

storage systems. It is quite common for a disk to have some

sector errors. The landmark study by Baravasundaram et al
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Fig. 1: Rectangular layout with r = 5 rows and s = 6 columns

found latent errors in 3.45% of the 1.53 million consumer- and

enterprise-class disks studied over a period of 32 months [1].

In general, the number of affected sectors is small and consti-

tutes only a tiny proportion of all sectors on a disk. Therefore,

even if all disks in a reliability stripe have sector errors, it is

highly unlikely that two or more have the same relative sector

corrupted. However, latent sector errors in conjunction with a

disk loss in the same reliability stripe make it impossible to

recover the data in the corrupted sector or in the failed disk

using this stripe. Unfortunately, it is often only the attempt

of reconstructing data that reveals a latent sector error on a

disk used for the reconstruction. While disk scrubbing [17]

can be used to discover latent sector failures early, a frequent

scrubbing schedule has high energy cost. The consensus in

the storage community appears to be therefore that two-

failure tolerance is the minimum prudent tolerance level for

large storage systems. Arguments for higher failure tolerance

levels can be made, but their persuasiveness depends on the

usage and the value of the data. Two-failure tolerance in a

storage system for archival data seems to fulfill the due care

requirement for data that might be requested in litigation.

A. Rectangular Disk Array Layouts

Two-dimensional RAID arrays as defined by Hellerstein et
al [8] belong to the vast class of flat XOR codes defined by

Greenan et al to be codes where parity symbols are calculated

from certain subsets of data symbols [7]. We call these subsets

reliability stripes.

A two-dimensional RAID array arranges all data disks into

r rows and s columns with a data disk in each intersection of

a row and a column for a total of rs data disks. Each row and

each column contains a parity disk containing the parity of the

row or column, respectively (Figure 1). The parity overhead is

therefore (r+ s)/rs. We refer to these layouts as rectangular

layouts.

B. RAID Level 6 variant based on a basic Pyramid code

We consider a variant of a RAID Level 6 stripe with P- and

Q-parity, presented in Figure 2 that is the simplest instance of

a Pyramid code [9] [10]. We calculate the P or exclusive-or

parity not of all disks in the stripe, but organize the data disks

into m subgroups with n data disks each. We then attach a

P-parity disk to each of the m subgroups. This increases the
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Fig. 2: Representation of the disk array organized by a basic Pyramid code. The organization consists of a single stripe. The

data disks are organized in subgroups of size 4. Each subgroup contains a P-parity (with the exclusive-or parity of the disks

in the stripe) and the stripe has an additional Q-disk containing the Q-parity calculated from the contents of all data disks in

the stripe.

number of parity disks to m+1. If a data disk has been lost,

we can recover from the local P parity if no other disk in the

subgroup has been lost. If a subgroup has two disk failures,

then we can recover by using the Q parity. This is only possible

if all other failures can be reconstructed locally. Figure 3 shows

an extreme case of a failure pattern from which we can recover.

In this example, we recover by reading the Q-parity, n = 5

disks in the three subgroups with only one failure, and the

remaining disks in the subgroup with the double failure. These

are mn reads in total. We then calculate the contents of all

failed P-parity and data disks in the groups with single failures.

III. RECOVERY OPERATIONS

Data recovery operations can discover sector failures, which

would necessitate a change in the recovery procedure or might

constitute dataloss. If data recovery is possible at all, we

need to read from additional disks. In an archival system,

this implies powering on additional disks. However, this is a

short operation with little impact on the overall power budget.

We therefore focus on the recovery from disk failures. Our

two constructions differ with regards to the organization of

recovery of data lost on failed drives.

A. Recovery in the rectangular layout

Recovery in the rectangular layout is computationally less

involved since we never have to perform Galois field arith-

metic, but recovery plans are more involved. In contrast to

the RAID Level 6 layout based on the basic Pyramid code,

there is often more than one way to recover lost data. This

very complexity is an explanation for the superior robustness

of this layout as we will see below.

Recovering data from multiple failed disks might lead to

cascading recovery operations. In the example given on the

left in Figure 4, we have a total of eight failed disks. Despite

the failure of more than 12% of all disks, we can still recover

all the data. We can clearly reconstruct the parity data on the

parity disk in the third column by reading all the data disks

in the column. Of the remaining failed disks, only the data

on Data Disk 1 can be directly recovered by reading all the

disks in the second row. Once this disk is recovered, we can

reconstruct the data on Disk 2 reading the other disks in the

second column, then the data in Disk 3 by reading the fourth

row. This cascading recovery plan then recovers the data on

Disks 4, 5, and 6, and finally the data on the parity disk.

Obviously, waiting for all data in Disk 1 to be recovered

before starting to recover the data previously in Disk 2, etc.

means that the execution of the whole recovery plan takes

a long time, namely the time to read seven full disks. Also,

the amount of data read would not fit in RAM. The obvious

solution divides the disk into sections. In this mode, we recover

the data on the first section of Disk 1 first. This operation loads

the contents of the other disks in the second row into memory.

After reconstructing the data and writing it to the replacement

disk, we can retain the data sections of disks that are to be

read for the recovery of Disks 4 and 6 as well of the column

parity disk. When we have reconstructed the data in the first

section of Disk 1, we can then start to recover the data in the

first section of Disk 2, while starting to work on the second

sector of Disk 1. Recovery operations thus proceed in parallel

and necessary cascades only slightly retard recovery from all

current disk losses.

We use the example on the right of Figure 4 in order to

illustrate our greedy algorithm to find a recovery plan. The

basic idea is to recover data as much as possible using small

stripes. In this example, we can only recover (the contents of)

Disk 1 by powering on five disks only. After this recovery,

we need to use a stripe of size 10 in order to recover. We

can choose to recover either Disk 5, Disk 6 or Disk 7. All

three choices result in powering on nine more disks, since we

already have the contents of disks in the column of Disk 1

already available. We randomly choose on of the disks, let it

be Disk 6. This is a dangerous choice since we will have to

recover Disks 7 and 8 eventually and then can recover Disk 6

with a small stripe. After recovery of (the contents of) Disk 6,

we can recover Disk 5 or Disk 7. Again, we randomly choose

to recover Disk 5. At this point, we can recover Disk 4 using

a small stripe. This leaves Disks 7 and Disk 3 that can be

recovered, both with ten reads. Let’s pick Disk 3. Now, Disk

2 can be recovered powering on five disks. Now we can pick

Disk 7 or Disk 8. After choosing one and recover with 10

disks, we can recover the other by powering on five disks.

Thus, our schedule is 1 (small), 6 (large), 5 (large), 4 (small),

3 (large), 2 (small), 7 (large), and 8 (small). Because we can

reuse already reconstructed or read disk contents, the number

of disks powered on is smaller, Figure 5 (left), namely 40.

An alternative recovery program recovers Disk 6 as the last

disk. This gives a schedule of recovering the failed disks in

order 1, 7, 5, 4, 3, 2, 8 and 6. We read exactly the same number

of disks as before, namely 40. We reconstruct the contents of

8 disks and we leave 11 disks powered off. We marked the

read disks on the right of Figure 5, and as we can see, the sets
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Fig. 3: Reliability stripe with a recoverable pattern of disk failures. Failed disks are shown in red. The P- and Q-parity disks

are marked with a letter P or Q, respectively.
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Fig. 4: Recovery examples for the rectangular layout. Red disks are failed data disks.
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Fig. 5: Read disks in two different recovery schedules in the case depicted in Figure 4, right.

of disks read are different.

For the simulations, we used a greedy strategy that at each

point asks which is the disk to be recovered requiring the least

number of disks to be powered on. As our example shows, this

is not always optimal. A more involved algorithm should be

chosen in an industrial implementation, but does not appear

to yield major savings.

B. Recovery in the RAID Level 6 layout based on the basic
Pyramid code

The Raid Level 6 / Pyramid layout consists of individual

stripes and the recovery of data located in one stripe is

independent of data located in another stripe. Furthermore,

if there is one failure in a subgroup, then we recover by

reading from the other disks in the subgroup, independently

from operations in other groups. If there is a failure of the Q-

parity then we need to read n disks in each group in order to

reconstruct it. We can use the data gathered to also reconstruct

data lost in an individual group. If there is a double failure in

a group, we also need to read n disks in each group in order

to recover from the double failure, but can also use the data to

recover any (single) failure in one or more of the other groups.

Figure 3 gives an example where we have to recover from

4× 4 disks since Group 2 contains a double failure. In this

example, the three remaining groups have one failure each,

but the Q-parity survived. We therefore read all remaining

disks in the stripe.

IV. DECLUSTERED ARRAYS

Declustering creates equally sized disklets from the disks

in a disk array, chooses N disklets from different disks, and

arranges these disklets according to a chosen layout with a

total of N data and parity disks. It continues to do so until there

are no disklets left. The purpose of declustering is to distribute

the load of a degraded read (from an unavailable disk) or the

load of reconstructing the data on one or more failed disks over

all the disks in the array. This allows faster recovery from

disk failures and closes the window of vulnerability opened

by a disk failure and constituted by the possibility of data

loss because of further disk failures before the original disk is

repaired [21].
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The performance advantage of faster reads in the degraded

mode is by definition not realized in archival storage. Indeed,

in order to recover from a single disk failure, we now need

to read from many, if not most or all the disks in the disk

array. However, the amount of data read from each disk is

much smaller and our two layouts realize savings in the total

amount of data read. For example, if only one disk has failed,

then we only need to read from the data disklets in the same

column for the rectangular layout and from the data disklets

in the subgroup of the stripe in which the disklet is placed.

Unfortunately, modeling declustered disk arrays is difficult

because the efficiency of declustering depends very much on

the ratio of the total number of disks in the array over the

total number of disks in the layout, so that an exhaustive

investigation is difficult. Also, declustering algorithms are not

easy to define and might not be very efficient. The size of the

disklets is also important. If there are many disklets per disk,

then the probability that a declustered array using one of our

two layouts survives three failures is slim, however, if there

are only 1000 disklets per disk, then the probability that all

data survives three disk failures remains high. For example,

the rectangular array with 5 rows and 20 columns survives

three simultaneous failures with probability 0.999683267 and

the same array (with 125 disks) well declustered survives

with probability 0.728489, the corresponding Pyramid layout

survives with probability 0.997781867 and the declustered

version (also with 125 disks) with probability 0.108544. The

declustered, rectangular layout is more robust than the declus-

tered layout based on the basic Pyramid code. If however

each disk consists of 100,000 disklets, then the survival prob-

abilities of the declustered layout go to 1.74695 · 10−14 and

3.63673 · 10−97. The rectangular layout is still spectacularly

more robust than the Pyramid code layout, but this no longer

matters.

In summary, declustered arrays are difficult to evaluate. As

the disklet size shrinks, a declustered version of one of our

layouts will suffer data loss with overwhelming probability

with three failures, but never with two. The reliability of

our two layouts becomes indistinguishable. The total hours

of disks that have to be powered on for recovery however

does not change significantly so that the ranking based on

IO operations does not change, giving the advantage to the

Pyramid code layout.

V. MODELING RELIABILITY AND I/O RECOVERY COSTS IN

THE RECTANGULAR LAYOUT

A mathematically stringent determination of survival relia-

bility and IO recovery cost for the rectangular layout is only

possible for small number of failures. We fix a rectangular

layout with r rows and s columns and assume that r < s. The

array has rs data disks and r + s parity disks for a total of

N = rs+ r+ s disks.

If there is only one failure, then dataloss is impossible. If

the failed disk is a data disk or a column parity, then we need

r reads in order to reconstruct the contents of the lost disk.

If the failed disk is however a row parity, then s reads are
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Fig. 6: Examples of a two-failure pattern in the rectangular

r× s layout that can be repaired with r+ s reads. Failed disks

are in red, parity disks in blue, and data disks in gray.
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Fig. 7: Examples for the most common two-failure pattern in

the rectangular r×s layout that can be repaired with 2r reads.

Failed disks are in red, parity disks in blue, and data disks in

gray.

necessary. The expected number of reads is

r
s(r+1)

rs+ r+ s
+ s

r
rs+ r+ s

If there are two failures, then dataloss is impossible. We

need to distinguish a number of cases
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disks in gray.
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Fig. 9: Example for a three-failure pattern with dataloss in the

rectangular layout. Failed disks are in red, parity disks in blue,

and data disks in gray.

1) Both failed disks are row parities and we need 2s reads in

order to recover. This happens with probability
(r

2

)(N
2

)−1
.

2) One failed disk is a row parity and the other failed disk

is a data disk in the same or in another row or the other

failed disk is a column parity disk. Or easier said, the

other failed disk is not a row parity. We repair the other

disk’s contents with r reads using the column stripe it

is in and then repair the row parity disk with s reads.

The probability for this to happen are r(rs+s)
(N

2

)−1
. We

illustrate the subcases in Figure 6.

3) If none of the two failed disks are row parities and if they

are not located in the same column, then we can recover

with 2r reads, Figure 7. To count the number of cases,

we select two columns and then one of the r+ 1 disks

in the column. The probability of this case is therefore(s
2

)
(r+1)2

(N
2

)−1
.

4) The two failed disks are located in the same column. Then

we use a row to recover the contents of one disk and the

column to recover the contents of the other one with r+s
reads. To count these cases, we select one column and

then two disks in them, Figure 8. The probability of this

case is therefore s
(r+1

2

)(N
2

)−1
.

The expected number of disk reads in order to repair two

failures is therefore

1

2
rs
(
r2(2s+1)+ r(7s−1)+3s−4

)(N
2

)−1
.

If there are three failures, then dataloss is possible. Figure 9

shows the failure pattern. It consists of a failed data disk and

failed parity disks in the same row and column. Since the

pattern is uniquely characterized by the failed data disk, the

probability of data loss are

rs
(N

3

)−1

Using a similar set of case distinctions, we can also derive

a formula for the expected number of disks to be read in

order to recover from failure. This procedure can be continued

for several numbers of failed disks but eventually runs into a

combinatorial explosion of cases.

VI. MODELING RAID LEVEL 6 / PYRAMID RELIABILITY

AND I/O RECOVERY COSTS

We calculate the survival probability of a modified RAID

Level 6 consisting of a single stripe with m groups each

encompassing n data disks each. Each group has a P (a.k.a.

XOR) parity and each stripe has a Q parity.

Assume that f disks have failed. We distinguish three

mutually exclusive cases in which no data has been lost:

(A) The Q parity has not failed and there is at most one failure

in each group.

(B) The Q parity has not failed, there is one group with two

failures and the remaining f − 2 failures are afflicting

different groups.

(C) The Q parity has failed and there is at most one failure

in each group.

We calculate the number of different failure patterns. In case

A, we select f of the m groups for containing a single failure

and then we select one of the n+ 1 elements in each group

for being the failed disk. This gives us

nA( f ) =
(m

f

)
(n+1) f

different failure problems. In case B, we select one group with

two failures and then f −2 groups with one failure. This gives

nB( f ) =
(m−1

f−2

)
m
(n+1

2

)
(n+1) f−2

different patterns. In case C, we select the f −1 groups with

one failure among the m total groups.

nC( f ) =
( m

f−1

)
(n+1) f−1

patterns. Since there are

t( f ) =
(m(n+1)+1

f

)

total failure patterns for f failures, the probability of all data

to survive f failures (in a single stripe) is

℘1( f ) =
nA( f )+nB( f )+nC( f )

t( f )
.

We can also calculate the number of IO operations. In case

A, we need to read n disks in each group with a failure and

write to one spare, for a total of

rA( f ) = (n+1) f .

In case B, we need to read from n−1 disks in the group with

the double failure, from n disks in each other group, and from

the Q parity to recover the data from the two failed disks in

the same group. This information is also sufficient to calculate

the data on the other lost disks. Therefore, we have to read

mn disks (corresponding to all data disks in our single stripe)

and have to write to f for a total number of

rB( f ) = mn+ f

IO-operations. In case C, we need to read mn disks in order

to reconstruct the Q-parity. With this information we can also
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recover from the other failures. Therefore we have

rC( f ) = mn+ f

IO-operations.

We only count IO-operations if we do not have suffered dat-

aloss. This means that the expected number of IO operations

is

R1( f ) =
rA( f )nA( f )+ rB( f )nB( f )+ rC( f )nC( f )

nA( f )+nB( f )+nC( f )
If we have a RAID Level 6 organization based on the basic

Pyramid code with several stripes, then we can calculate the

probability of surviving f failures by combining the hyper-

geometric distribution with the results for a single stripe.

Because we only count IO operations if we can recover

successfully, extending these results to multiple stripes is

difficult. In particular, the probability of having f failures in

one stripe is not independent of the probability of data loss in

one of the other stripes. We therefore had to take recourse to

simulation for the RAID Level 6 Pyramid code organization

as well.

VII. RESULTS

We present now the results of our simulations. Each simu-

lation run for f failures tells us whether data loss has occurred

and what number of I/O operations were necessary to cover

from failure if no data loss has occurred. The number of

I/O operations is not normally distributed and it is not clear

whether we can approximate it with a normal distribution.

To obtain trustworthy results of the one-year survival rates, a

plethora of individual runs were necessary. As many runs were

already necessary, we determined the confidence intervals

by grouping the runs into 30 subsets (batches) of 500000

individual runs. Since the results of each run are identically

distributed, independent random variables, the central limit

theorem applies and we can assume with exceedingly low error

that the batch averages are normally distributed and obtain

95 percent confidence intervals that are very tight. In fact,

our graphs cannot show error margins as they would be too

small to see. Our simulation results also correlate well with

the results of combinatorial calculations for small number f
of failures.

The confidence intervals are typically in the range of

<±0.1% of the value. Only when we simulate high numbers

of disk failures where the survival probability of the array data

is less than 1% do we have noticeably higher error margins.

Even then, the numbers for robustness and I/O operations

for recovery can be compared with an exceedingly high

statistical significance, since the confidence intervals are far

from overlapping. The one-year data survival rates are quite

sensitive to the robustness numbers for large mean times to

failures of disks. But this does not pose a problem since the

the survival probabilities for these high numbers of failures

only contribute marginally to the annual survival rate.

The smoothness of the one-year survival graphs obtained is

itself a testimony to the quality of the data we derived. While

the simulation of the RAID Level 6 pyramid organization is

reasonably fast, the one of the rectangular layouts is costly due

to the need for minimizing the number of disks read. We used

about 24 cores for almost two months. Using Python 3 as the

programming language contributes to the excessive CPU use,

but results in easier verifiable code. Extending the results to

larger arrays would be costly. We did not try to simulate the

presence of latent sector disks since any simulation of value

would need to use a plethora of scenarios.

Figure 10 gives the survival probabilities for the rectangular

layout and the RAID Level 6 variants as well as the difference.

Each rectangular layout is identified by an r by s product

where r is the number of rows and s is the number of columns

for a total of rs data disks and r+ s parity disks. Similarly,

each array organized as a RAID Level 6 array based on the

Pyramid code with s stripes, each consisting of g groups with

t data disks and g+1 parity disks is identified by sxgxt. This

array has sgt data disks and s(g+1) parity disks. The parity

overhead of the rectangular and the Pyramid code based RAID

Level 6 layouts are equal. Our figures compare arrays of equal

size and parity overhead, as is indicated by the dashing of the

curves.

As we can see, the rectangular layout is quite a bit more

resilient. All layouts survive two failures for sure. It should

be no surprise that larger layouts can sustain more disk

failures than smaller ones, but if we look at the proportion of

failed over total disks, then smaller layouts are more resilient,

Figure 11. We can attribute this effect to the higher proportion

of check disks in the disk population.

We observe that the robustness advantage for the rectangular

layout improves if we increase the smaller group size r.

The reason that the rectangular layout is more robust is

the better interconnectivity amongst drives. In the rectangular

layout, the survival of a disk has a positive, though usually

indirect effect on the probability that data on another disk

survives. In contrast, different stripes in the RAID Level

6 organization are independent. With other words, a local

clustering of errors in the rectangular layout is more likely

to be survivable than in the RAID Level 6 pyramid layout.

This however means that the RAID Level 6 pyramid layout

allows more localized recovery operations. As Figure 12

shows, the expected number of disks to be read per failed disk

is substantially higher for the rectangular layout. Figure 12

depicts disk reads per failed disk repaired. If there are few

failed disks, then we can most often chose an inexpensive way

of data recovery. As however the number increases, we will be

forced to include a more expensive recovery in the recovery

plan. As the number of failed disks in the ensemble increases,

we have to read close to the totality of disks so that the average

starts sinking and becomes even lower than the number of

reads needed for recovering a single disk. However, when

this happens, dataloss becomes increasingly likely. Finally, we

would like to remark that the most frequent case in a disk array

with at best a few hundreds disks are none, one, two, or three

failures at a time.

The superior robustness of the rectangular layout becomes

more obvious if we look at the one-year survival probability
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Fig. 10: Data Survival probability for the rectangular layout (left) and the Raid Level 6 variant (middle) with small group size

5 (top row) and 10 (bottom row) in dependence on the number f of failures. The right graph compares the layout by giving

the difference between the survival probability of the rectangular layout and the RAID Level 6 variant.
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Fig. 11: Data survival probability in dependence on the proportion of failed disks over total disks for the rectangular layout

(left) and the RAID Level 6 variant. The top row shows the results for the layouts with smaller group size 5 and the bottom

for smaller group size 10.

defined to be the probability that no data loss has occurred

in the first year. We model this with the standard Markov

model, where State f corresponds to a state with f failed

disks. The number of states is determined by the number of

disk failures that can befall a certain disk array organization

without leading to dataloss with overwhelming probability. An

additional state is the failure state. We have two transitions.

We denote the number of disks in the array with N. Let λ be

the failure rate of individual disks, meaning that 1/λ is the

average disk life expectancy. Let q f be the probability that an

additional failure in the presence of f already failed disks leads

to dataloss. Thus, q f is the conditional probability of dataloss

with f + 1 failures given that there was no dataloss with f
failures. The values of the q f are calculated from the absolute

probability that f failures have produced dataloss. There is

a failure transition from State f to State f + 1 taken at rate

q f (N− f )λ . Second, we model repairs through an exponential

repair rate ρ so that 1/ρ is the expected time to repair a certain

disk. The repair transition from State f to State f −1 is taken

with rate f ρ . Finally, there is a transition modeling dataloss
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Fig. 12: Expected disks read for successful recovery in dependence on the number of failures. To the left are the rectangular

layouts, in the middle the pyramid code layouts, and to the right the difference. The upper row are the numbers for smaller

group size 5 and the lower row for smaller group size 10.
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Fig. 13: One year survival probability (expressed in nines) in dependence on the average disk life expectancy expressed in

hours.

from State f to the absorbing (failure) state at rate (1−q f ) f λ .

Since exponential failure rates are somewhat unrealistic and

since repair times certainly are not exponential, our results

should be used for comparison purposes only. We used an

average time to repair 1/ρ = 36 hours, which is reasonably

generous for an archival system and a tall order for a system

that has lots of user data traffic. We assumed an unlimited

number of spares and initial State 0, modeling the absence of

failed disks.

We then used the Euler method to solve the Chapman-

Kolmogorov differential equations corresponding to the

Markov model. We express the resulting 1-year data survival

rate in number of nines. Thus, a value of 4 corresponds to the

chances of surviving one year of 0.9999. We give the results in

Figure 13. As we can see, both layouts have survival rates that

differ little. The figures for the rectangular and the Pyramid

layout fall into narrow bands. The number of disks in a layout

is less of a determinant of data survival rates than the layout

chosen. The rates for the rectangular layout are consistently

higher than the ones for the RAID Level 6 pyramid layout.

The difference corresponds to the same reliability for double

the disk failure rate of the rectangular layout compared to the

pyramid layout. The comparisons are fair since we compare

layouts with exactly the same number of data and of parity

disks.

We finally notice that RAID Level 6 layouts can be config-

ured in smaller increments. For example, we need five stripes

of a layout with two groups of five data disks to obtain a

layout with the same number of data and parity disks as the

rectangular design with five rows and ten columns. This design

has 50 data disks, but the RAID layout can be organized in

increments of ten data disks, i.e. with 10, 20, 30, . . . data disks.
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We can summarize our findings as follows:

1) Rectangular layouts are considerably more reliable than

RAID Level 6 layouts based on a simple pyramid code.

2) RAID Level 6 layouts based on pyramid codes have lower

I/O rates than corresponding rectangular layouts.

3) RAID Level 6 layouts based on pyramid codes allow

more flexible configurations.

VIII. RELATED WORK

Greenan, Li, and Wylie [7] investigate storage systems

laid out using flat XOR-codes with higher degrees of fault

tolerance.
Erasure codes with lowered IO costs for recovery are not

only attractive in archival storage systems, but also of interest

in networked storage, where this feature also lowers the band-

width of degraded reads. Khan et alinvestigate the application

of MDS codes to networked storage and call for a more

thorough investigation of the tradeoffs between storage effi-

ciency, fault-tolerance, and performance [11]. Sathiamoorthy

and colleagues describe a system with higher failure tolerance

for use at Facebook’s distributed storage system [14]. The

resulting code is an extension of the basic pyramid code that

we utilized. Their evaluation is a bit more applied than ours

relying on measurements in actual clusters, but their criteria

are similar. Our results are applicable over a wider set of uses.
Papailiopoulos and Dimakis and then Tamo and colleagues,

Silberstein and colleagues, Cadambe and colleagues among

others investigate codes that they call locally repairable codes

[12], [3], [18], [20]. These are codes that – as their name

suggests – are very efficient in reconstructing single disk

failures. Network coding is an active area of research in

codes [4].

IX. CONCLUSION

We have compared two different layouts that permit fewer

reads on average for recovery of data on lost disk drives

than comparable, more traditional layouts such as the two-

dimensional or the RAID Level 6 layout. The rectangular

layout only uses exclusive-or operations and shows superior

resilience, but has slightly higher reads necessary during

recovery. The layout based on the basic pyramid code needs

Galois field operations to calculate the Q-parity, has lower re-

silience, but slightly lower average number of reads necessary

for the recovery of data on failed disks.
In an archival system, the presence of large reliability

stripes does not constitute an operational disadvantage. Only if

the system experiences many updates would the parity disks

belonging to such a long stripe see much traffic. Thus, we

conclude that the energy savings of maintaining archival data

on disk arrays based on the two investigated layouts come

at no cost and we recommend strongly their adaptation for

two-failure tolerant layouts.
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