
Bundling Together RAID Disk Arrays for
Greater Protection and Easier Repairs

Jehan-François Pâris
Department of Computer Science

University of Houston
Houston, TX 77204-3010

jfparis@uh.edu

Abstract—Large data storage systems often use Reed-
Solomon erasure codes to protect their static data against triple
or even quadruple disk failures. The main drawback of this
solution is the high cost of recovering the contents of failed disks,
as it requires reading the contents of all the surviving peers in its
parity stripe. We propose to reduce this cost by grouping together
a small number of conventional RAID arrays into a single bundle
and adding column-wise parity disks such that all disks in a given
RAID array belong to a distinct parity stripe. As a result, the
number of disks involved in the recovery from a single disk
failure will be equal to the number of RAID arrays in the bundle.
We show that bundles of RAID level 5 arrays can recover without
data loss from all triple and at least 96 percent of quadruple disk
failures while bundles of RAID level 6 arrays can similarly
recover from all quintuple and 99.9 percent of sextuple disk
failures.

Keywords— Data storage systems, fault tolerant systems, parity
check codes

I. INTRODUCTION

Large data storage systems have reliability requirements
that cannot be met by either mirroring or by conventional RAID
level 6 arrays [2] [14]. For instance, both the Google file system
[4] and Windows Azure Storage [3] maintain three replicas of
their active data. The sole disadvantage of this approach is its
low space efficiency as two-thirds of the storage space contains
redundant data. The preferred way to reduce this overhead is to
use Reed-Solomon erasure codes [12] to store static or archival
data. For instance, the BackBlaze cloud backup service [1]
splits every incoming file into 17 equal-size shards and
calculates 3 parity shards so that the file contents can be
reconstituted from any 17 of these 20 shards. The main
advantage of this approach is its low space overhead for the
protection it offers. Even though parity information only
occupies 15 percent of the disk space, the array can tolerate all
triple disk failures without losing any data.

The sole disadvantage of this organization is the high cost
of data recovery operations after the loss of a disk.
Reconstituting the contents of the lost disk will require reading
in the entire contents of 17 of the remaining 19 operational
disks. That process is slow and is likely to take several hours.
Transferring that amount of data will severely stress the
communication layer of the storage system and slow down all
other requests for the whole duration of the

process. In addition, requests directed to the data not yet
reconstituted will be excruciatingly slow, as each of them will
result in 17 separate disk accesses.

This situation is acceptable in an online backup service as
most of its data are likely to be never accessed. The same is not
true for a distributed file system or a cloud storage service. This
has motivated several coding solutions that address that issue.
All these solutions trade a somewhat larger parity footprint for
lowering the number of disks that must be accessed to
reconstruct the contents of a failed disk. Two of these codes
warrant our attention because they were developed for well-
known large-scale storage solutions. These are the HDFS-
XORBAS locally repairable code [13] and the Windows Azure
local reconstruction code (LRC) [H12]. Both families of codes
use modified Reed-Solomon erasure codes with additional
local parity blocks supplementing the extant Reed-Solomon
parity blocks.

A major limitation of these codes is their complexity. While
their overall organization is intuitive, selecting the proper
coding equations for the local parities is not a trivial task
because suboptimal coefficient choices could significantly
lower the reliability of the codes. In particular, any change in
the number of data disks, local parity disks or global parity
disks that a locally recoverable code manages requires a
reevaluation of these coefficients.

We propose a much simpler approach that does not require
any kind of tuning. We start by bundling together m regular
RAID arrays. While we expect them to have equal sizes, this is
not essential to our approach. We add to these arrays
perpendicular RAID level 4 parity stripes in such a way that (a)
each disk in the bundle belongs to one of the new parity stripe
and (b) no two disks in any of the original RAID arrays belong
to the same stripe. As a result, the bundle will be able to recover
from any single disk failure by XORing the contents of exactly
m disks.

Our scheme is flexible in several ways. First, we can vary
the number of RAID arrays per bundle selecting different
tradeoff points between recovery costs and space overhead.
Second, we can arbitrarily select the sizes of the original RAID
arrays. Finally, we can use single-parity or dual-parity arrays
as constituting elements depending on the desired reliability
level. We can indeed show that:

 Any reasonably sized bundle consisting of two or more
single-parity RAID arrays will tolerate all triple disk
failures and at least 96 percent of all quadruple failures.

 Any reasonably sized bundle consisting of two or more
RAID level 6 arrays will tolerate all quintuple disk
failures and at least 99.9 percent of all sextuple failures.

The remainder of the paper is structured as follows. Section
II describes extant locally repairable codes. Section III
introduces our proposal and Section IV discusses its main
features. Finally, Section V has our conclusions.

II. PREVIOUS WORK

In this section, we review the most significant previous
work on locally repairable codes. Space considerations
prevented us from being more complete.

A. Windows Azure Local Reconstruction Codes

Fig. 1 shows a (6, 2, 2) Azure Local Reconstruction Code
(LRC) [6]. As we can see, the code partitions its six data blocks
into two sets of three blocks with each set having its own local
parity block, namely parity blocks 𝑄ଵ and 𝑄ଶ. In addition, the
code computes the two global parity blocks 𝑃ଵ and 𝑃ଶ. More
generally, a ሺ𝑘, 𝑙, 𝑟ሻ code will partition its 𝑘 data blocks into
𝑙 sets of 𝑘/𝑙 blocks each and will have l local parity blocks and
r global parity blocks. The code will be able to recover from the
loss of either any single data block or any single local parity
block using exactly 𝑘/𝑙 block reads. At the same time, the
recovery performance of the code depends on the coefficients
selected for the linear expressions defining the 𝑙 𝑟 parity
blocks. These coefficients must be specifically chosen to ensure
that the code will be able to decode all the information
theoretically decodable failure patterns. For a (6, 2, 2) LRC, this
means all triple failures and 86 percent of all quadruple failures.

Overall, the (6, 2, 2) LRC ensures that all single data block
failures can be resolved using three read operations and has a
space overhead of 4 /10 = 40 percent.

B. HDFS-XORBAS locally repairable codes

As we can see in Fig. 2, the HDFS-XORBAS locally
repairable code [13] comprises 10 data blocks and 7 parity

blocks. The four global parity blocks 𝑃ଵ,𝑃ଶ, 𝑃ଷ, and 𝑃ସare built
with a standard Reed-Solomon code and ensure that the code
can tolerate the loss of four arbitrary blocks. Parity blocks 𝑆ଵ,
𝑆ଶ, and 𝑆ଷ are local parity blocks aimed at reducing the cost of
recovering from single block failures. Block 𝑆ଵ is a linear
combination 𝑆 ൌ 𝑐ଵ𝐷ଵ⨁𝑐ଶ𝐷ଶ⨁𝑐ଷ𝐷ଷ⨁𝑐ସ𝐷ସ⨁𝑐ହ𝐷ହ of the
contents of data blocks 𝐷ଵ to 𝐷ହ and block 𝑆ଶ is similarly
obtained from data blocks 𝐷 to 𝐷ଵ . Block 𝑆ଷ is an implied
parity block. It is not stored but can be created on demand as
long as the coefficients of the linear expressions defining
blocks 𝑆ଵ and 𝑆ଶ satisfy the relation 𝑆ଵ 𝑆ଶ 𝑆ଷ ൌ 0. In
addition, the coefficients 𝑐are subjected to further optimization
to maximize the fault tolerance of the code.

Overall, HDFS-XORBAS ensures that all single block
failures can be resolved using five read operations and protects
its contents against all quadruple disk failures. Its space over-
head is 6 /16 = 37.5 percent.

Comparing the (6, 2, 2) Azure LRC with HDFS XORBAS,
we can see they make very different choices regarding the
three-way tradeoff [8] among space efficiency, durability, and
recovery efficiency. The (6, 2, 2) Azure LRC only requires
three block reads to recover from a single data block failure but
cannot tolerate all quadruple block failures. Conversely, HDFS
XORBAS tolerates all quadruple block failures and has a
somewhat smaller space overhead than the (6, 2, 2) Azure LRC
(37.5 percent instead of 40 percent), but requires five read
operations instead of three to recover from a single block
failure.

C. Rotated Reed-Solomon codes

Khan et al. [7] investigated some of the most popular
erasure codes and proposed a new class of codes that perform
degraded reads more efficiently than all known codes, but
otherwise keep the reliability and performance properties of
extant Reed-Solomon codes. The emphasis of their work was
on minimizing overall data transfers rather than minimizing the
number of disks involved in the reconstruction.

D. Shingled Erasure Codes (SHEC)

Miyamae et al. [8] have proposed a disk array organization
comprising 𝑘 data disks and 𝑚 parity disks. Each of these 𝑚
parity disks contains the XOR of the contents of 𝑙 data disks,
which are said to form a locality. As 𝑚𝑙 𝑘, it is possible to
assign each of the 𝑘 data disks to exactly 𝑚𝑙/𝑘 distinct
localities in a way that ensures that the array will tolerate the
simultaneous failure of up to 𝑚𝑙/𝑘 disks. The organization is
referred to as a shingled erasure code (SHEC) because localities
overlap with each other like the tiles of a roof.

P2

P1

Q2Q1

D1 D2 D3 D4 D5 D6

Fig. 1. A (6, 2, 2) Azure local reconstruction code.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 P1 P2 P3 P4

S1 S2 S3

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c’1 c’2 c’3 c’4

Fig. 2. A HDFS-XORBAS locally repairable code.

D D DD D D D PD

P P PP P P P P

D D DD D D D PD

D D DD D D D PD

Fig. 3. A two-dimensional RAID array.

Shingled erasure codes guarantee that recovering from a
single block failure will require exactly 𝑙 block reads. Since all
their parities are local, these codes can recover from double and
triple failures without necessarily involving all the remaining
data disks. In addition, these codes are easy to tune as their 𝑘
and 𝑚 parameters control the space overhead of the code
(𝑘/ሺ𝑚 𝑘ሻ) and the 𝑙 parameter controls both its durability
and its recovery efficiency. Low values of 𝑙 will both guarantee
a very efficient recovery from block failures and make the code
less resilient to multiple block failures while high values of 𝑙
will have the exact opposite effect.

E. Hitchhiker

Hitchhiker [11] is a modified Reed-Solomon code that
reduces both network traffic and disk I/O by around 25 to 45
percent during reconstruction of missing data, without
requiring any additional storage.

F. Rectangular RAID arrays

As Figure 3 shows, two-dimensional RAID arrays organize
their data disks into m rows and n columns with a data disk at
the intersection of each row and each column for a total of mn
data disks. Each row contains a parity disk containing the parity
of all the data disks in that row and each column contains a
parity disk containing the parity of all the data disks in that

column. As a result, the space overhead of the array is
ሺ𝑚 𝑛ሻ/ሺ𝑚𝑛 𝑚 𝑛ሻ.

Consider now a rectangular RAID array having much fewer
rows than columns (𝑚 ≪ 𝑛). As Schwarz et al. [15] observed,
the array would be able to recover from any single disk failure
by computing the exclusive or of the remaining m disks of that
column, without ever having to use row parities. At the same
time, keeping n high allows us to control the parity overhead of
the array. For instance, an array with three rows of ten data
disks would only involve three disks in the recovery of any
single data disk failure while only requiring a space overhead
of 13/ሺ30 13ሻ ൌ 30 percent.

III. OUR PROPOSAL

A main problem with rectangular RAID arrays is that they
do not provide the same level data protection as HDFS-
XORBAS or the Azure LRC. While HDFS-XORBAS protects
its contents against all quadruple disk failures and the Azure
LRC can tolerate all triple failures without data loss,
rectangular RAID arrays are vulnerable to triple failures
involving a data disk and its two parity disks. Fig. 4 displays
one of these fatal triple failures. The standard way to eliminate
these triple failures is to add a superparity disk to the array [9]
[16]. This superparity disk contains the XOR of either all the
row or all the column parity disks. (The outcomes of the two
operations would be identical.) The main drawback of this
approach is that the superparity disk must be updated every
time any of the mn data disks gets an update. As a result, the
technique only applies to archival data and only after they have
become immutable.

We propose another solution that spreads the duties of the
superparity disk among all column parity disks, thus allowing
more updates to be performed in parallel. In addition, our
solution can be extended to the case of rectangular RAID arrays
that can tolerate all quintuple disk failures without data loss,
thus offering alternatives to both Azure LRC and HDFS-
XORBAS codes.

A. Bundles of RAID level 5 arrays

Looking back at Fig. 3, we can see that each of the top m
rows of the rectangular RAID array consists of n data disks and
a single parity disk. In other words, each of these rows
constitutes a RAID level 4 array [10].

We propose to reorganize these m rows and transform them
into RAID level 5 arrays. As a result, each disk of these 𝑚 first
rows will contain both data blocks and parity blocks with the
data blocks occupying 𝑛/ሺ𝑛 1ሻ of the disk capacity and the
parity blocks the remaining 1/ሺ𝑛 1ሻ. Fig. 6 illustrates the
concept. Note that we now have 𝑛 1 column parity disks in
the bottom row in order to ensure that all 𝑚ሺ𝑛 1ሻ disks that
hold data are equally protected. As a result, the superparity
blocks that were stored the superparity disk are now evenly
distributed among the 𝑛 1 disks of the bottom row, which
now contain both parity and superparity data. All fatal triple
failures are eliminated because we can now reconstitute the lost
parity data.

D D DD D D D PD

P P PP X P P P

D D DD X D D XD

D D DD D D D PD

Fig. 4. One of the mn fatal triple failures.

D D DD D D D PD

P P PP P P P SPP

D D DD D D D PD

D D DD D D D PD

Fig. 5. Adding a superparity disk.

DP DP DPDP DP DP DP DPDP

P P PP P P P PP

DP DP DPDP DP DP DP DPDP

DP DP DPDP DP DP DP DPDP

Fig. 6. A bundle of three RAID level 5 arrays protected by nine column

parity blocks.

Parity information will occupy the equivalent of one disk
per RAID level 5 array plus 𝑛 1 column parity disks. As a
result, the parity space overhead of the bundle will be equal to:

𝑚 𝑛 1
ሺ𝑚 1ሻሺ𝑛 1ሻ

.

The sole possible fatal quadruple failures involve the fail-
ures of four disks that share the same two rows and the same
two columns. Fig. 7 shows one of these fatal quadruple
failures. As we can see, the four failed disks share the same
two rows and the same two columns. Enumerating the set of
fatal quadruple failures is thus equivalent to enumerating the
number of rectangles that we can form by selecting two arbi-
trary rows out of m 1 and two arbitrary columns out of n

1, which is equal to ቀm 1
2

ቁ ቀn 1
2

ቁ. Observing there are

ቀሺm 1ሻሺn 1ሻ
4

ቁ possible quadruple failures, the probability

that an arbitrary quadruple disk failure will result in a data loss
is:

ቀ𝑚 1
2

ቁ ቀ𝑛 1
2

ቁ

ቀሺ𝑚 1ሻሺ𝑛 1ሻ
4

ቁ
.

Table I displays some selected bundle configurations with
their space overheads and the percentage of quadruple disk fail-
ures that will result in a data loss. We want to keep the number
𝑚 of RAID arrays per bundle small in order to involve as few
disks as possible in the recovery of single disk failures. At the
same time, we want to use longer RAID stripes to keep the par-
ity space overhead under 50 percent.

Comparing the performance of our solution with that of a
(6, 2, 2) Azure locally repairable code is difficult because our
solution tends to group together many more data disks. The
closer we can get is comparing the (6, 2, 2) Azure code with a

bundle of two RAID level 5 arrays with 4 disks each. Both
organizations would comprise six data disks. Our organization
would have six parity disks, bringing its space overhead to 50
percent instead of 40 percent for the (6, 2, 2) code. At the same
time, our organization would be able to resolve all single disk
failures by accessing two disks instead of three and would tol-
erate 96 percent of quadruple disk failures instead of 86 percent
for the (6, 2, 2) code.

Another option would be to bundle together three RAID
level 5 arrays with 5 disks each. The organization would have
12 data disks and 8 parity disks, giving it the same space over-
head as the (6, 2, 2) code. It would require accessing three disks
to resolve all single disk failures and would tolerate 98.8
percent of quadruple disk failures, which is better than the (6,
2, 2) code.

B. Bundles of RAID level 6 arrays

Whenever a higher level of data resiliency is required, we
can replace the RAID level 5 arrays used in our scheme by
RAID level 6 arrays [2] [14], that is, RAID arrays that tolerate
two disk failures.

Fig. 8 represents one such bundle. It consists of three RAID
level 6 arrays with ten disks each plus an additional row of ten
disks that contain the column parities. Each of the disks in the
two RAID level 6 arrays contains both data blocks and parity
blocks with data blocks occupying 8/10 of the disk capacity and
parity blocks the remaining 2/10. Similarly, the ten disks in the
bottom row contain a mixture of parity and superparity blocks.

DP DP DPDP DP DP DP DPDP

P P PX P P X PP

DP DP DPX DP DP X DPDP

DP DP DPDP DP DP DP DPDP

Fig.7. A fatal quadruple failure.

TABLE I. SELECTED RAID LEVEL 5 BUNDLE SIZES AND THEIR

RESPECTIVE SPACE OVERHEADS.

Number
of RAID
stripes

Disks per
RAID
stripe

Storage
capacity
(disks)

Space
overhead

Fatal
quadruple

failures

2 8 14 41.7% 0.791%
2 10 18 40.0% 0.493%
2 12 22 38.9% 0.336%
3 8 21 34.4% 0.467%
3 10 27 32.5% 0.295%
3 12 33 31.3% 0.204%
4 8 28 30.0% 0.306%
4 10 36 28.0% 0.195%
4 12 44 26.7% 0.135%
5 8 35 27.1% 0.216%
5 10 45 25.0% 0.138%
5 12 55 23.6% 0.096%

DP DP DPDP DP DP DP DPDP DP

P P PP P P P PP P

DP DP DPDP DP DP DP DPDP DP

DP DP DPDP DP DP DP DPDP DP

Fig. 8. A bundle consisting of three RAID level 6 arrays with

 ten disk each and ten additional column parity disks.

DP X DPDP DP X DP DPX DP

P X PP P X P PX P

DP DP DPDP DP DP DP DPDP DP

DP DP DPDP DP DP DP DPDP DP

Fig. 9. A fatal sextuple failure.

More generally, a RAID level 6 bundle will consist of 𝑚
RAID level 6 arrays, each containing 𝑛 2 disks plus an addi-
tional row of 𝑛 2 disks containing the column parities of the
disks in the m RAID level 6 arrays. The space overhead of the
bundle will be equal to:

2𝑚 𝑛 2
ሺ𝑚 1ሻሺ𝑛 2ሻ

.

As before, we want to keep the number of RAID arrays in
the bundle relatively low in order to involve as few disks as
possible in the recovery of single disk failure. In the same way,
we want to avoid very small RAID level 6 stripes to keep the
space overhead below 50 percent.

Since RAID level 6 arrays tolerate all double disk failures,
all fatal failures must include three disks in the same RAID
array. Not only that, these three disks must be unable to use
their column parities to recover their contents. As a result, the
bundle will tolerate all quintuple disk failures. As Fig. 9 shows,
the sole possible fatal sextuple failures involve the failures of
six disks that share the same two rows and the same three
columns.

Given there are ቀ𝑚 1
2

ቁ ቀ𝑛 2
3

ቁ possible fatal sextuple

failures out of ቀሺ𝑚 1ሻሺ𝑛 2ሻ
6

ቁ possible sextuple failures,

the probability that an arbitrary sextuple disk failure will result
in a data loss is equal to:

ቀ𝑚 1
2

ቁ ቀ𝑛 2
3

ቁ

ቀሺ𝑚 1ሻሺ𝑛 2ሻ
6

ቁ

Table II displays some selected bundle configurations with
their space overheads and the percentage of sextuple disk fail-
ures that will result in a data loss. Note that we selected
somewhat larger values for the number of disks per RAID level
6 array to compensate for having now the equivalent of two
parity disks in each array.

The closest equivalent to an HDFS-XORBAS configuration
with ten data disks and six parity disks would be a bundle of

two RAID level 6 arrays with seven disks each. The two organ-
izations would have the same storage capacity but our bundle
would require five additional parity disks bringing its space
overhead to 52 percent. At the same time, it would be able to
recover from all single disk failures by accessing two disks,
instead of five, and would tolerate all quintuple disk failures
and 99.8 percent of sextuple disk failures, instead of all quad-
ruple disk failures and most quintuple failures. As Table II
indicates, lowering bundle space overhead requires tripling or
quadrupling the capacity of the bundles.

IV. DISCUSSION

A main advantage of our approach is its flexibility. First, we
can vary the number m of RAID arrays per bundle with smaller
values of m resulting in both smaller single failure recovery
overheads and larger parity space overheads. Second, we can
arbitrarily select the sizes of the original RAID arrays. Larger
RAID array sizes will both reduce the space overhead and
increase the total size of each bundle. In addition, we can select
RAID level 5 arrays to obtain triple failure protection or dual-
parity RAID level 6 arrays to obtain a bundle that would toler-
ate quintuple failures.

In the rare situations where even higher levels of data
protection are required, we could use STAR arrays [5] to
construct bundles that would tolerate up to seven simultaneous
disk failures. This could be done without bringing the parity
space overhead of the bundle over 50 percent by selecting
relatively large STAR arrays. The real drawback of the
organization would be its very high update cost, as each block
update would have to be propagated to three parity blocks in its
STAR array plus four parity blocks in the parity row, resulting
in a write amplification factor of eight.

Another advantage of our proposal is its simplicity. Since
we are using a two-dimensional design with distinct row and
column parities, there are no weights to adjust in the
expressions defining the parity calculations. As a result,
estimating the reliability of a given bundle configuration is a
trivial process.

Finally, we should note that our proposal considers
bundling RAID arrays and attaching to them additional parity
disks while both Azure LRC and HDFS-XORBAS codes deal
with individual blocks. This distinction is not as meaningful as
it may appear as the same bundles could be constructed from
independent blocks as long as each block resides on a separate
disk. (In the same way both Azure LRC and HDFS-XORBAS
codes could be used to define fault-tolerant disk array
organizations.)

V. CONCLUSION

We have presented a two-dimensional RAID organization
aimed at minimizing the number of disks involved in the repair
of single disk failures. Our proposal groups together a small
number m of conventional RAID arrays into a bundle and adds
column-wise parity disks such that no two disks in a given
RAID array belong to the same parity stripe. As a result, the
bundle will be able to recover from any single disk failure by
XORing the contents of exactly m disks. In addition, we
showed that bundles of RAID level 5 arrays could recover
without data loss from all triple and at least 96 percent of

TABLE II SELECTED RAID LEVEL 6 BUNDLE SIZES AND THEIR

RESPECTIVE SPACE OVERHEADS.

Number
of RAID
stripes

Disks per
RAID
stripe

Storage
capacity
(disks)

Space
overhead

Fatal
sextuple
failures

2 10 16 46.7% 0.061%
2 12 20 44.4% 0.034%
2 14 24 42.9% 0.021%
3 10 24 40.0% 0.019%
3 12 30 37.5% 0.011%
3 14 36 35.7% 0.007%
4 10 32 36.0% 0.008%
4 12 40 33.3% 0.004%
4 14 48 31.4% 0.003%
5 10 40 33.3% 0.004%
5 12 50 30.6% 0.002%
5 14 60 28.6% 0.001%

quadruple disk failures while bundles of RAID level 6 arrays
could similarly recover from all quintuple and at least 99.9
percent of sextuple disk failures.

More work is still needed to evaluate the cost of repairing
double and triple failures and estimating the impact of
irrecoverable read errors on the repair process.

REFERENCES
[1] B. Beach, “BackBlaze open sources Reed-Solomon erasure coding

source code,” https://www.backblaze.com/blog/reed-solomon/, June
16, 2015, retrieved June 20, 2018.

[2] W. A. Burkhard and J. Menon, “Disk Array Storage System
Reliability,” Proc. 23rd Int. Symp. on Fault-Tolerant Computing
(FTCS-23), pp. 432–441, June 1993.

[3] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. +, S. McKelvie, Y.
Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H.
Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal,
M. Fahim ul Haq, M. Ikram ul Haq, D. Bhardwaj, S. Dayanand, A.
Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and L. Rigas,
“Windows Azure storage: A highly available cloud storage service
with strong consistency,” Proc. 23rd ACM Symposium on Operating
Systems Principles (SOSP ’11), Cascais, Portugal, Oct. 2011.

[4] S. Ghemawat , H. Gobioff ,and S.-T. Leung, “The Google file
system,” Proc.19th ACM Symp. on Operating Systems Principles
(SOSP ’03), Bolton Landing, NY, Oct. 2003.

[5] C. Huang and L. Xu, STAR: An efficient coding scheme for
correcting triple storage node failures. IEEE Transactions on
Computers, Vol. 57, No. 7, pp.889–901, July 2008.

[6] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S,Yekhanin, “Erasure coding in Windows Azure storage,” Proc.
2012 USENIX Annual Technical Conf. (USENIX ATC 12), Boston,
MA, pp. 15-26, 2012.

[7] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking
erasure codes for Cloud file systems: minimizing I/O for recovery
and degraded reads,” Proc 10th USENIX Conf. on File and Storage
Technologies (FAST '12), San Jose, CA, Feb. 2012.

[8] T. Miyamae, T. Nakao, and K. Shiozawa, “Erasure code with
shingled local parity groups for efficient recovery from multiple disk
failures,” Proc. 10th USENIX Workshop on Hot Topics in System
Dependability (HotDep '14) Broomfield, CO, Oct. 2014.

[9]. J.-F. Pâris, T. Schwarz, S. J., A. Amer and D. D. E. Long, “Highly
Reliable Two-Dimensional RAID Arrays for Archival Storage,”
Proc, 31st Int. Performance of Computers and Communication Conf
(IPCCC 2012), Austin, TX, pp. 324–331, Dec. 2012.

[10] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” Proc. 1988 ACM SIGMOD
International Conf. on Management of Data, Chicago, IL, pp. 109–
116, June 1988.

[11] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, K.
Ramchandran, “A Hitchhiker’s Guide to Fast and Efficient Data
Reconstruction in Erasure-coded Data Centers,” Proc. 2014 ACM
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), Chicago,
IL, Aug. 2014.

[12] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite
Fields", Journal of the Society for Industrial and Applied
Mathematics (SIAM), 8 (2): 300–304, 1960.

[13] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R.
Vadali, S. Chen, and D. Borthakur, “XORing elephants: novel
erasure codes for big data,” Proc. of the VLDB Endowment, Vol. 6,
No. 5, pp. 325-336, 2013.

[14] T. Schwarz, S. J., Reliability and Performance of Disk Arrays, PhD
Dissertation, Department of Computer Science and Engineering,
University of California, San Diego, 1994.

[15] T. Schwarz, S. J., A. Amer, J.-F. Pâris, “Combining low IO-
operations during data recovery with low parity overhead in two-
failure tolerant archival storage systems,” Proc. 21st IEEE Pacific
Rim International Symp. on Dependable Computing (PRDC '15),
Zhangjiajie, China, Nov. 2015.

[16] A. Wildani, T. J. E. Schwarz, E. L. Miller and D. D. E. Long,
“Protecting against rare event failures in archival systems,” Proc.
17th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS '09), London, GB, pp. 246–256, Sep. 2009.

