
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Merkle Hash Grids Instead of Merkle Trees

Abstract—Merkle grids are a new data organization that rep-
licates the functionality of Merkle trees while reducing their trans-
mission and storage costs by up to 50 percent. All Merkle grids
organize the objects whose conformity they monitor in a square
array. They add row and column hashes to it such that (a) all row
hashes contain the hash of the concatenation of the hashes of all
the objects in their respective row and (b) all column hashes con-
tain the hash of the concatenation of the hashes of all the objects
in their respective column. In addition, a single signed master
hash contains the hash of the concatenation of all row and column
hashes. Extended Merkle grids add two auxiliary Merkle trees to
speed up searches among both row hashes and column hashes.
While both basic and extended Merkle grids perform
authentication of all blocks better than Merkle trees, only
extended Merkle grids can locate individual non-conforming
objects or authenticate a single non-conforming object as fast as
Merkle trees.

Keywords—Merkle trees, authentication

I. INTRODUCTION

Merkle trees, also known as hash trees, [10–13] are a
fundamental building block in many sophisticated
authentication schemes. In its basic functionality, a Merkle tree
authenticates a set of blocks in a file that is transmitted through
time in a storage system or through space in a messaging system.
As Fig. 1 shows, a Merkle tree consists of as many leaves as
there are blocks in the file we want to test and as many internal
nodes as required by the degree of the tree. Each leaf contains
the hash of one of the file blocks and each internal node contains
the hash of the concatenated values of its children. As a result,
any change in any file block will affect the value of the root of
the tree. Thus signing that root suffices to authenticate the whole
tree. Its strength relies on the strength of the hash function, i.e.
the incapability to invert a hash with realistic resources and the
strength of the signature.

Building a binary Merkle tree for a file that contains 𝑁 ൌ 2
blocks requires 2𝑁 – 1 hashes and one digital signature. In
comparison, identifying a single non-conforming block is a
relatively inexpensive operation as it only require 2logଶ 𝑁 ൌ 2𝑛
comparisons.

When we want to verify the contents of a local copy of a file,
we construct the Merkle tree of that copy and compare its root
with the root of the Merkle tree of the remote replica. If they are
identical, we know (with overwhelming probability) that the two

copies are identical. If they are not, identifying each non-
conforming block requires a traversal of the tree.

II. MERKLE GRIDS

We introduce Merkle grids, a two-dimensional organization
that has a smaller construction cost than the corresponding
Merkle tree and only requires 2√𝑁 1 comparisons to identify
all blocks that are likely to be non-conforming. As we will see
later, we can even reduce the number of comparisons needed to

Jehan-François Pâris
Department of Computer Science

University of Houston
Houston, TX, USA

jfparis@uh.edu

Thomas Schwarz, SJ
Department of Computer Science

Marquette University
Milwaukee, Wisconsin

thomas.schwarz@marquette.edu

Fig. 1. A Merkle tree. 𝑁 ൌ 2 blocks are arranged in a line. They are
represented by the gray, rounded rectangles. We adorn each block with its hash
(the light gray square). The arrows indicate taking the hash after concatenation.
The root (dark blue) is a signed hash.

Fig. 2. The base version of our scheme. 𝑁 ൌ 𝑛ଶ objects are arranged in a
square (represented by the gray, rounded rectangles). Light gray squares
represent hashes. For each row and each column of hashes, we calculate the
hash of the concatenation of the hashes in the line (the lighter gray squares on
top and on the right). Finally, we calculate the hashes of each row and each
column and sign it (the dark blue square in the upper right corner).

locate individual non-conforming blocks to 2logଶ √𝑁 1 by
adding two auxiliary Merkle trees to our grid.

As Fig. 2 shows, Merkle grids organize the blocks of the file
we want to verify in a square 𝑛-by-𝑛 array where 𝑛 ൌ √𝑁 is the
square root of the total number of blocks in the file. Rectangular
arrays and arrays with incomplete rows or columns are possible
but are somewhat less efficient. Each row of the array has a row
hash containing a hash of the concatenated hashes of all blocks
in that row. In the same way, each array column has a column
hash containing a hash of the concatenated hashes of all blocks
in that column. More formally, if 𝑏 denotes the block at the
intersection of the 𝑖-th row and the 𝑗-th column of the matrix,
row hash 𝑟 and column hash 𝑐 are defined as

 𝑟 ൌ ℎሺℎሺ𝑏ଵሻ.ℎሺ𝑏ଶሻ. … .ℎሺ𝑏ሻሻ

 𝑐 ൌ ℎ ቀℎ൫𝑏ଵ൯.ℎ൫𝑏ଶ൯. … .ℎ൫𝑏൯ቁ,

where the dot . denotes concatenation. In addition, a master hash
𝑀 contains a hash of the concatenated values of all row and
column hashes. In other words.

𝑀 ൌ ℎ൫ℎሺ𝑟ଵሻ. … .ℎሺ𝑟ሻ.ℎሺ𝑐ଵሻ. … .ℎሺ𝑐ሻ൯.

Unlike the row and column hashes, this master hash is
signed. We can thus see that building a Merkle grid requires 𝑁
2 √𝑁 1 hashes and one digital signature verification. This is
significantly less than the number of hashes of a comparable
Merkle tree and the space savings gets closer to 50 percent as
the file size increases as

lim
ே→ஶ

𝑁 2√𝑁 1
2𝑁 െ 1

ൌ 0.5.

To verify the contents of a file, we first construct the Merkle
grid of the local copy of the file and compare its master hash
with the master hash of the remote copy. If they match, we know

that the two copies are identical. Otherwise, we compare the row
and column hashes of the local copy with the Merkel grid of the
remote copy. The operation will require 2 √𝑁 additional
comparisons and will detect all blocks that are likely to be non-
conforming. The main advantage of our approach is that it
detects all suspect blocks in a single sweep. Its main
disadvantage lies in the additional diagnostic work it requires in
the presence of several non-conforming blocks. If there are two
non-conforming blocks, they are likely to be located in two
different rows and columns. Since there are four potential non-
conforming blocks in the intersections of the two rows and the
two columns, we need to check these four blocks for non-
conformity.

A. Extended Merkle grids

While basic Merkle grids require up to 50 percent fewer
hashes and occupy up to 50 percent less space than Merkle grids,
their search performance is much less impressive as they require
2√𝑁 hash comparisons to locate a non-conforming block while
Merkle trees only require 2logଶ 𝑁 comparisons.

A simple but effective way to reduce this number of hash
comparisons is to add two auxiliary Merkle tree to the grid. As
Fig. 3 shows, the first of the two trees is built upon the √𝑁 row
hashes while the second is built upon the √𝑁 column hashes. As
a result, both trees counts 2√𝑁 െ 1 nodes and the Merkle grid
now counts a total of 𝑁 4√𝑁 െ 1 hashes, that is 𝑁 block
hashes, 2√𝑁 െ 1 hashes in each auxiliary Merkle tree, and a
single signed hash of the concatenated roots of these two trees.
Even so, the completed Merkle grid occupies up to 50 percent
less space than a comparable Merkle tree as

lim
ே→ஶ

𝑁 4√𝑁 െ 1
2𝑁 െ 1

ൌ 0.5.

The main advantage is that the number of comparisons
required to identify a non-conforming block becomes
4 logଶ √𝑁 1, which simplifies into 2 logଶ 𝑁 1 , that is, one
more comparison than with a Merkle tree.

III. MERKLE TREES REVISITED

A Merkle tree is a binary tree whose interior nodes are
hashes and whose leaves are the blocks to be authenticated. The
security of the Merkle tree depends directly on the security of
the hashes, and in particular their collision resistance. The
blocks could be messages, sensor data, blocks or objects in a file
system, or any other type of large binary object. We give an
example of a Merkle tree in Fig. 1. That Merkle tree has 16
objects (some of which could be null objects) represented by the
rounded rectangles. The lighter gray squares represent hashes.
The first level hashes are just the hashes of the objects. All other
hashes are calculated recursively from the hashes of the two
children of each node, namely the hash of the parent is the hash
of the concatenation of the children. Formally, if 𝑝 is the content
of the parent and 𝑙 and 𝑟 are the contents of the children, the dot
. denotes concatenation and ℎሺሻ is our hash function, then

𝑝 ൌ ℎሺ𝑙. 𝑟ሻ.

The root of the tree is signed using a public signature. If a
sender sends all objects, then the receiver would build the

Fig. 3. The extended Merkle grid with the two auxiliary Merkle trees.

Merkle tree from the received objects and then verify the
authenticity of the root node contents using the signature. Of the
operations involved, the creation and then the verification of a
signature would be the most time-consuming steps.

In many circumstances such as in the sending of sensor data,
all blocks are generated, sent, and authenticated. On some occa-
sions though, only a single object needs to be verified. In this
case, a Merkle tree can be authenticated by giving sibling
hashes. Fig. 4 shows the case where a single block (marked in
red) needs to be authenticated. For this to happen, we follow the
path from the object to the root. We start by verifying the
signature of the root hash. Then we verify the calculation of the
root hash from its two constituents, namely the roots of the left
and right subtree. Note that only one of these hashes lies on the
path from the block to the root, the other one is its sibling. The
hash of the root on the path (marked in light red in Fig. 4) is then
verified recursively. At each level, we verify the hash on the path
(red in Fig. 4) and its sibling (violet). With the exception of the
root, we therefore access two hashes for each level in the Merkel
tree. Constructing a Merkle tree for 2 objects creates
2+2ିଵ ⋯ 2 1 ൌ 2ାଵ െ 1 hashes which is very close
to double.

A ternary Merkle tree, such as the one shown in Fig. 5, would
be equally secure. Indeed, the number of hashes to be
constructed for a tree with 3 blocks is

3 3ିଵ ⋯ 3ଶ 3 1 ൌ
ሺଷశభିଵሻ

ଶ
.

Compared to the binary version, the number of hashes per
block has shrunk to approximately 3/2. In general, the number

of hashes in a Merkle tree with fan-out 𝑘 and height 𝑛, hence for
𝑘 blocks, is ሺ𝑘ାଵ െ 1ሻ/ሺ𝑘 െ 1ሻ. The number of hashes per
block is this value divided by 𝑘 , which has limit 1. The
authentication of a single block uses now 𝑘𝑛 1 hashes as at
each level with the exception of the top level, we access k
hashes.

Until now, we implicitly assumed that Merkle trees are just
used for authenticating a file. In other words, the generic case to
be optimized is that all blocks are true and have not been
changed, be it by an attacker or by accident. We contend that for
a large set of applications that use Merkle tree this is not the case.
There are transmission errors and there are errors in storage
devices that result in a device returning a different block than the
one that was stored, for example, because of a write misdirect.
These errors might be more frequent than attacks and failure of
authentication because corruption then becomes the normal
case. We do not deny that a malicious attack once detected has
to be taken much more seriously. We deal with this scenario by
talking about a sender, the entity that signed the hash, and the
receiver, the entity that verifies the hash of the root node.

Assume that a single block out of the 𝑘 blocks protected by
a Merkle tree of height 𝑛 and degree 𝑘 is corrupted. Sender and
receiver will then build different Merkle trees and the signed
master hash sent by the sender does not agree with the locally
constructed master hash of the receiver. Once the discrepancy
between the sender’s and the receiver’s root hashes has been
detected, the receiver asks for the k hashes at the level below the
root. Since only a single block does not conform, only one of
these k hashes differs between sender and receiver. The receiver
now recursively proceeds by asking for the k child hashes of the
non-conforming hash, and so on. The verification takes the same
path as the authentication of a single block.

If two of the objects are corrupted, then we do not usually
need to access twice the number of hashes. We first treat the case
of a classic Merkle tree with fan-out 2 and height 𝑛. The exact
number of accesses to hashes depends on luck, for example, if
the first and the second block are corrupted, then we only need
to access 2𝑛 hashes. We argue inductively. Let 𝑎 denote the
expected number of hashes and assume we have a Merkle tree
of height 𝑛 and that we know that the root hash does not match.
In this case, we access the two child hashes. We know that at
least one of the two child hashes is off, but we also need to
consider the case where both are off. In the case illustrated at the
left of Fig. 6, the two corrupted objects are the leaves of the left
subtree rooted in the hash with the non-conforming hash. The
probability of the two peccant block being located in two
different halves is

𝑝ଵ,ଵ ൌ
ሺ2ିଵሻଶ

ቀ2

2
ቁ

ൌ
2ିଵ

2 െ 1
,

which is of course almost 1 2 ൗ . In this case, we have read two
hashes (the children of the root) and also need to find the two
corrupted objects in a tree of height 𝑛 െ 1. Thus, in total, we
need 2 𝑎ିଵ accesses. Conversely, if we are in the case
illustrated at the right of the figure,we need to find one non-
conforming object in each of the two sub-trees of height 𝑛 െ 1,
so that together with the two child hashes, a total of 2 2 ∙

Fig. 4. Authentication of a single block in a Merkle tree.

Fig. 5. A ternary Merkle tree showing the authentication of a single object.

Fig. 6. The two cases for identifying two non-conforming blocks in a binary
Merkle tree.

2ሺ𝑛 െ 1ሻ ൌ 4𝑛 െ 2 hashes need to be accessed. If the height is
one, then there are just two objects and we access two hashes.
This gives us the recursion

𝑎 ൌ 2
2ିଵ

2 െ 1
4ሺ𝑛 െ 1ሻ ቆ1 െ

2ିଵ

2 െ 1
ቇ𝑎ିଵ.

This recurrence is solved by

𝑎 ൌ 2 ൬
1

2 െ 1
 2൰ 𝑛 െ 4,

which can be approximated for large n by 4ሺ𝑛 െ 1ሻ. In the case
of k-ary Merkle trees, the probability that the two non-
conforming blocks are located in the same of the k sub-trees of
the root is

ሺ𝑘ିଵ െ 1ሻ
ሺ𝑘 െ 1ሻ൘ .

If the non-conforming blocks are located in two different
subtrees, then we need to access 2𝑘ሺ𝑛 െ 1ሻ hashes. If they are
located in the same subtree, then we u recursion. This gives a
recurrence 𝑏ଵ ൌ 𝑘 and

𝑏 ൌ 𝑘
𝑘ିଵ െ 1
𝑘 െ 1

𝑏ିଵ ቆ1 െ
𝑘ିଵ െ 1
𝑘 െ 1

ቇ𝑘ሺ𝑛 െ 1ሻ.

Its solution is

𝑏 ൌ
𝑘ሺെ𝑘 𝑛 4ሻ െ 3

𝑘 െ 1
 𝑘 ൬2𝑛 െ

𝑘
𝑘 െ 1

൰,

which is approximately 2𝑘ሺ𝑛 െ 1ሻ for large n. Fig. 7 shows the
similarity to a linear function very well.

We can extend this procedure to the case of three non-
conforming objects, at least for binary Merkle trees. Thus, we
assume the existence of 2 objects but require 𝑛 2 in order to
have at least three objects. Again, we assume that we know that
the root hash does not match. The probability that the three
corrupt objects are in the same subtree with 2ିଵ leaves is

𝑝ଷ, ൌ 2
൬ଶ

షభ

ଷ
൰

ቀଶ

ଷ
ቁ
ൌ

ଵ

ସ
െ

ଷ

ସሺଶିଵሻ
,

which is of course zero for 𝑛 ൌ 2 , but then very quickly
converges to ¼. The only other case is that of the three objects,
two are in one sub-tree and the remaining one in the other, which
happens with probability

𝑝ଶ,ଵ ൌ 2
2ିଵ ቀ2ିଵ

2
ቁ

ቀ2 െ 1
3

ቁ
ൌ

3 ⋅ 2ିଶ

2 െ 1

which starts out at 1 for n=2 and then quickly sinks to ¾.

If we denote by 𝜏 the number of hashes accessed in the case
of three corrupt objects in a Merkle tree of 2 objects, we can
now first develop a recurrence equation and then obtain its
solution. Again, we assume that 𝜏 does not include the root
hash, which is known to be non-conformant. We then access the
roots of the two subtrees. According to the probabilities just
calculated, either three of the non-conforming objects are in the
same subtree or they are divided 2+1 among the sub-trees. In the
latter case, we have already determined the expected number of
the hashes, in the former case, we proceed by recursion. This
gives us

𝜏 ൌ 2 𝑝ଷ,𝜏ିଵ 𝑝ଶ,ଵ൫𝑎ିଵ 2ሺ𝑛 െ 2ሻ൯.

This complicated recurrence relation has a surprisingly
simple solution, namely, 𝜏 equals

2ሺ9 ⋅ 2ଶ𝑛 െ 9 ⋅ 2ାଵ𝑛 6𝑛 9 ⋅ 2ାଶ െ 7 ⋅ 2ଶାଵ െ 22ሻ
3ሺ2 െ 2ሻሺ2 െ 1ሻ

.

In an overabundance of caution, we used simulation to verify
the result.

Finally, we treat the behavior of binary Merkle trees with 2
leaves in case of a burst error of size 𝑙. While it is possible to
give a recurrence relation for the number of hashes, this
approach does not provide additional insight over a reasonable
set of examples. We wrote a Python script that counts exactly
the number of hashes accessed for various values of n and l and
their position and then calculates the exact expectation under the
assumption that all 2 െ 𝑙 possible positions of the burst are
equally likely. While this is true only in certain scenarios, the
results remain typical. The results are given in Fig. 8, which
shows that the behavior is essentially linear. For small values of
n and large values of l, the number of hashes approaches the total
number of hashes. This explains why the curves overlap at their
onset.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the number of hashes required to
identify non-conforming blocks in both basic and extended

Fig.7 The expected number of hash accesses in a Merkle tree with N blocks
if two blocks are non-conforming.

Fig. 8. Number of hashes accessed for a burst error of length l and a total of
2 blocks in a binary Merkle tree. The x-axis has n and the y-axis the number
of hashes.

Merkle grids and compare these values with those obtained in
the previous section for Merkle trees. Strictly speaking, we
should make a distinction between taking the hash of objects and
the hash of hashes as the latter are considerably smaller.

A. Basic Merkle Grids

Let us consider first the case when we have a single non-
conforming block to locate. In that case, the faulty block can be
uniquely identified by its row and its column indices and the
total number of hashes we need to compute is the total number
of row and column hashes, that is, 2√𝑁 or 2𝑛.

If the file contains two non-conforming blocks, we still need
to compute the hashes of the 2𝑛 line hashes but they are not
necessarily enough to identify the two faulty blocks. We have
two subcases to consider:

Case 1: The two non-conforming blocks share either a
common row or a common column. In that case, we can
uniquely identify the two blocks by their row and column
indices.

Case 2: The two non-conforming blocks do not share a
common row nor a common column. In that case, the row and
column indices identify four potential non-conforming blocks
without telling us how many of these blocks are faulty.
Identifying the two non-conforming blocks will thus require

computing four extra hashes. There are ቀ𝑛
ଶ

2
ቁ distinct ways the

two non-conforming blocks can be located on the grid and

2 ቀ
𝑛
2ቁ

ଶ
distinct ways these blocks would not share a common

row nor a common column.

Assuming that the two non-conforming blocks are uniformly
distributed over the square array, the probability of having to
compute four additional hashes is

2 ቀ
𝑛
2ቁ

ଶ

ቀ𝑛
ଶ

2
ቁ
ൌ
𝑛ଶሺ𝑛 െ 1ሻଶ

𝑛ଶሺ𝑛ଶ െ 1ሻ
ൌ
𝑛 െ 1
𝑛 1

ൌ 1 െ
2

𝑛 1

and the average number of hashes required to identify two non-
conforming blocks is

2𝑛 4 ൬1 െ
2

𝑛 1
൰ ൎ 2𝑛 4 ൌ 2√𝑁 4

If there are three non-conforming blocks, we have to take
into consideration the four distinct failure patterns displayed in
Fig. 9. We can distinguish them by noting how many rows and
columns contain non-conforming blocks. The possibilities are
Case 1: 1 ൈ 3 and 3 ൈ 1, Case 2: 2 ൈ 2, Case 3: 2 ൈ 3 and 3 ൈ
2, and Case 4: 3 ൈ 3.

Case 1: There are twice 𝑛 ቀ
𝑛
3ቁ possibilities to select a single

row and three different columns or a single column and three
different rows. This selection not only determines the non-
conforming blocks, but also their number. No additional hash
computations are required as we can infer the identities of the
three non-conforming blocks from their row and column indices.

Case 2: There are ቀ
𝑛
2ቁ

ଶ
 possibilities to select two rows and

two columns in the grid. There are then four possibilities to
select the three non-conforming blocks at the four intersection

points of these rows and columns for a total of 4 ቀ
𝑛
2ቁ

ଶ

possibilities. We also need to ascertain the four object hashes to
diagnose as we do not know a priori that we only have three
non-conforming blocks.

Case 3: There are ቀ
𝑛
2ቁ ቀ

𝑛
3ቁ ways to select two rows and three

columns for the non-conforming blocks and the same number to
select three rows and two columns. In both cases, there are then
six possibilities to select three non-conforming blocks such that
each row / column selected has at least one non-conforming

block. The total number of patterns is therefore 2 ⋅ 6 ⋅ ቀ
𝑛
2ቁ ቀ

𝑛
3ቁ.

All object hashes at the six intersection points need to be
compared.

Case 4: There are ቀ
𝑛
3ቁ ቀ

𝑛
3ቁways to select three rows and

three columns for the non-conforming blocks. There are 6
possibilities to place the three non-conforming blocks in the nine
intersections such that all non-conforming blocks are in three
different rows and three different columns. In this case, we need
nine additional hashes in order to ascertain number and locations
of non-conforming objects as the algorithm has no a priori
knowledge of the number of non-conforming objects.

Taking everything together, the expected number of
additional hashes is

8 9 ሺ𝑛 െ 2ሻ𝑛
 𝑛ଶ െ 2

 ,

which converges slowly to 9. The number of total hashes is

2𝑛
8 9 ሺ𝑛 െ 2ሻ𝑛

 𝑛ଶ െ 2
.

As Fig. 10 shows, the number of expected hashes for a
Merkle Grid is better than that of an equivalent Merkle tree for
small sizes, but since the former grow linearly with the number
of objects, the logarithmic growth for Merkle trees soon wins
out.

We also investigated the behavior of basic Merkle grids with
2 leaves in case of a burst error of size 𝑙 using the same
technique as we did for Merkle trees. As Fig. 11 shows, the

Fig. 9. Case Distinctions for three non-compliant objects in a Merkle Grid.

number of hashes to be accessed for simple Merkle grids in the
presence of burst errors is again dominated by the need to access
all row and column hashes. This eliminates the potential of
having to access more than the needed block hashes if the burst
stretches over two rows. As can be seen from the Figure, the
curves lie virtually on top of each other for all bursts regardless
of their length. This is shown more clearly in Fig. 12, which
focuses on small grids.

B. Extended Merkle grids

As we have seen, Merkle trees can authenticate a single
block among 𝑁 blocks by providing logଶሺ𝑁ሻ hashes and

potentially verifying one signature. Merkle grids need the sender
to send the √𝑁 hashes of all column hashes and the √𝑁 hashes
of the blocks in the same column as the one to be authenticated,

We depict the situation for an extended Merkle grid in Fig.
13. We want to verify the block in red. Both sides calculate its
hash. We then send the hashes of the blocks in the same column
to the receiver. Alternatively, we could have chosen the row
instead of the column. The receiver then calculates the column
hash (indicated by the red-white double striping of the square
representing the hash) from the hash of the block at its side and
the witness hashes just sent. The sender sends a companion hash,
i.e. the column hash of the column next to the column with the
block to be authenticated, of the lowest leaf layer of the column
Merkle tree (indicated in violet) as a witness. The receiver now
calculates the hash of the concatenation of both and starts this
way working up the tree. At each step, there is a just calculated
hash and a companion hash sent by the sender. When the top of
the Merkel tree is reached, the hash is compared to the
corresponding part of the signed concatenation of two root
hashes. This finishes authentication. We have 𝑛 object hashes
and logଶሺ𝑛ሻ hashes of hashes to calculate. We also need
logଶሺ𝑛ሻ witness hashes to be sent possibly in a single message
from sender to receiver.

We now calculate the cost of an Extended Merkle Grid with
2 ൈ 2 ൌ 2ଶ objects. If only a single block is non-
conforming, then the row and column Merkle trees will need
twice 2𝑚 additional hashes to isolate the non-conforming row
and column hashes, which suffice to uniquely identify the non-
conforming block uniquely. This gives a total of 4𝑚 additional
hashes. Recall that we always assume that the root hash is shown
to be not compliant.

Fig. 13. Authenticating a single block in the extended Merkle grid

Fig. 10. Expected number of hash accesses needed to identify one,
two or three non-conforming objects in a Merkle Tree or a Basic
Merkle Grid with 2ଶ objects.

Fig. 11. Number of hashes to be accessed for simple Merkle grids in
the presence of burst errors of length l.

Fig. 12. Number of hashes to be accessed for simple Merkle grids
counting 64, 256 or 1,024 objects in the presence of burst errors of
length l.

For two non-compliant blocks, we use the same four case
distinctions as before. In Case 1, the two non-conforming
objects share a row or a column, and no additional hashes from
the grid are required. The non-conformance requires accessing
4𝑚 hashes in one Merkle tree and

𝑎 ൌ 2 ൬
1

2 െ 1
 2൰𝑚 െ 4

hashes in the other. In Case 2, four hashes in the grid are needed
as well as 2𝑎 in the two trees. In total, we have

െ4 4 ൬2
1

െ1 4
൰𝑚

accesses by taking the expected number.

For three non-compliant blocks, we again use the same case
distinctions as before, see Fig. 9. In Case 1 (3 ൈ 1 or1 ൈ 3), no
additional hashes in the grid itself are needed, and 2𝑚 hashes in
one tree and 𝜏 in the other tree. In Case 2 (2 ൈ 2), four hashes
from the grid itself and 2𝑎 in the trees are needed. In Case 3
(2 ൈ 3 or3 ൈ 2), 6 additional hashes in the grid itself and 𝑎
𝜏 in the trees are required. Finally, in Case 4 (3 ൈ 3ሻ, we need
2𝜏 accesses in the trees and nine in the grid itself. We already
calculated the probabilities for these cases before assuming that
non-conformity is equally likely for all objects. The resulting
expectation simplifies into

െ36 9 ⋅ 2ଵ ା ଷ 4ሺ47 െ 72 𝑚ሻ 24 𝑚 16 ሺെ29 36 𝑚ሻ
3 ሺ2 െ 3 ⋅ 4 16ሻ

.

This value is virtually indistinguishable from that for the
binary Merkle tree.

Finally, we consider the effects of a burst error affecting 𝑙
consecutive objects. In the basic Merkle grid, this cost is
dominated by accessing all line hashes, whereas in the Merkle
tree, it is almost as efficient as finding a single non-conforming
object, see Fig. 9. An extended Merkle grid has almost the same
performance as a Merkle tree. We obtained our results, given in
Fig.14, through a program that enumerated all possible locations
of 𝑙 bursts and collected the mean number of hashes accessed.
The numbers are slightly worse than for the Merkle tree.

C. Our findings

Looking at Fig. 14, we can see that the performance of the
Merkle tree and the extended Merkle scheme are almost
identical. For the basic scheme, we have better or almost
identical performance for small sizes. Since we can assume that
the probability of encountering non-conforming blocks is very
low, that fact is of little practical interest.

An important consideration is the cost of authenticating all
blocks. To perform this task, a Merkle tree must verify all its
elements, which requires 2ேାଵ െ 1 steps. A basic Merkle grid
would just have to authenticate its master hash and compute
2√𝑁 hashes. An extended Merkle grid would just have to verify
its master hash and its two auxiliary trees, which would require
4√𝑁 െ 1 hashes. The savings can be quite considerable for
large files or large collections of messages. Consider for instance
a file consisting of 1,024 blocks. A Merkle tree authentication
would require 2,047 hashes while a basic Merkle grid and an
extended Merkle grid would respectively require 65 and 128
hashes.

Our findings are summarized in Table I.They highlight the
excellent performance of extended Merkle grids that take
slightly more space than basic Merkle grids—and much less
space than Merkle trees, but still perform as well or better than
Merkle trees in all the cases we investigated.

V. RELATED WORK

Originally used for a public key signature scheme [2] [10–
13], Merkle trees have been used in a wide array of settings. We
only present here some of them. He, Xu, Fu, and Zhou [4] as
well as Lin and Sung [8] use Merkle trees for authenticating the
sender of multicast messages. In multicasting, the sender will
not automatically retransmit lost packets and the communication
between receiver and sender must be minimized. At the same
time, the cost of authenticating messages should be amortized
over a large number of messages. Both sets of authors propose
to group the messages into the leaves of a Merkle tree and
judiciously append partial matches to spread calculations over
the processing of each message. As is usual, only the root hash
is signed by the sender and authenticated by receivers. Ferrag
and his colleagues [7] mention various applications of Merkle
trees for authentication protocols for the Internet of Things.

File systems use checkpointing extensively [15] and often
use checksums [5] to implement them. For instance, Open
Solaris’s ZFS file system uses checksums for detecting data
corruption. ZFS organizes all on-disk data and metadata into
objects that are further grouped into object sets. Checksums for
on-disk blocks are kept separate by storing them into a parent
block. They form part of a Merkle tree. In this manner, ZFS can
detect all types of silent data corruption [16].

Fig. 14. Number of hashes accessed for a burst error of length 𝑙 and a total of
2 ൈ 2 objects in an Extended Merkle Grid. The x-axis has 2𝑛, that is the
logarithm of the number of objects, and the y-axis the number of hashes.

TABLE I. COMPARISON OF SCHEMES FOR 2ଶ OBJECTS

Costs
Binary
Tree

Basic
Grid

Extended
Grid

No. of hashes 2ଶାଵ െ 1 𝟐𝟐𝒎 𝟐𝒎ା𝟏 𝟏 2ଶ 2ାଶ െ 1

Authenticating all
objects

2ଶାଵ െ 1 𝟐𝒎ା𝟏 𝟏 2ାଶ െ 1

Locating one non-
conforming object 𝟒𝒎 2ାଵ 𝟒𝒎

Locating two non-
conforming objects ൎ 𝟖𝒎 2ାଵ 4 ൎ 𝟖𝒎

Another problem area where Merkle hash trees are used is
the authentication of outsourced data, especially that of a data-
base. Li and colleagues propose to embed Merkle trees in the
nodes of a B+ tree [6] Niaz and Saake [14] propose to replace
the binary structure of Merkle trees with a B+ tree. In this
context, Martel and colleagues [9] propose to replace binary
Merkle trees with generalized directed acyclic graphs (DAGs)
in the context of authenticating general data structures. The
owner of a data structure provides first a deterministic search
procedure that takes a query, searches the data structure, and
returns the correct answer. The procedure is modeled as
accessing nodes in a DAG. Each leaf node contains the hash of
the data found there, and all interior nodes contain a hash of a
concatenation of the hashes of their child nodes.

Auvolat and Traïani [1] have introduced Merkle Search
Trees and proposed to use them to build causally consistent
event stores that can provide causally consistent eventual
delivery of updates to all connected nodes of a distributed
system. Dahlberg, Pulls, and Peeters [3] investigated sparse
Merkle trees and presented the first complete, succinct, and
recursive definitions of sparse Merkle trees and related
operations.

VI. CONCLUSION

We have presented a new data organization that replicates
the functionality of Merkle trees while reducing their transmis-
sion and storage costs by up to 50 percent. All Merkle grids
organize the objects whose conformity they monitor in a square
array. They supplement this array with:

1. Row hashes that contain the hash of the concatenation
of the hashes of all the objects in their respective row

2. Column hashes that contain the hash of the
concatenation of the hashes of all the objects in their
respective column.

3. A single signed master block that contains the hash of
the concatenation of all row and column hashes.

Extended Merkle grids add to this basic scheme two auxil-
iary Merkle trees to speed up searches among both row hashes
and column hashes.

While both basic and extended Merkle grids perform
authentication of all blocks better than Merkle trees, only
extended Merkle grids can locate individual non-conforming
objects or authenticate a single non-conforming object as fast as
Merkle trees. In addition, both basic and extended Merkle grid
can authenticate 𝑁 objects much faster than Merkle trees, as the
number of steps they take is proportional to √𝑁 instead of being
proportional to 𝑁.

REFERENCES
[1] A. Auvolat and F. Taïani, “Merkle search trees: efficient state-based

CRDTs in open networks,” In Proc. 38th IEEE International Symposium
on Reliable Distributed Systems (SRDS 2019), Lyon, France. pp.1-10,
Oct 2019.

[2] G. Becker, “Merkle signature schemes, Merkle trees and their
cryptanalysis.” Ruhr-University Bochum, Tech. Rep, 2008.

[3] R. Dahlberg, T. Pulls, and R. Peeters, Roel. “Efficient sparse Merkle trees:
caching strategies and secure (non-)membership proofs,” In Secure IT
Systems: Proc. 21st Nordic Conference, NordSec 2016, Springer LNCS
#10014, pp. 199-215.

[4] J.-X. He, G.-C. Xu, X.-D. Fu, and Z.-G. Zhou, “A hybrid and efficient
scheme of multicast source authentication,” In Proc. 8th ACIS
International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing (SNPD
2007). Vol. 2. IEEE, 2007.

[5] A. Krioukov, L. Bairavasundaram, G. Goodson, K. Srinivasan, R.
Thelen, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. “Parity lost and
parity regained,” In Proc. 6th USENIX Conference on File and Storage
Technologies (FAST 2008), San Jose, CA, pp. 127–142, Feb. 2008.

[6] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. “Dynamic
authenticated index structures for outsourced databases,” In Proc. ACM
SIGMOD International Conference on Management of Data, Chicago,
IL, pp 121–132, June 2006.

[7] M. Ferrag, L. Maglaras, H. Janicke, J. Jiang, and L. Shu.
“Authentication protocols for internet of things: a comprehensive
survey.” In Security and Communication Networks, Hindawi (2017).

[8] I.-C. Lin and C.-C. Sung. “An efficient source authentication for
multicast based on Merkle hash tree,”. In Proc. 6th International
Conference on Intelligent Information Hiding ond Multimedia Signal
Processing (IIH-MSP 2010), Darmstadt, Germany,Oct. 2010.

[9] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and. S. G.
Stubblebine. “A general model for authenticated data structures.”
Algorithmica 39, no. 1 (2004): 21-41.

[10] R. C. Merkle, “Secrecy, authentication, and public key system,” Ph. D.
thesis. Stanford University, 1979, also Technical Report No. 1979-1,
Information Systems Laboratory, Stanford Univ.

[11] R. C. Merkle, “Protocols for public key cryptosystems.” In Proc. 1et

IEEE Symposium on Security and Privacy, Oakland, CA, pp. 122–134,
Apr. 1980.

[12] R. C. Merkle, “Method of providing digital signatures,” US patent
4309569, 1982.

[13] R. C. Merkle, “A digital signature based on a conventional encryption
function,” Advances in Cryptology — CRYPTO '87. Lecture Notes in
Computer Science. 293. pp. 369–378, 1987.

[14] M. Niaz and G. Saake. “Merkle hash tree based techniques for data
integrity of outsourced data,” In Proc. 27th GI-workshop on Foundations
of databases (Grundlagen von Datenbanken). 2015.

[15] C. Stein, J. Howard, and M. Seltzer. “Unifying File System Protection,”
In Proc. 2001 USENIX Annual Technical Conference, Boston, MA ,pp.
79–90, June 2001.

[16] Y. Zhang, A. Rajimwale, A. Arpaci-Dusseau, and R. Arpaci-Dusseau,
“End-to-end data integrity for file systems: a ZFS case study.” In
Proc. 8th USENIX Conference on File and Storage Technologies (FAST
2010), San Jose, CA, Feb. 2010.

