
Proc. of the International Conference on Electrical, Computer and Energy Technologies (ICECET)
9-10 December 2021, Cape Town-South Africa

978-1-6654-4231-2/21/$31.00 ©2021 IEEE

Three-dimensional RAID Arrays with Fast Repairs
Jehan-François Pâris

Department of Computer Science
University of Houston

Houston, TX 77204-3010, USA
jfparis@uh.edu

Thomas Schwarz, SJ
Department of Computer Science

Marquette University
Milwaukee, WI 53233, USA

thomas.schwarz@marquette.edu

Abstract—Large data storage systems often use Reed-
Solomon erasure codes to protect their static data against triple
or even quadruple device failures. A main drawback of this
approach is the high cost of recovering the contents of failed
devices, as it requires accessing the contents of a large number of
surviving devices. We present a three-dimensional RAID organi-
zation that adds vertical parity devices to a stack of identical two-
dimensional RAID arrays. These new vertical parity devices will
let the organization recover faster from all single device failures
while greatly reducing the risk of data loss. Depending on the way
the vertical parities are defined, the new arrays will either toler-
ate all triple failures and more than 99.9 percent of all quadruple
failures, or all quintuple failures and more than 99.995 percent of
all sextuple failures.

Keywords— Data storage systems, fault tolerant systems, parity
check codes

I. INTRODUCTION

As we store ever-increasing amounts of data in digital form,
traditional fault-tolerant solutions such as mirroring or RAID
level 6 arrays fail to provide the required levels of protection
[1] [2]. To give one example, both the Google File System [3]
and Windows Azure Storage [4] maintain three replicas of all
their active data. While this approach protects the data against
all double failures and nearly all triple failures, it also multiplies
by three the data storage costs. The preferred way to slash these
costs is to use Reed-Solomon erasure codes [5] to store inactive
data. One good example is the erasure code used by BackBlaze
cloud backup service [6]. It splits every incoming file into 17
equal-size shards and calculates 3 parity shards so that the file
contents can be reconstituted from any 17 of these 20 shards.
The main advantage of the approach is its very low space
overhead, as only 3 out of the 20 shards contain redundant data.

A common disadvantage of Reed-Solomon codes is the
higher cost of data recovery operations after the loss of a disk.
Consider, for instance, the Backblaze erasure code. Reconsti-
tuting the contents of a single failed disk requires reading in the
entire contents of at least 17 of the remaining 19 operational
disks. The process is likely to take at least half a day and involve
the transfer of hundreds of terabytes. This cannot be done with-
out stressing the communication layer of the storage system and
slowing down all other data requests for the entire duration of
the process. In addition, requests directed to the data not yet
reconstituted will be insufferably slow, as each request will
require accessing data spread over 17 different disks.

Such service disruptions may be acceptable in an online
backup service since most of its data are likely to be never
retrieved. However, they cannot be tolerated in a distributed file
system or a cloud storage service. This situation has led to the
development of several new coding schemes that require con-
siderably fewer disk accesses to recover from the failure of a
single disk. Two of these schemes deserve our attention
because they were developed for well-known large-scale stor-
age solutions. These are the Windows Azure local reconstruc-
tion code (LRC) [7] and the HDFS-XORBAS locally repairable
code [8]. Both schemes add local parity blocks to the parity
blocks of an extant Reed-Solomon code. Other proposals
include Rotated Reed-Solomon Codes [9], Shingled Erasure
Codes [10], Hitchhiker [11] and Bundles of RAID Arrays [12].

A common thread in most of these codes is their complex-
ity. To give one example, deriving the correct coding equations
for the local parities is not a trivial task. Our proposal only uses
exclusive-or operations, which does away with the need for
processors that can do Galois field calculation at blazing speed
[12]. Even more importantly, it avoids having to set up
decoding by, for instance, inverting a matrix as a generalized
linear code does. While there are several implementations of
RAID 6 arrays that use only exclusive-or operations to compute
parity [14], they all require more complex parity calculations
than our technique.

We propose an even simpler approach that does not require
any kind of fine-tuning, and only involves elementary parity
calculations. Our proposal stacks together a small number of
layers all containing identical two-dimensional RAID arrays
and top these layers with vertical parities such that each vertical
parity stripe will contain one disk from each layer. The result-
ing three-dimensional structure allows us to define two levels
of protection depending on the number of vertical parity stripes
each organization includes. These are:

1. A basic protection level where we only create vertical
parity stripes for the data disks of each layer. As a
result, each data disk will participate in three parity
stripes, namely the two in-layer parity stripes at the
intersection of which the disk is located, and its vertical
parity stripe. Since each data update is propagated to
three disks, the array will be able to tolerate the simul-
taneous failure of three arbitrary disks without any data
loss. In addition, most but not all quadruple and quin-
tuple failures will not result in a data loss.

2. An expanded protection level where both data and par-
ity disks of each layer participate in the vertical parity

scheme. As a result, each data update will be propa-
gated to (a) the vertical parity of the data disk, (b) the
parity disks of its two in-layer parity stripes, and (c) the
vertical parity disks of these two disks. Because each
data update is now propagated to five separate disks,
the array will be able to tolerate all quintuple disk fail-
ures. Moreover, most but not all sextuple failures will
not result in a data loss.

Unlike most other proposals, our solution can be deployed
without having to compute the value of any coefficient. The
sole parameters to specify are the number of planes and the
number of disks per plane. In addition, predicting the fault-
tolerance of a specific installation only requires the application
of one or two simple formulas.

This flexibility provides users with a useful tool for manag-
ing the space overhead of their disk arrays and take advantage
of the low space overheads of large two-dimensional arrays.
While our smallest arrays have space overheads of up to 50 per-
cent, much larger arrays have lower overheads than the best
existing solutions while providing equal or better data protec-
tion.

The remainder of this paper is organized as follows.
Section II reviews relevant previous work. Section III intro-
duces our three-dimensional arrays and discusses their
vulnerability to multiple failures. Section IV evaluates their
performance and compares them to those of other codes with
fast repairs. Section V has our conclusions.

II. PREVIOUS WORK

In this section, we review the most significant previous
work on locally repairable codes. Space considerations have
prevented us from being more complete.

A. Windows Azure Local Reconstruction Codes

Azure Local Reconstruction Codes (LRC) [7] partition 𝑘
data blocks into 𝑙 sets of 𝑘/𝑙 blocks each and will have l local
parity blocks and r global parity blocks. The code will be able
to recover from the loss of either any single data block or any
single local parity block using exactly 𝑘/𝑙 block reads. At the
same time, the recovery performance of the code depends on
the coefficients selected for the linear expressions defining the
𝑙 𝑟 parity blocks. For instance, a (6, 2, 2) LRC can recover
all single data block failures using three read operations, has a
space overhead of 4 /10 = 40 percent and can tolerate all triple
failures and most quadruple failures without data loss.

B. HDFS-XORBAS locally repairable codes

The HDFS-XORBAS locally repairable code [8] comprises
10 data blocks and 7 parity blocks. The four global parity
blocks 𝑃ଵ , 𝑃ଶ , 𝑃ଷ , and 𝑃ସ are built with a standard Reed-
Solomon code and ensure that the code can tolerate the loss of
four arbitrary blocks. Blocks 𝑆ଵ , 𝑆ଶ , and 𝑆ଷ are local parity
blocks whose aim is to reduce the cost of recovering from single
block failures. Block 𝑆ଵ is a linear combination

𝑆 ൌ 𝑐ଵ𝐷ଵ⨁𝑐ଶ𝐷ଶ⨁𝑐ଷ𝐷ଷ⨁𝑐ସ𝐷ସ⨁𝑐ହ𝐷ହ

of the contents of data blocks 𝐷ଵ to 𝐷ହ and block 𝑆ଶ is similarly
obtained from data blocks 𝐷 to 𝐷ଵ . Block 𝑆ଷ is an implied
parity block. It is not stored anywhere but will be created on

demand. Overall, HDFS-XORBAS can recover from all single
block failures using five read operations and will protect its
contents against all quadruple disk failures. Its space overhead
is 6 /16 = 37.5 percent.

C. Rotated Reed-Solomon codes

Khan et al. [9] analyzed some of the most popular erasure
codes and proposed a new class of codes that perform degraded
reads more efficiently than all known codes, but otherwise keep
the reliability and performance properties of extant Reed-
Solomon codes. The emphasis of their work was on minimizing
overall data transfers instead of minimizing the number of disks
involved in the reconstruction.

D. Shingled Erasure Codes (SHEC)

Miyamae et al. [10] have proposed a shingled disk array
organization consisting of 𝑘 data disks and 𝑚 parity disks.
Each of these 𝑚 parity disks contains the XOR of the contents
of 𝑙 data disks, which are said to form a locality. As 𝑚𝑙 𝑘,
we can assign each of the 𝑘 data disks to exactly 𝑚𝑙/𝑘 distinct
localities in a way that ensures that the array will tolerate the
simultaneous failure of up to 𝑚𝑙/𝑘 disks. In addition, the
organization guarantees that recovering from a single block
failure will require exactly 𝑙 block reads. Since all their parities
are local, these codes can recover from double and triple fail-
ures without involving any of the remaining data disks.

E. Hitchhiker

Hitchhiker [11] uses a modified Reed-Solomon code
tailored to reduce both network traffic and disk I/O by around
25 to 45 percent during the reconstruction of missing data,
without requiring any additional storage.

F. Bundles of RAID arrays

Bundles of RAID arrays [12] provide both high reliability
and fast repairs by adding column parity disks to a bundle of
RAID level 5 or level 6 arrays [1] [2] [15]. Fig. 1 depicts one
such bundle. It consists of three RAID arrays each having nine
disks and nine additional column parity disks such that each
column parity stripe contains one disk from each RAID array
and each of the disks in the three RAID arrays belongs to one
parity stripe. Thanks to these nine column parities, recovering
from a single disk failure will only require three read opera-
tions. In addition, bundles of RAID level 5 arrays can recover
without data loss from all triple and at least 96 percent of
quadruple disk failures while bundles of RAID level 6 arrays
can recover from all quintuple and 99.9 percent of all sextuple
disk failures.

DP DP DPDP DP DP DP DPDP

P P PP P P P PP

DP DP DPDP DP DP DP DPDP

DP DP DPDP DP DP DP DPDP

Fig. 1. A bundle of three RAID arrays protected by nine column parity
blocks. All disks in the three RAID arrays contain both data (D) and parity
(P) blocks.

III. OUR PROPOSAL

Two-dimensional RAID arrays [2] [16] protect the data
they store against all double disk failures and most triple disk
failures by requiring that:

1. Each data disk belongs to two distinct parity stripes.

2. Two distinct parity stripes have at most one common
data disk.

Among these organizations, the most space-efficient are
those who also require all parity stripes to intersect with each
other [17]. Given that we can place one data disk at each of
these intersections, an array with 𝑛 parity disks will be able to

protect the contents of 𝑛ௗ ൌ ቀ
𝑛
2
ቁ data disks. As an example,

the disk array of Fig. 2 contains five parity disks and ten data
disks, thus having a space overhead of 33.3 percent. While this
overhead is higher than that of a RAID level 6 array with the
same number of data disks, it quickly decreases as the array size
increases. For instance, an array with 12 parity disks will be
able to accommodate 66 data disks, which corresponds to a
space overhead of less than 16 percent.

Even so, these arrays do not fulfill all the requirements of
modern storage systems. First, they do not protect their data
against all triple disk failures. As we can see on Fig. 3, two
kinds of triple failures can result in a data loss, namely:

1. Type A fatal triple failures that correspond to the sim-
ultaneous failure of two parity disks and the data disk
located at the intersection of the parity stripes they
define.

2. Type B fatal triple failures that correspond to the sim-
ultaneous failure of three data disks such that each of
the three data disks has one parity stripe in common
with each of the two other data disks.

Overall, the array will not be able to tolerate 𝑛ௗ ቀ
𝑛
3
ቁ of

the ቀ
𝑛 𝑛ௗ

3
ቁ possible triple failures.

Second, the number of disks that we must access to recover
from the loss of a single disk quickly grows as the size of the
array grows. This is not a problem with small arrays such as the
array of Fig. 2. Since each parity stripe has only four data disks
per array, recovering from a single disk failure will require
combining the contents of four disks. Consider now the case of
an array with 12 parity disks and 66 data disks. Since each data
disk has to be on two distinct parity stripes, each parity stripe
will contain 11 data disks, which means we will now need to
combine the contents of 11 separate disks to recover from the
failure of a single disk.

We propose to address these two limitations by combining
a small number 𝑚 of identical two-dimensional arrays into a
three-dimensional structure where each two-dimensional array
will form a separate layer of the structure. We add to these lay-
ers vertical parity disks such that each of the parity stripes
defined by these vertical parity disks contains one disk from
each layer of the organization. In addition, we will define two
distinct levels of protection based on the number of vertical par-
ity disks included in the organization.

A. Basic protection level

In the basic protection level, the vertical parity strips only
contain the data disks of each layer. Fig. 4 displays a very small
instance of that organization. Its two bottom layers contain two
identical two-dimensional RAID arrays with three data disks
and three parity disks. The top layer contain vertical parity
disks that define vertical parity stripes such that:

1. Each data disk belongs to exactly one vertical parity
stripe.

2. Each vertical parity stripe contains exactly one data
disk from each two-dimensional RAID array.

There are thus as many vertical parity disks as there are data
disks in each array and our organization will contain a total of
𝑚𝑛 𝑛ௗ parity disks and 𝑚𝑛ௗ data disks. Its space overhead
will thus be

𝑚𝑛 𝑛ௗ
𝑚ሺ𝑛 𝑛ௗሻ 𝑛ௗ

.

Since each of the 𝑚𝑛ௗ data disks belongs to a vertical parity
stripe, recovering the contents of any data disk will never
require accessing the contents of more than 𝑚 different disks.
Thus, keeping m low will suffice to guarantee the fast recovery

Fig.2. A two-dimensional RAID array with five parity disks and
ten data disks.

Type A Type B

Fig. 3. Types of fatal triple failures.

Fig. 4. A very small three-dimensional organization using three vertical
parity blocks (on top) to provide basic protection to two two-dimensional
RAID arrays (middle and bottom layer). We expect actual three-
dimensional organizations to have up to five distinct layers and many more
disks per layer.

of any single data disk failure. As the parity disks of each layer
are not included in the vertical protection scheme, recovering
from the failure of any of them will still require accessing the
contents of the 2𝑛ௗ 𝑛⁄ data disks in its stripe.

Updating the contents of any data disk will now require
three additional updates, as we will now have to update the ver-
tical parity of the data disk in addition to the parity disks of its
two layer parity stripes. Given that all updates are now propa-
gated to three distinct parity disks, we can expect that the
structure will tolerate all possible failures without experiencing
any data loss. We can indeed quickly check that no type A nor
type B failure in any of the 𝑚 layers can now result in a data
loss as the vertical parity stripes always provide a way to
recover the contents of at least one of the three sites that failed.

This is not true of all quadruple failures. We observe instead
that the structure will not be able to recover from type A failure
in any of its 𝑚 layers when the type A failure is accompanied
with the failure of the vertical parity disk that would otherwise
have been used to recover the contents of the failed data disk.
Fig. 5 displays one of these 𝑚𝑛ௗ fatal quadruple failures. Con-
versely, the structure remains able to tolerate all type B failures
in any of its 𝑚 layers as all three data disks involved in the fail-
ure have recovery paths independent of each other. Overall,

𝑚𝑛ௗ of the ൬
𝑚ሺ𝑛 𝑛ௗሻ 𝑛ௗ

4
൰ quadruple failures will result

in a data loss.

The sole fatal quintuple failures are caused by the failure of
the four sites involved in any of the 𝑚𝑛ௗ possible fatal quadru-
ple failures plus the failure of any of the remaining
𝑚൫𝑛 𝑛ௗ൯ 𝑛ௗ െ 4 disks for a total of

𝑚𝑛ௗ ቀ൫𝑛 𝑛ௗ൯ 𝑛ௗ െ 4ቁ

fatal quintuple failures.

Sextuple fatal failures can occur in many distinct forms.
We can distinguish:

1. The failure of the four disks involved in any of the 𝑚𝑛ௗ
fatal quadruple failures plus the failure of two of the
remaining disks. There are

𝑚𝑛ௗ ൬
൫𝑛 𝑛ௗ൯ 𝑛ௗ െ 4

2
൰

distinct failures of that type.

2. The failure of two data disks sharing a common parity
stripe and the failure of the two parity disks of their
other parity stripes plus the failure of the vertical parity
disks of the two data disks. Fig. 6 displays one of the

𝑚ቀ
𝑛
3
ቁ

distinct failures of that type.

3. A type B failure in one of the 𝑚 two-dimensional
RAID arrays plus the failures of the vertical parity
disks of the three failed disks or a second type B failure
involving the same disks in one of the remaining
𝑚 െ 1 two-dimensional arrays. Fig. 7 displays two of
the

ቀ𝑚 1
2

ቁ ቀ
𝑛
3
ቁ

distinct failures of that type.

B. Expanded protection level

As Fig. 8 shows, the expanded protection level adds 𝑛
additional vertical parity stripes for the 𝑛 parity disks of each
layer. There are thus as many vertical parity disks as there are
disks in each array and our organization will contain a total of

Fig. 8. A very small three-dimensional organization using six vertical parity
blocks (on top) to provide expanded protection to two two-dimensional
RAID arrays (middle and bottom layer).

Fig. 5. A fatal quadruple failure resulting from a type A failure in one of the
two two-dimensional RAID arrays accompanied by the failure of the
vertical parity disk of the failed data disk.

Fig. 6. A fatal sextuple failure resulting from the simultaneous failure of
two data disks sharing a common parity stripe, the two parity disks of their
other parity stripes and their two vertical parity disks.

Fig.7. Two fatal sextuple failures caused by type B failures.

ሺ𝑚 1ሻ𝑛 𝑛ௗ parity disks for its 𝑚𝑛ௗ data disks. Its
space overheads will thus be

ሺ𝑚 1ሻ𝑛 𝑛ௗ
ሺ𝑚 1ሻሺ𝑛 𝑛ௗሻ

.

Since each of the 𝑚ሺ𝑛 𝑛ௗሻ disks in any of the 𝑚 layers
now belongs to a vertical parity stripe, recovering the contents
of any data disk will never require accessing the contents of
more than 𝑚 different disks.

Updating the contents of any data disk will now require five
additional updates as we will have to update (a) the vertical par-
ity of the data disk, (b) the parity disks of its two layer parity
stripes, and (c) the vertical parity disks of these two disks.
Given that all updates are now propagated to five distinct parity
disks, we can expect that the structure will tolerate all possible
failures without experiencing any data loss. We can quickly
check that no type A nor type B failures in any of the 𝑚 layers
combined with two additional arbitrary failures can result in a
data loss since the vertical parity stripes always provide three
separate ways to recover the contents of at least one of the three
sites that failed.

As we can expect, some sextuple failures will result in a
data loss. As Fig. 9 shows, fatal failures include a type A or a
type B failure in one of the layers of the organization. More
specifically, we can distinguish:

1. Fatal sextuple failures resulting from either a type A
failure and the failure of the three associated parity
disks or two type A failures involving six disks sharing

the same three parity stripes. There are ቀ𝑚 1
2

ቁ 𝑛ௗ

such failures.

2. Fatal sextuple failures resulting from either a type B
failure plus the failure of the three associated parity
disks, or two type B failures involving six disks sharing

the same three parity stripes. There are ቀ𝑚 1
2

ቁ ቀ
𝑛
3
ቁ

such failures.

Observing that 𝑛ௗ ൌ ቀ
𝑛
2
ቁ, the total number of fatal sextu-

ple failures becomes

ቀ𝑚 1
2

ቁ ቀ
𝑛
2
ቁ ቀ𝑚 1

2
ቁ ቀ
𝑛
3
ቁ ൌ ቀ𝑚 1

2
ቁ ቀ

𝑛 1
3

ቁ

The sole fatal failures involving seven disks are a failure of
the six sites involved in any fatal sextuple failures plus the fail-
ure of any of the remaining ሺ𝑚 1ሻሺ𝑛 𝑛ௗሻ െ 6 disks.

IV. PERFORMANCE EVALUATION

A cursory comparison of our two organizations could lead
us to prefer the extended protection scheme over the basic pro-
tection scheme because it tolerates two more failures without
significantly increasing the space overhead of the array. While
this is true, there are other factors to consider.

First, all arrays managed by our basic protection scheme
will tolerate nearly all quadruple and quintuple disk failures.
Even the smallest array will tolerate 99.9 percent of all
quadruple failures and 99 percent of all quintuple failures while
arrays totaling more than 20 data disks will tolerate 99.99 per-
cent of all quadruple failures and 99.9 percent of all quintuple
failures. To give a point of comparison, a 60-disk array that
maintains three replicas of all its data will only tolerate 99.77
percent of all quadruple failures and 99.5 percent of all quintu-
ple failures.

Second, our extended protection scheme has significantly
higher update costs due to the need to propagate all updates to
five different parity disks. Recall that the basic protection
scheme propagates all updates to three parity disks, namely to
the two parity disks of the two parity stripes at the intersection
of which the updated data disk is located and the vertical parity
disk of the data disk. The extended protection scheme also
propagates the updates of two of these three parity disks to their
own vertical parity disks, which is a more complex process. As
a result, the extended protection scheme is poorly suited to
applications where the data are likely to be ever updated.

This cumbersome update process offers nevertheless the
major advantage of providing an exceptional level of data pro-
tection. Even the smallest array will tolerate 99.995 percent of
all sextuple failures and 99.96 percent of all septuple failures.

One of the best ways to measure the fault-tolerance of a
storage array is to evaluate the survival probability of the array
in the presence of increasing numbers of disk failures. We
present in Figs. 10 to 12 the results of simulations that measure
the survival probability of a basic three-dimensional array with
45 data disks and 10 parity disks per layer and 45 vertical parity
disks. We used runs of 1,000,000 randomly chosen sets of
𝑓 failed disks and repeated each run at least 12 times. The 95%
confidence intervals for the true probability of survival given
f failed disks was less than 1% of the value, which explains why
the error intervals show up as single short horizontal lines
instead of an “I” structure. We also indicate the range where the
survival probability is higher than 99.9% (or three nines). For
example, the three-layered structure survives 12 failures with a

Fig. 9. Four instances of fatal sextuple failures for a three-dimensional
organization providing extended protection to its two-dimensional RAID
arrays.

probability of 0.99914424 plus or minus 0.00000723. When the
number of failed disks exceeds the number of parity disks, then
data loss is certain, but as we can see, the disk array can suffer
large failure numbers while still being more likely to retain all
of its data. For instance, in the three layer disk array, 47 disks
can have failed and the chance of all data surviving is still
greater than 50 percent.

Comparing the performance of our three-dimensional array
organization with those of other organizations that allow local
recovery of single disk failures is not an easy task due to a lack
of data about the performance of those organizations. In addi-
tion, these organizations typically involve small numbers of
devices while our three-dimensional array organization
requires many more devices to operate at peak efficiency.

The data we present here compare the performance of our
new array organization with those of bundles of RAID arrays,
a relatively recent proposal that was found to perform as well
as the Windows Azure Local Reconstruction Codes and HDFS

XORBAS. Like three-dimensional RAID arrays, bundles of
RAID arrays offer two levels of data protection depending on
the types of RAID arrays being clustered together.

Basic bundles of RAID arrays group together a small num-
ber of RAID level 5 arrays and add to them an array of parity
disks that act in the same way as the vertical parity disks in our
organization. As a result, each data update is propagated to
three disks, namely,

1. The RAID disk that contains the corresponding parity
block.

2. The column parity disk associated with the disk that
contains the updated block.

3. The column parity disk associated with the RAID disk
that contains the updated parity block.

Since the array propagates each update to three distinct devices,
the bundle will tolerate all triple failures and most quadruple
failures without data loss.

Comparing the performance of our basic protection scheme
with those of bundles of RAID 5 arrays required us to make
some assumptions about the two systems. We decided first to
compare three-dimensional RAID arrays that had three layers
with bundles of three RAID 5 arrays because both systems were
able to recover from all single disk failures by accessing the

Fig. 10. Data survival probability of a three-layered basic three-
dimensional disk array with 135 data disks and 75 parity disks as a
function of the number of disks that failed.

Fig. 11. Data survival probability of a four-layered basic three-
dimensional disk array with 180 data disks and 85 parity disks as a
function of the number of disks that failed.

Fig. 12. Data survival probability of a six-layered three-dimensional disk
array with 270 data disks and 105 parity disks as a function of the number
of disks that failed.

TABLE I COMPARING THE PERFORMANCE OF THE BASIC PROTECTION

LEVEL FOR 3D ORGANIZATIONS WITH THOSE OF BUNDLES OF RAID 5

ARRAYS.

Number
of units

(arrays/layers)

Disks
per
unit

Storage
capacity
(disks)

Space
overhead

Fatal
quadruple

failures

3 RAID 5 12 33 31.3% 0.204%
2 layers 31 30 47.4% 0.031%
2×3 RAID 5 12 66 31.3% > 0.204%
3 layers 28 63 40.0% 0.001%
4×3 RAID 5 12 132 31.3% > 0.204%
3 layers 55 135 35.7% 0.0002%
6×3 RAID 5 12 198 31.3% > 0.204%
3 layers 66 198 34.0% 6 × 10-7

TABLE II COMPARING THE PERFORMANCE OF THE EXTENDED

PROTECTION LEVEL FOR 3D ORGANIZATIONS WITH THOSE OF BUNDLES

OF RAID 6 ARRAYS.

Number
of units

(arrays/layers)

Disks
per
unit

Storage
capacity
(disks)

Space
overhead

Fatal
sextuple
failures

3 RAID 6 12 30 37.5% 0.007%
3 layers 15 30 50.0% 2 × 10-6
2×3 RAID 6 12 60 37.5% > 0.007%
3 layers 28 63 43.8% 9 × 10-8

4×3 RAID 6 12 120 37.5% > 0.007%
3 layers 55 135 38.6% 4 × 10-9

5×3 RAID 6 12 150 37.5% > 0.007%
3 layers 66 165 37.5% 2 × 10-9
6×3 RAID 6 12 180 37.5% > 0.007%
3 layers 78 198 36.5% 9 × 10-10×

contents of three disks. We also assumed that each RAID array
consisted of 12 disks using 11/12 of its capacity to store data
blocks and the remaining 1/12 to store parity blocks. As a result,
each bundle of 36 disks contained the equivalent of 33 disks
full of data. Finally, we decided that larger disk arrays would
consist of multiple instances of the same original bundle.
Therefore, a disk array capable of storing the equivalent of 66
disks full of data would be comprised of 2 independent bundles
each consisting of 3 RAID 5 arrays of 12 disks each plus 12
additional parity blocks. We would refer to this organization as
a 2×3 RAID 6.

Table I summarizes the results of our comparison. As we
can see, bundles of RAID 5 arrays provide significantly lower
space overheads than three-dimensional disk arrays for very
small disk arrays but this advantage slowly erodes as the disk
capacity increases. This should not surprise us because the
RAID level 5 arrays that compose the bundles have a very low
space overhead as parity data occupy only 1/12 of the total array
capacity. At the same time, the two-dimensional RAID arrays
that we use in our three-dimensional organizations are not very
space efficient as long as they remain small. For instance, a
two-dimensional array with 15 data disks will require 6 data
disks and use 28.6 percent of its disk space to store parity infor-
mation.

We also compared the performance of our extended protec-
tion scheme with those of bundles of RAID arrays after
replacing their RAID 5 arrays by RAID 6 arrays. The change
had a significant impact on the space overhead of the bundles,
as 2/12 of the storage space of each array is now dedicated to
parity data. In contrast, moving from a basic to an extended
protection scheme only added 𝑛 vertical parity disks to the 𝑛ௗ
parity disks of the basic protection scheme.

Table II summarizes these new results. As we expected, the
bundles of RAID 6 arrays have a significantly higher space
overhead than the bundles of RAID 5 arrays. In addition, the
differences between the space overheads of the bundles of
RAID level 6 arrays and the three-dimension RAID arrays
decreases much faster as the array sizes increase. We note
indeed that our three-dimensional organization becomes more
space-efficient than the bundle of RAID 6 arrays once the array
contains more than 165 data disks.

Space overheads between 35 and 40 percent are within what
we should expect. The Windows Azure local reconstruction
code [7] has a space overhead of 40 percent even though it does
not protect data better than our basic scheme. Similarly, HDFS-
XORBAS [8] has a space overhead of 37.5 percent even though
it does not tolerate all quintuple failures and requires accesses
to five disks, instead of three, to recover from a single disk
failure.

V. CONCLUSION

We have presented a three-dimensional RAID organization
that adds vertical parity disks to a stack of two-dimensional
RAID arrays. As we have seen, these new vertical parity disks
serve two purposes. First, they provide faster recovery paths for
all single data disk failures. Second, these vertical parity disks
can greatly enhance the fault-tolerance of the organization.

Depending on the number of vertical parity disks that they
require, our organization can offer:

1. A basic protection scheme where only the data disks of
each array are included in the vertical parity stripes
defined by the vertical parity disks: this basic protec-
tion scheme can tolerate all triple failures and more
than 99.9 percent of all quadruple failures and 99 per-
cent of all quintuple failures without data loss.

2. An extended protection scheme where both the data
disks and the parity disks of each array are included in
the same vertical parity stripes. This extended protec-
tion scheme will tolerate all quintuple failures and
more than 99.995 percent of all sextuple failures
without data loss.

REFERENCES
[1] W. A. Burkhard and J. Menon, “Disk Array Storage System

Reliability,” in Proc. FTCS-23, pp. 432–441, June 1993.

[2] T. Schwarz, SJ, “Reliability and performance of disk arrays,” PhD
Dissertation, CSE Dept., University of California, San Diego, 1994.

 [3] S. Ghemawat , H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc.19th SOSP, Oct. 2003.

[4] B. Calder, et al. “Windows Azure storage: A highly available cloud
storage service with strong consistency,” in Proc. 23rd SOSP, Oct.
2011.

[5] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields", SIAM Journal, Vol. 8, No. 2, pp. 300–304, 1960.

[6] B. Beach, “BackBlaze open sources Reed-Solomon erasure coding
source code,” https://www.backblaze.com/blog/reed-solomon/, June
16, 2015, retrieved Nov. 10, 2021.

[7] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S,Yekhanin, “Erasure coding in Windows Azure storage,” in Proc.
2012 USENIX ATC, June 2012.

[8] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R.
Vadali, S. Chen, and D. Borthakur, “XORing elephants: novel erasure
codes for big data,” in Proc. of the VLDB Endowment, Vol. 6, No. 5,
pp. 325-336, 2013.

[9] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for Cloud file systems: minimizing I/O for recovery and
degraded reads,” Proc 10th USENIX FAST Conf., Feb. 2012.

[10] T. Miyamae, T. Nakao, and K. Shiozawa, “Erasure code with shingled
local parity groups for efficient recovery from multiple disk failures,”
in Proc. 10th USENIX Workshop on Hot Topics in System
Dependability (HotDep '14) Broomfield, CO, Oct. 2014.

[11] K. V. Rashmiet al. “A hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers,” in Proc. 2014 ACM
SIGCOMM Conf., Chicago, IL, Aug. 2014.

[12] J.-F. Pâris, “Bundling together RAID disk arrays for greater protection
and easier repairs” in Proc.27th MASCOTS Symp., Oct. 2019.

[13] J. Plank, K. Greenan, E. L. Miller, “Screaming Fast Galois Field
Arithmetic Using Intel SIMD Extensions,” in Proc. 11th USENIX
FAST Conf., Feb. 2013.

[14] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-diagonal parity for double disk failure correction,”
Proc. 3rd USENIX FAST Conf. \, pp. 1–14, Mar.-Apr. 2004.

[15] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proc. 1988 ACM SIGMOD
Conf., pp. 109–116, June 1988.

[16] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, D. A. Patterson,
“Coding Techniques for Handling Failure in Large Disk Arrays,”
Algorithmica, Vol. 12. No.3–4, pp. 182–208, June 1994.

[17] J.-F. Pâris, A. Amer, and T. J. E. Schwarz, “Low-redundancy two-
dimensional RAID arrays,” in Proc. 2012 ICCCN, Data Storage
Technology and Applications Symp., Jan.–Feb. 2012.

