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Abstract—Large data storage systems often use Reed-
Solomon erasure codes to protect their static data against triple 
or even quadruple disk failures. The main drawback of this 
solution is the high cost of recovering the contents of failed disks, 
as it requires reading the contents of all the surviving peers in its 
parity stripe. We propose to reduce this cost by grouping together 
a small number of conventional RAID arrays into a single bundle 
and adding column-wise parity disks such that all disks in a given 
RAID array belong to a distinct parity stripe. As a result, the 
number of disks involved in the recovery from a single disk 
failure will be equal to the number of RAID arrays in the bundle. 
We show that bundles of RAID level 5 arrays can recover without 
data loss from all triple and at least 96 percent of quadruple disk 
failures while bundles of RAID level 6 arrays can similarly 
recover from all quintuple and 99.9 percent of sextuple disk 
failures. 

Keywords— Data storage systems, fault tolerant systems, parity 
check codes 

I. INTRODUCTION 

Large data storage systems have reliability requirements 
that cannot be met by either mirroring or by conventional RAID 
level 6 arrays [2] [14]. For instance, both the Google file system 
[4] and Windows Azure Storage [3] maintain three replicas of 
their active data. The sole disadvantage of this approach is its 
low space efficiency as two-thirds of the storage space contains 
redundant data. The preferred way to reduce this overhead is to 
use Reed-Solomon erasure codes [12] to store static or archival 
data. For instance, the BackBlaze cloud backup service [1] 
splits every incoming file into 17 equal-size shards and 
calculates 3 parity shards so that the file contents can be 
reconstituted from any 17 of these 20 shards. The main 
advantage of this approach is its low space overhead for the 
protection it offers. Even though parity information only 
occupies 15 percent of the disk space, the array can tolerate all 
triple disk failures without losing any data. 

The sole disadvantage of this organization is the high cost 
of data recovery operations after the loss of a disk. 
Reconstituting the contents of the lost disk will require reading 
in the entire contents of 17 of the remaining 19 operational 
disks. That process is slow and is likely to take several hours. 
Transferring that amount of data will severely stress the 
communication layer of the storage system and slow down all 
other requests for the whole duration of the  

process. In addition, requests directed to the data not yet 
reconstituted will be excruciatingly slow, as each of them will 
result in 17 separate disk accesses.  

This situation is acceptable in an online backup service as 
most of its data are likely to be never accessed. The same is not 
true for a distributed file system or a cloud storage service. This 
has motivated several coding solutions that address that issue. 
All these solutions trade a somewhat larger parity footprint for 
lowering the number of disks that must be accessed to 
reconstruct the contents of a failed disk. Two of these codes 
warrant our attention because they were developed for well-
known large-scale storage solutions. These are the HDFS-
XORBAS locally repairable code [13] and the Windows Azure 
local reconstruction code (LRC) [H12]. Both families of codes 
use modified Reed-Solomon erasure codes with additional 
local parity blocks supplementing the extant Reed-Solomon 
parity blocks. 

A major limitation of these codes is their complexity. While 
their overall organization is intuitive, selecting the proper 
coding equations for the local parities is not a trivial task 
because suboptimal coefficient choices could significantly 
lower the reliability of the codes. In particular, any change in 
the number of data disks, local parity disks or global parity 
disks that a locally recoverable code manages requires a 
reevaluation of these coefficients. 

We propose a much simpler approach that does not require 
any kind of tuning. We start by bundling together m regular 
RAID arrays. While we expect them to have equal sizes, this is 
not essential to our approach. We add to these arrays 
perpendicular RAID level 4 parity stripes in such a way that (a) 
each disk in the bundle belongs to one of the new parity stripe 
and (b) no two disks in any of the original RAID arrays belong 
to the same stripe. As a result, the bundle will be able to recover 
from any single disk failure by XORing the contents of exactly 
m disks. 

Our scheme is flexible in several ways. First, we can vary 
the number of RAID arrays per bundle selecting different 
tradeoff points between recovery costs and space overhead. 
Second, we can arbitrarily select the sizes of the original RAID 
arrays.  Finally, we can use single-parity or dual-parity arrays 
as constituting elements depending on the desired reliability 
level. We can indeed show that: 



 Any reasonably sized bundle consisting of two or more 
single-parity RAID arrays will tolerate all triple disk 
failures and at least 96 percent of all quadruple failures. 

 Any reasonably sized bundle consisting of two or more 
RAID level 6 arrays will tolerate all quintuple disk 
failures and at least 99.9 percent of all sextuple failures. 

The remainder of the paper is structured as follows. Section 
II describes extant locally repairable codes. Section III 
introduces our proposal and Section IV discusses its main 
features. Finally, Section V has our conclusions. 

II. PREVIOUS WORK  

In this section, we review the most significant previous 
work on locally repairable codes. Space considerations 
prevented us from being more complete. 

A. Windows Azure Local Reconstruction Codes 

Fig. 1 shows a (6, 2, 2) Azure Local Reconstruction Code 
(LRC) [6]. As we can see, the code partitions its six data blocks 
into two sets of three blocks with each set having its own local 
parity block, namely parity blocks 𝑄ଵ and 𝑄ଶ. In addition, the 
code computes the two global parity blocks 𝑃ଵ and 𝑃ଶ. More 
generally, a ሺ𝑘, 𝑙, 𝑟ሻ code will partition its 𝑘 data blocks into 
𝑙 sets of 𝑘/𝑙 blocks each and will have l local parity blocks and 
r global parity blocks. The code will be able to recover from the 
loss of either any single data block or any single local parity 
block using exactly 𝑘/𝑙  block reads. At the same time, the 
recovery performance of the code depends on the coefficients 
selected for the linear expressions defining the 𝑙  𝑟 parity 
blocks. These coefficients must be specifically chosen to ensure 
that the code will be able to decode all the information 
theoretically decodable failure patterns. For a (6, 2, 2) LRC, this 
means all triple failures and 86 percent of all quadruple failures. 

Overall, the (6, 2, 2) LRC ensures that all single data block 
failures can be resolved using three read operations and has a 
space overhead of 4 /10 = 40 percent.  

B. HDFS-XORBAS locally repairable codes 

As we can see in Fig. 2, the HDFS-XORBAS locally 
repairable code [13] comprises 10 data blocks and 7 parity 

blocks. The four global parity blocks 𝑃ଵ,𝑃ଶ, 𝑃ଷ,  and 𝑃ସare built 
with a standard Reed-Solomon code and ensure that the code 
can tolerate the loss of four arbitrary blocks. Parity blocks 𝑆ଵ, 
𝑆ଶ,  and 𝑆ଷ are local parity blocks aimed at reducing the cost of 
recovering from single block failures. Block 𝑆ଵ  is a linear 
combination 𝑆 ൌ  𝑐ଵ𝐷ଵ⨁𝑐ଶ𝐷ଶ⨁𝑐ଷ𝐷ଷ⨁𝑐ସ𝐷ସ⨁𝑐ହ𝐷ହ  of the 
contents of data blocks 𝐷ଵ  to 𝐷ହ  and block 𝑆ଶ  is similarly 
obtained from data blocks 𝐷  to 𝐷ଵ . Block 𝑆ଷ  is an implied 
parity block. It is not stored but can be created on demand as 
long as the coefficients of the linear expressions defining 
blocks 𝑆ଵ  and 𝑆ଶ  satisfy the relation 𝑆ଵ  𝑆ଶ   𝑆ଷ ൌ 0.  In 
addition, the coefficients 𝑐are subjected to further optimization 
to maximize the fault tolerance of the code. 

Overall, HDFS-XORBAS ensures that all single block 
failures can be resolved using five read operations and protects 
its contents against all quadruple disk failures. Its space over-
head is 6 /16 = 37.5 percent. 

Comparing the (6, 2, 2) Azure LRC with HDFS XORBAS, 
we can see they make very different choices regarding the 
three-way tradeoff [8] among space efficiency, durability, and 
recovery efficiency. The (6, 2, 2) Azure LRC  only requires 
three block reads to recover from a single data block failure but 
cannot tolerate all quadruple block failures. Conversely, HDFS 
XORBAS tolerates all quadruple block failures and has a 
somewhat smaller space overhead than the (6, 2, 2) Azure LRC 
(37.5 percent instead of 40 percent), but requires five read 
operations instead of three to recover from a single block 
failure.  

C. Rotated Reed-Solomon codes 

Khan et al. [7] investigated some of the most popular  
erasure codes and proposed a new class of codes that perform 
degraded reads more efficiently than all known codes, but 
otherwise keep the reliability and performance properties of 
extant Reed-Solomon codes. The emphasis of their work was 
on minimizing overall data transfers rather than minimizing the 
number of disks involved in the reconstruction. 

D. Shingled Erasure Codes (SHEC) 

Miyamae et al. [8] have proposed a disk array organization 
comprising 𝑘 data disks and 𝑚 parity disks. Each of these 𝑚 
parity disks contains the XOR of the contents of 𝑙 data disks, 
which are said to form a locality. As 𝑚𝑙   𝑘, it is possible to 
assign each of the 𝑘  data disks to exactly 𝑚𝑙/𝑘  distinct 
localities in a way that ensures that the array will tolerate the 
simultaneous failure of up to 𝑚𝑙/𝑘 disks. The organization is 
referred to as a shingled erasure code (SHEC) because localities 
overlap with each other like the tiles of a roof. 
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Fig. 1. A (6, 2, 2) Azure local reconstruction code. 
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Fig. 2.  A HDFS-XORBAS locally repairable code. 
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Fig. 3.  A two-dimensional RAID array. 



Shingled erasure codes guarantee that recovering from a 
single block failure will require exactly 𝑙 block reads. Since all 
their parities are local, these codes can recover from double and 
triple failures without necessarily involving all the remaining 
data disks. In addition, these codes are easy to tune as their 𝑘 
and 𝑚  parameters control the space overhead of the code 
(𝑘/ሺ𝑚  𝑘ሻ) and the 𝑙 parameter controls both its durability 
and its recovery efficiency. Low values of 𝑙 will both guarantee 
a very efficient recovery from block failures and make the code 
less resilient to multiple block failures while high values of 𝑙 
will have the exact opposite effect. 

E. Hitchhiker 

Hitchhiker [11] is a modified Reed-Solomon code that 
reduces both network traffic and disk I/O by around 25 to 45 
percent during reconstruction of missing data, without 
requiring any additional storage. 

F. Rectangular RAID arrays 

As Figure 3 shows, two-dimensional RAID arrays organize 
their data disks into m rows and n columns with a data disk at 
the intersection of each row and each column for a total of mn 
data disks. Each row contains a parity disk containing the parity 
of all the data disks in that row and each column contains a 
parity disk containing the parity of all the data disks in that 

column. As a result, the space overhead of the array is   
ሺ𝑚  𝑛ሻ/ሺ𝑚𝑛  𝑚  𝑛ሻ.  

Consider now a rectangular RAID array having much fewer 
rows than columns (𝑚 ≪ 𝑛). As Schwarz et al. [15] observed, 
the array would be able to recover from any single disk failure 
by computing the exclusive or of the remaining m disks of that 
column, without ever having to use row parities. At the same 
time, keeping n high allows us to control the parity overhead of 
the array.  For instance, an array with three rows of ten data 
disks would only involve three disks in the recovery of any 
single data disk failure while only requiring a space overhead 
of 13/ሺ30   13ሻ ൌ 30 percent. 

III. OUR PROPOSAL  

A main problem with rectangular RAID arrays is that they 
do not provide the same level data protection as HDFS-
XORBAS or the Azure LRC.  While HDFS-XORBAS protects 
its contents against all quadruple disk failures and the Azure 
LRC can tolerate all triple failures without data loss, 
rectangular RAID arrays are vulnerable to triple failures 
involving a data disk and its two parity disks. Fig. 4 displays 
one of these fatal triple failures. The standard way to eliminate 
these triple failures is to add a superparity disk to the array [9] 
[16]. This superparity disk contains the XOR of either all the 
row or all the column parity disks. (The outcomes of the two 
operations would be identical.) The main drawback of this 
approach is that the superparity disk must be updated every 
time any of the mn data disks gets an update. As a result, the 
technique only applies to archival data and only after they have 
become immutable. 

We propose another solution that spreads the duties of the 
superparity disk among all column parity disks, thus allowing 
more updates to be performed in parallel. In addition, our 
solution can be extended to the case of rectangular RAID arrays 
that can tolerate all quintuple disk failures without data loss, 
thus offering alternatives to both Azure LRC and HDFS-
XORBAS codes. 

A. Bundles of RAID level 5 arrays  

Looking back at Fig. 3, we can see that each of the top m 
rows of the rectangular RAID array consists of n data disks and 
a single parity disk. In other words, each of these rows 
constitutes a RAID level 4 array [10]. 

We propose to reorganize these m rows and transform them 
into RAID level 5 arrays. As a result, each disk of these 𝑚 first 
rows will contain both data blocks and parity blocks with the 
data blocks occupying 𝑛/ሺ𝑛  1ሻ of the disk capacity and the 
parity blocks the remaining 1/ሺ𝑛  1ሻ. Fig. 6 illustrates the 
concept. Note that we now have 𝑛  1 column parity disks in 
the bottom row in order to ensure that all 𝑚ሺ𝑛  1ሻ disks that 
hold data are equally protected. As a result, the superparity 
blocks that were stored the superparity disk are now evenly 
distributed among the 𝑛  1 disks of the bottom row, which 
now contain both parity and superparity data. All fatal triple 
failures are eliminated because we can now reconstitute the lost 
parity data. 
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Fig. 4.  One of the mn fatal triple failures. 
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Fig. 5.  Adding a superparity disk. 
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Fig. 6.  A bundle of three RAID level 5 arrays protected by nine column 

parity blocks. 



Parity information will occupy the equivalent of one disk 
per RAID level 5 array plus 𝑛  1 column parity disks. As a 
result, the parity space overhead of the bundle will be equal to: 

𝑚  𝑛  1
ሺ𝑚  1ሻሺ𝑛  1ሻ

. 

The sole possible fatal quadruple failures involve the fail-
ures of four disks that share the same two rows and the same 
two columns.  Fig. 7 shows one of these fatal quadruple 
failures. As we can see, the four failed disks share the same 
two rows and the same two columns. Enumerating the set of 
fatal quadruple failures is thus equivalent to enumerating the 
number of rectangles that we can form by selecting two arbi-
trary rows out of m  1 and two arbitrary columns out of n 

1, which is equal to ቀm  1
2

ቁ ቀn  1
2

ቁ.  Observing there are 

ቀሺm  1ሻሺn  1ሻ
4

ቁ possible quadruple failures, the probability 

that an arbitrary quadruple disk failure will result in a data loss 
is: 

ቀ𝑚  1
2

ቁ ቀ𝑛  1
2

ቁ

ቀሺ𝑚  1ሻሺ𝑛  1ሻ
4

ቁ
. 

Table I displays some selected bundle configurations with 
their space overheads and the percentage of quadruple disk fail-
ures that will result in a data loss. We want to keep the number 
𝑚 of RAID arrays per bundle small in order to involve as few 
disks as possible in the recovery of single disk failures. At the 
same time, we want to use longer RAID stripes to keep the par-
ity space overhead under 50 percent. 

Comparing the performance of our solution with that of a 
(6, 2, 2) Azure locally repairable code is difficult because our 
solution tends to group together many more data disks. The 
closer we can get is comparing the (6, 2, 2) Azure code with a 

bundle of two RAID level 5 arrays with 4 disks each. Both 
organizations would comprise six data disks. Our organization 
would have six parity disks, bringing its space overhead to 50 
percent instead of 40 percent for the (6, 2, 2) code. At the same 
time, our organization would be able to resolve all single disk 
failures by accessing two disks instead of three and would tol-
erate 96 percent of quadruple disk failures instead of 86 percent 
for the (6, 2, 2) code. 

Another option would be to bundle together three RAID 
level 5 arrays with 5 disks each. The organization would have 
12 data disks and 8 parity disks, giving it the same space over-
head as the (6, 2, 2) code. It would require accessing three disks 
to resolve all single disk failures and would tolerate 98.8 
percent of quadruple disk failures, which is better than the (6, 
2, 2) code. 

B. Bundles of RAID level 6 arrays 

Whenever a higher level of data resiliency is required, we 
can replace the RAID level 5 arrays used in our scheme by 
RAID level 6 arrays [2] [14], that is, RAID arrays that tolerate 
two disk failures. 

Fig. 8 represents one such bundle. It consists of three RAID 
level 6 arrays with ten disks each plus an additional row of ten 
disks that contain the column parities. Each of the disks in the 
two RAID level 6 arrays contains both data blocks and parity 
blocks with data blocks occupying 8/10 of the disk capacity and 
parity blocks the remaining 2/10. Similarly, the ten disks in the 
bottom row contain a mixture of parity and superparity blocks. 
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Fig.7.  A fatal quadruple failure. 

TABLE I.  SELECTED RAID LEVEL 5 BUNDLE SIZES AND THEIR 

RESPECTIVE SPACE OVERHEADS. 

Number
of RAID 
stripes 

Disks per
RAID 
stripe 

Storage 
capacity  
(disks) 

Space 
overhead 

Fatal 
quadruple 

failures 

2 8 14 41.7% 0.791% 
2 10 18 40.0% 0.493% 
2 12 22 38.9% 0.336% 
3 8 21 34.4% 0.467% 
3 10 27 32.5% 0.295% 
3 12 33 31.3% 0.204% 
4 8 28 30.0% 0.306% 
4 10 36 28.0% 0.195% 
4 12 44 26.7% 0.135% 
5 8 35 27.1% 0.216% 
5 10 45 25.0% 0.138% 
5 12 55 23.6% 0.096% 
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Fig. 8.  A bundle consisting of three RAID level 6 arrays with 

 ten disk each and ten additional column parity disks. 
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Fig. 9.  A fatal sextuple failure. 



More generally, a RAID level 6 bundle will consist of 𝑚 
RAID level 6 arrays, each containing 𝑛  2 disks plus an addi-
tional row of 𝑛  2 disks containing the column parities of the 
disks in the m RAID level 6 arrays. The space overhead of the 
bundle will be equal to: 

2𝑚  𝑛  2 
ሺ𝑚  1ሻሺ𝑛  2ሻ

. 

As before, we want to keep the number of RAID arrays in 
the bundle relatively low in order to involve as few disks as 
possible in the recovery of single disk failure. In the same way, 
we want to avoid very small RAID level 6 stripes to keep the 
space overhead below 50 percent. 

Since RAID level 6 arrays tolerate all double disk failures, 
all fatal failures must include three disks in the same RAID 
array. Not only that, these three disks must be unable to use 
their column parities to recover their contents. As a result, the 
bundle will tolerate all quintuple disk failures. As Fig. 9 shows, 
the sole possible fatal sextuple failures involve the failures of 
six disks that share the same two rows and the same three 
columns. 

Given there are ቀ𝑚  1
2

ቁ ቀ𝑛  2
3

ቁ  possible fatal sextuple 

failures out of ቀሺ𝑚  1ሻሺ𝑛  2ሻ
6

ቁ  possible sextuple failures, 

the probability that an arbitrary sextuple disk failure will result 
in a data loss is equal to: 

ቀ𝑚  1
2

ቁ ቀ𝑛  2
3

ቁ

ቀሺ𝑚  1ሻሺ𝑛  2ሻ
6

ቁ
 

Table II displays some selected bundle configurations with 
their space overheads and the percentage of sextuple disk fail-
ures that will result in a data loss. Note that we selected 
somewhat larger values for the number of disks per RAID level 
6 array to compensate for having now the equivalent of two 
parity disks in each array. 

The closest equivalent to an HDFS-XORBAS configuration 
with ten data disks and six parity disks would be a bundle of 

two RAID level 6 arrays with seven disks each. The two organ-
izations would have the same storage capacity but our bundle 
would require five additional parity disks bringing its space 
overhead to 52 percent.  At the same time, it would be able to 
recover from all single disk failures by accessing two disks, 
instead of five, and would tolerate all quintuple disk failures 
and 99.8 percent of sextuple disk failures, instead of all quad-
ruple disk failures and most quintuple failures. As Table II 
indicates, lowering bundle space overhead requires tripling or 
quadrupling the capacity of the bundles. 

IV. DISCUSSION 

A main advantage of our approach is its flexibility. First, we 
can vary the number m of RAID arrays per bundle with smaller 
values of m resulting in both smaller single failure recovery 
overheads and larger parity space overheads. Second, we can 
arbitrarily select the sizes of the original RAID arrays. Larger 
RAID array sizes will both reduce the space overhead and 
increase the total size of each bundle. In addition, we can select 
RAID level 5 arrays to obtain triple failure protection or dual-
parity RAID level 6 arrays to obtain a bundle that would toler-
ate quintuple failures. 

In the rare situations where even higher levels of data 
protection are required, we could use STAR arrays [5] to 
construct bundles that would tolerate up to seven simultaneous 
disk failures. This could be done without bringing the parity 
space overhead of the bundle over 50 percent by selecting 
relatively large STAR arrays. The real drawback of the 
organization would be its very high update cost, as each block 
update would have to be propagated to three parity blocks in its 
STAR array plus four parity blocks in the parity row, resulting 
in a write amplification factor of eight. 

Another advantage of our proposal is its simplicity.  Since 
we are using a two-dimensional design with distinct row and 
column parities, there are no weights to adjust in the 
expressions defining the parity calculations. As a result, 
estimating the reliability of a given bundle configuration is a 
trivial process.  

Finally, we should note that our proposal considers 
bundling RAID arrays and attaching to them additional parity 
disks while both Azure LRC and HDFS-XORBAS codes deal 
with individual blocks. This distinction is not as meaningful as 
it may appear as the same bundles could be constructed from 
independent blocks as long as each block resides on a separate 
disk. (In the same way both Azure LRC and HDFS-XORBAS 
codes could be used to define fault-tolerant disk array 
organizations.) 

V. CONCLUSION 

We have presented a two-dimensional RAID organization 
aimed at minimizing the number of disks involved in the repair 
of single disk failures. Our proposal groups together a small 
number m of conventional RAID arrays into a bundle and adds 
column-wise parity disks such that no two disks in a given 
RAID array belong to the same parity stripe. As a result, the 
bundle will be able to recover from any single disk failure by 
XORing the contents of exactly m disks. In addition, we 
showed that bundles of RAID level 5 arrays could recover 
without data loss from all triple and at least 96 percent of 

TABLE II SELECTED RAID LEVEL 6 BUNDLE SIZES AND THEIR 

RESPECTIVE SPACE OVERHEADS. 

Number 
of RAID 
stripes 

Disks per 
RAID 
stripe 

Storage 
capacity  
(disks) 

Space 
overhead 

Fatal 
sextuple 
failures 

2 10 16 46.7% 0.061% 
2 12 20 44.4% 0.034% 
2 14 24 42.9% 0.021% 
3 10 24 40.0% 0.019% 
3 12 30 37.5% 0.011% 
3 14 36 35.7% 0.007% 
4 10 32 36.0% 0.008% 
4 12 40 33.3% 0.004% 
4 14 48 31.4% 0.003% 
5 10 40 33.3% 0.004% 
5 12 50 30.6% 0.002% 
5 14 60 28.6% 0.001% 



quadruple disk failures while bundles of RAID level 6 arrays 
could similarly recover from all quintuple and at least 99.9 
percent of sextuple disk failures. 

More work is still needed to evaluate the cost of repairing 
double and triple failures and estimating the impact of 
irrecoverable read errors on the repair process. 

REFERENCES 
[1] B. Beach, “BackBlaze open sources Reed-Solomon erasure coding 

source code,” https://www.backblaze.com/blog/reed-solomon/, June 
16, 2015, retrieved June 20, 2018. 

[2] W. A. Burkhard and J. Menon, “Disk Array Storage System 
Reliability,” Proc. 23rd Int. Symp. on Fault-Tolerant Computing 
(FTCS-23), pp. 432–441, June 1993. 

[3] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. +, S. McKelvie, Y. 
Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju,  H. 
Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, 
M. Fahim ul Haq, M. Ikram ul Haq, D. Bhardwaj, S. Dayanand, A. 
Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and L. Rigas, 
“Windows Azure storage: A highly available cloud storage service 
with strong consistency,” Proc. 23rd ACM Symposium on Operating 
Systems Principles (SOSP ’11), Cascais, Portugal, Oct. 2011. 

[4] S. Ghemawat , H. Gobioff ,and S.-T. Leung, “The Google file 
system,” Proc.19th ACM Symp. on Operating Systems Principles 
(SOSP ’03),  Bolton Landing, NY, Oct. 2003.  

[5] C. Huang and L. Xu, STAR: An efficient coding scheme for 
correcting triple storage node failures. IEEE Transactions on 
Computers, Vol. 57, No. 7, pp.889–901, July 2008. 

[6] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, 
and S,Yekhanin, “Erasure coding in Windows Azure storage,” Proc. 
2012 USENIX Annual Technical Conf. (USENIX ATC 12), Boston, 
MA, pp. 15-26, 2012. 

[7] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking 
erasure codes for Cloud file systems: minimizing I/O for recovery 
and degraded reads,” Proc 10th USENIX Conf. on File and Storage 
Technologies (FAST '12), San Jose, CA, Feb. 2012. 

[8] T. Miyamae, T. Nakao, and K. Shiozawa, “Erasure code with 
shingled local parity groups for efficient recovery from multiple disk 
failures,” Proc. 10th USENIX Workshop on Hot Topics in System 
Dependability (HotDep '14) Broomfield, CO, Oct. 2014.  

[9]. J.-F. Pâris, T. Schwarz, S. J., A. Amer and D. D. E. Long, “Highly 
Reliable Two-Dimensional RAID Arrays for Archival Storage,” 
Proc, 31st Int. Performance of Computers and Communication Conf 
(IPCCC 2012), Austin, TX, pp. 324–331, Dec. 2012. 

[10] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant 
arrays of inexpensive disks (RAID),” Proc. 1988 ACM SIGMOD 
International Conf. on Management of Data, Chicago, IL, pp. 109–
116, June 1988. 

[11] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, K. 
Ramchandran, “A Hitchhiker’s Guide to Fast and Efficient Data 
Reconstruction in Erasure-coded Data Centers,” Proc. 2014 ACM 
Conference on Applications, Technologies, Architectures, and 
Protocols for Computer Communications (SIGCOMM), Chicago, 
IL, Aug. 2014. 

[12] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite 
Fields", Journal of the Society for Industrial and Applied 
Mathematics (SIAM), 8 (2): 300–304, 1960. 

[13] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. 
Vadali, S. Chen, and D. Borthakur, “XORing elephants: novel 
erasure codes for big data,” Proc. of the VLDB Endowment, Vol. 6, 
No. 5, pp. 325-336, 2013.  

[14] T. Schwarz, S. J., Reliability and Performance of Disk Arrays, PhD 
Dissertation, Department of Computer Science and Engineering, 
University of California, San Diego, 1994. 

[15] T. Schwarz, S. J., A. Amer, J.-F. Pâris, “Combining low IO-
operations during data recovery with low parity overhead in two-
failure tolerant archival storage systems,” Proc. 21st IEEE Pacific 
Rim International Symp. on Dependable Computing (PRDC '15), 
Zhangjiajie, China, Nov. 2015. 

[16] A. Wildani, T. J. E. Schwarz, E. L. Miller and D. D. E. Long, 
“Protecting against rare event failures in archival systems,” Proc. 
17th IEEE International Symposium on Modeling, Analysis, and 
Simulation of Computer and Telecommunication Systems 
(MASCOTS '09), London, GB, pp. 246–256, Sep. 2009. 


