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Abstract—Merkle grids are a new data organization that rep-
licates the functionality of Merkle trees while reducing their trans-
mission and storage costs by up to 50 percent. All Merkle grids 
organize the objects whose conformity they monitor in a square 
array. They add row and column hashes to it such that (a) all row 
hashes contain the hash of the concatenation of the hashes of all 
the objects in their respective row and (b) all column hashes con-
tain the hash of the concatenation of the hashes of all the objects 
in their respective column.  In addition, a single signed master 
hash contains the hash of the concatenation of all row and column 
hashes. Extended Merkle grids add two auxiliary Merkle trees to 
speed up searches among both row hashes and column hashes. 
While both basic and extended Merkle grids perform 
authentication of all blocks better than Merkle trees, only 
extended Merkle grids can locate individual non-conforming 
objects or authenticate a single non-conforming object as fast as 
Merkle trees. 
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I. INTRODUCTION  

Merkle trees, also known as hash trees, [10–13] are a 
fundamental building block in many sophisticated 
authentication schemes. In its basic functionality, a Merkle tree 
authenticates a set of blocks in a file that is transmitted through 
time in a storage system or through space in a messaging system.  
As Fig. 1 shows, a Merkle tree consists of as many leaves as 
there are blocks in the file we want to test and as many internal 
nodes as required by the degree of the tree. Each leaf contains 
the hash of one of the file blocks and each internal node contains 
the hash of the concatenated values of its children. As a result, 
any change in any file block will affect the value of the root of 
the tree. Thus signing that root suffices to authenticate the whole 
tree. Its strength relies on the strength of the hash function, i.e. 
the incapability to invert a hash with realistic resources and the 
strength of the signature.  

Building a binary Merkle tree for a file that contains 𝑁 ൌ 2 
blocks requires 2𝑁 –  1  hashes and one digital signature. In 
comparison, identifying a single non-conforming block is a 
relatively inexpensive operation as it only require 2logଶ 𝑁 ൌ 2𝑛 
comparisons. 

When we want to verify the contents of a local copy of a file, 
we construct the Merkle tree of that copy and compare its root 
with the root of the Merkle tree of the remote replica. If they are 
identical, we know (with overwhelming probability) that the two 

copies are identical. If they are not, identifying each non-
conforming block requires a traversal of the tree.  

II. MERKLE GRIDS  

We introduce Merkle grids, a two-dimensional organization 
that has a smaller construction cost than the corresponding 
Merkle tree and only requires 2√𝑁  1 comparisons to identify 
all blocks that are likely to be non-conforming. As we will see 
later, we can even reduce the number of comparisons needed to 
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Fig. 1. A Merkle tree. 𝑁 ൌ 2  blocks are arranged in a line. They are
represented by the gray, rounded rectangles. We adorn each block with its hash
(the light gray square). The arrows indicate taking the hash after concatenation.
The root (dark blue) is a signed hash.  

 
Fig. 2. The base version of our scheme. 𝑁 ൌ 𝑛ଶ  objects are arranged in a 
square (represented by the gray, rounded rectangles). Light gray squares 
represent hashes. For each row and each column of hashes, we calculate the
hash of the concatenation of the hashes in the line (the lighter gray squares on
top and on the right). Finally, we calculate the hashes of each row and each 
column and sign it (the dark blue square in the upper right corner). 



locate individual non-conforming blocks to 2logଶ √𝑁  1  by 
adding two auxiliary Merkle trees to our grid.  

As Fig. 2 shows, Merkle grids organize the blocks of the file 
we want to verify in a square 𝑛-by-𝑛 array where 𝑛 ൌ √𝑁 is the 
square root of the total number of blocks in the file. Rectangular 
arrays and arrays with incomplete rows or columns are possible 
but are somewhat less efficient. Each row of the array has a row 
hash containing a hash of the concatenated hashes of all blocks 
in that row. In the same way, each array column has a column 
hash containing a hash of the concatenated hashes of all blocks 
in that column. More formally, if 𝑏 denotes the block at the 
intersection of the 𝑖-th row and the 𝑗-th column of the matrix, 
row hash 𝑟 and column hash 𝑐 are defined as 

 𝑟 ൌ ℎሺℎሺ𝑏ଵሻ.ℎሺ𝑏ଶሻ. … .ℎሺ𝑏ሻሻ 

 𝑐 ൌ ℎ ቀℎ൫𝑏ଵ൯.ℎ൫𝑏ଶ൯. … .ℎ൫𝑏൯ቁ, 

where the dot . denotes concatenation. In addition, a master hash 
𝑀  contains a hash of the concatenated values of all row and 
column hashes. In other words. 

𝑀 ൌ ℎ൫ℎሺ𝑟ଵሻ. … .ℎሺ𝑟ሻ.ℎሺ𝑐ଵሻ. … .ℎሺ𝑐ሻ൯. 

Unlike the row and column hashes, this master hash is 
signed. We can thus see that building a Merkle grid requires 𝑁 
2 √𝑁  1 hashes and one digital signature verification. This is 
significantly less than the number of hashes of a comparable 
Merkle tree and the space savings gets closer to 50 percent as 
the file size increases as 

lim
ே→ஶ

𝑁   2√𝑁  1
2𝑁 െ 1

ൌ 0.5. 

To verify the contents of a file, we first construct the Merkle 
grid of the local copy of the file and compare its master hash 
with the master hash of the remote copy. If they match, we know 

that the two copies are identical. Otherwise, we compare the row 
and column hashes of the local copy with the Merkel grid of the 
remote copy. The operation will require 2 √𝑁  additional 
comparisons and will detect all blocks that are likely to be non-
conforming. The main advantage of our approach is that it 
detects all suspect blocks in a single sweep. Its main 
disadvantage lies in the additional diagnostic work it requires in 
the presence of several non-conforming blocks. If there are two 
non-conforming blocks, they are likely to be located in two 
different rows and columns. Since there are four potential non-
conforming blocks in the intersections of the two rows and the 
two columns, we need to check these four blocks for non-
conformity. 

A. Extended Merkle grids 

While basic Merkle grids require up to 50 percent fewer 
hashes and occupy up to 50 percent less space than Merkle grids, 
their search performance is much less impressive as they require 
2√𝑁 hash comparisons to locate a non-conforming block while 
Merkle trees only require 2logଶ 𝑁 comparisons.  

A simple but effective way to reduce this number of hash 
comparisons is to add two auxiliary Merkle tree to the grid. As 
Fig. 3 shows, the first of the two trees is built upon the √𝑁 row 
hashes while the second is built upon the √𝑁 column hashes. As 
a result, both trees counts 2√𝑁 െ 1 nodes and the Merkle grid 
now counts a total of 𝑁  4√𝑁 െ 1  hashes, that is 𝑁  block 
hashes, 2√𝑁 െ 1 hashes in each auxiliary Merkle tree, and a 
single signed hash of the concatenated roots of these two trees. 
Even so, the completed Merkle grid occupies up to 50 percent 
less space than a comparable Merkle tree as  

lim
ே→ஶ

𝑁   4√𝑁 െ 1
2𝑁 െ 1

ൌ 0.5. 

The main advantage is that the number of comparisons 
required to identify a non-conforming block becomes 
4 logଶ √𝑁  1, which simplifies into 2 logଶ 𝑁  1 , that is, one 
more comparison than with a Merkle tree.  

III. MERKLE TREES REVISITED 

A Merkle tree is a binary tree whose interior nodes are 
hashes and whose leaves are the blocks to be authenticated. The 
security of the Merkle tree depends directly on the security of 
the hashes, and in particular their collision resistance. The 
blocks could be messages, sensor data, blocks or objects in a file 
system, or any other type of large binary object. We give an 
example of a Merkle tree in Fig. 1. That Merkle tree has 16 
objects (some of which could be null objects) represented by the 
rounded rectangles. The lighter gray squares represent hashes. 
The first level hashes are just the hashes of the objects. All other 
hashes are calculated recursively from the hashes of the two 
children of each node, namely the hash of the parent is the hash 
of the concatenation of the children. Formally, if 𝑝 is the content 
of the parent and 𝑙 and 𝑟 are the contents of the children, the dot 
. denotes concatenation and ℎሺሻ is our hash function, then  

𝑝 ൌ ℎሺ𝑙. 𝑟ሻ. 

The root of the tree is signed using a public signature. If a 
sender sends all objects, then the receiver would build the 

 

Fig. 3. The extended Merkle grid with the two auxiliary Merkle trees.  



Merkle tree from the received objects and then verify the 
authenticity of the root node contents using the signature. Of the 
operations involved, the creation and then the verification of a 
signature would be the most time-consuming steps.  

In many circumstances such as in the sending of sensor data, 
all blocks are generated, sent, and authenticated. On some occa-
sions though, only a single object needs to be verified. In this 
case, a Merkle tree can be authenticated by giving sibling 
hashes. Fig. 4 shows the case where a single block (marked in 
red) needs to be authenticated.  For this to happen, we follow the 
path from the object to the root. We start by verifying the 
signature of the root hash. Then we verify the calculation of the 
root hash from its two constituents, namely the roots of the left 
and right subtree. Note that only one of these hashes lies on the 
path from the block to the root, the other one is its sibling. The 
hash of the root on the path (marked in light red in Fig. 4) is then 
verified recursively. At each level, we verify the hash on the path 
(red in Fig. 4) and its sibling (violet). With the exception of the 
root, we therefore access two hashes for each level in the Merkel 
tree. Constructing a Merkle tree for 2  objects creates 
2+2ିଵ ⋯ 2  1 ൌ 2ାଵ െ 1 hashes which is very close 
to double.  

A ternary Merkle tree, such as the one shown in Fig. 5, would 
be equally secure. Indeed, the number of hashes to be 
constructed for a tree with 3 blocks is  

3  3ିଵ ⋯ 3ଶ  3  1 ൌ
ሺଷశభିଵሻ

ଶ
. 

Compared to the binary version, the number of hashes per 
block has shrunk to approximately 3/2. In general, the number 

of hashes in a Merkle tree with fan-out 𝑘 and height 𝑛, hence for 
𝑘  blocks, is ሺ𝑘ାଵ െ 1ሻ/ሺ𝑘 െ 1ሻ. The number of hashes per 
block is this value divided by 𝑘 , which has limit 1. The 
authentication of a single block uses now 𝑘𝑛  1 hashes as at 
each level with the exception of the top level, we access k 
hashes. 

Until now, we implicitly assumed that Merkle trees are just 
used for authenticating a file. In other words, the generic case to 
be optimized is that all blocks are true and have not been 
changed, be it by an attacker or by accident. We contend that for 
a large set of applications that use Merkle tree this is not the case. 
There are transmission errors and there are errors in storage 
devices that result in a device returning a different block than the 
one that was stored, for example, because of a write misdirect. 
These errors might be more frequent than attacks and failure of 
authentication because corruption then becomes the normal 
case. We do not deny that a malicious attack once detected has 
to be taken much more seriously. We deal with this scenario by 
talking about a sender, the entity that signed the hash, and the 
receiver, the entity that verifies the hash of the root node.  

Assume that a single block out of the 𝑘 blocks protected by 
a Merkle tree of height 𝑛 and degree 𝑘 is corrupted. Sender and 
receiver will then build different Merkle trees and the signed 
master hash sent by the sender does not agree with the locally 
constructed master hash of the receiver. Once the discrepancy 
between the sender’s and the receiver’s root hashes has been 
detected, the receiver asks for the k hashes at the level below the 
root. Since only a single block does not conform, only one of 
these k hashes differs between sender and receiver. The receiver 
now recursively proceeds by asking for the k child hashes of the 
non-conforming hash, and so on. The verification takes the same 
path as the authentication of a single block. 

If two of the objects are corrupted, then we do not usually 
need to access twice the number of hashes. We first treat the case 
of a classic Merkle tree with fan-out 2 and height 𝑛. The exact 
number of accesses to hashes depends on luck, for example, if 
the first and the second block are corrupted, then we only need 
to access 2𝑛 hashes. We argue inductively. Let 𝑎 denote the 
expected number of hashes and assume we have a Merkle tree 
of height 𝑛 and that we know that the root hash does not match. 
In this case, we access the two child hashes. We know that at 
least one of the two child hashes is off, but we also need to 
consider the case where both are off. In the case illustrated at the 
left of Fig. 6, the two corrupted objects are the leaves of the left 
subtree rooted in the hash with the non-conforming hash. The 
probability of the two peccant block being located in two 
different halves is  

𝑝ଵ,ଵ ൌ  
ሺ2ିଵሻଶ

ቀ2

2
ቁ 

ൌ
2ିଵ

2 െ 1
, 

which is of course almost 1 2 ൗ . In this case, we have read two 
hashes (the children of the root) and also need to find the two 
corrupted objects in a tree of height  𝑛 െ 1. Thus, in total, we 
need 2  𝑎ିଵ  accesses. Conversely, if we are in the case 
illustrated at the right of the figure,we need to find one non-
conforming object in each of the two sub-trees of height 𝑛 െ 1, 
so that together with the two child hashes, a total of 2  2 ∙

 
Fig. 4. Authentication of a single block in a Merkle tree. 

Fig. 5. A ternary Merkle tree showing the authentication of a single object. 

 
Fig. 6. The two cases for identifying two non-conforming blocks in a binary
Merkle tree. 



2ሺ𝑛 െ 1ሻ ൌ 4𝑛 െ 2 hashes need to be accessed. If the height is 
one, then there are just two objects and we access two hashes.  
This gives us the recursion 

𝑎 ൌ 2 
2ିଵ

2 െ 1
4ሺ𝑛 െ 1ሻ  ቆ1 െ

2ିଵ

2 െ 1
ቇ𝑎ିଵ. 

This recurrence is solved by  

𝑎 ൌ 2 ൬
1

2 െ 1
 2൰ 𝑛 െ 4, 

which can be approximated for large n by 4ሺ𝑛 െ 1ሻ. In the case 
of k-ary Merkle trees, the probability that the two non-
conforming blocks are located in the same of the k sub-trees of 
the root is  

ሺ𝑘ିଵ െ 1ሻ
ሺ𝑘 െ 1ሻ൘ . 

If the non-conforming blocks are located in two different 
subtrees, then we need to access 2𝑘ሺ𝑛 െ 1ሻ hashes. If they are 
located in the same subtree, then we u recursion. This gives a 
recurrence 𝑏ଵ ൌ 𝑘 and  

𝑏 ൌ 𝑘   
𝑘ିଵ െ 1
𝑘 െ 1

𝑏ିଵ  ቆ1 െ
𝑘ିଵ െ 1
𝑘 െ 1

ቇ𝑘ሺ𝑛 െ 1ሻ. 

Its solution is  

𝑏 ൌ
𝑘ሺെ𝑘  𝑛  4ሻ െ 3

𝑘 െ 1
 𝑘 ൬2𝑛 െ

𝑘
𝑘 െ 1

൰, 

which is approximately 2𝑘ሺ𝑛 െ 1ሻ for large n. Fig. 7 shows the 
similarity to a linear function very well.  

We can extend this procedure to the case of three non-
conforming objects, at least for binary Merkle trees. Thus, we 
assume the existence of 2 objects but require 𝑛  2 in order to 
have at least three objects. Again, we assume that we know that 
the root hash does not match. The probability that the three 
corrupt objects are in the same subtree with 2ିଵ leaves is  

𝑝ଷ, ൌ 2
൬ଶ

షభ

ଷ
൰

ቀଶ


ଷ
ቁ
ൌ

ଵ

ସ
െ

ଷ

ସሺଶିଵሻ
, 

which is of course zero for 𝑛 ൌ 2 , but then very quickly 
converges to ¼. The only other case is that of the three objects, 
two are in one sub-tree and the remaining one in the other, which 
happens with probability 

𝑝ଶ,ଵ ൌ 2 
2ିଵ  ቀ2ିଵ

2
ቁ

ቀ2 െ 1
3

ቁ
ൌ

3 ⋅ 2ିଶ

2 െ 1
 

which starts out at 1 for n=2 and then quickly sinks to ¾. 

If we denote by 𝜏 the number of hashes accessed in the case 
of three corrupt objects in a Merkle tree of 2 objects, we can 
now first develop a recurrence equation and then obtain its 
solution. Again, we assume that 𝜏  does not include the root 
hash, which is known to be non-conformant. We then access the 
roots of the two subtrees. According to the probabilities just 
calculated, either three of the non-conforming objects are in the 
same subtree or they are divided 2+1 among the sub-trees. In the 
latter case, we have already determined the expected number of 
the hashes, in the former case, we proceed by recursion. This 
gives us  

𝜏 ൌ 2  𝑝ଷ,𝜏ିଵ  𝑝ଶ,ଵ൫𝑎ିଵ  2ሺ𝑛 െ 2ሻ൯. 

This complicated recurrence relation has a surprisingly 
simple solution, namely, 𝜏 equals 

2ሺ9 ⋅ 2ଶ𝑛 െ 9 ⋅ 2ାଵ𝑛  6𝑛  9 ⋅ 2ାଶ െ 7 ⋅ 2ଶାଵ െ 22ሻ
3ሺ2 െ 2ሻሺ2 െ 1ሻ

. 

In an overabundance of caution, we used simulation to verify 
the result.  

Finally, we treat the behavior of binary Merkle trees with 2 
leaves in case of a burst error of size 𝑙. While it is possible to 
give a recurrence relation for the number of hashes, this 
approach does not provide additional insight over a reasonable 
set of examples. We wrote a Python script that counts exactly 
the number of hashes accessed for various values of n and l and 
their position and then calculates the exact expectation under the 
assumption that all 2 െ 𝑙  possible positions of the burst are 
equally likely. While this is true only in certain scenarios, the 
results remain typical. The results are given in Fig. 8, which 
shows that the behavior is essentially linear. For small values of 
n and large values of l, the number of hashes approaches the total 
number of hashes. This explains why the curves overlap at their 
onset.  

IV.  PERFORMANCE EVALUATION 

In this section, we evaluate the number of hashes required to 
identify non-conforming blocks in both basic and extended 

Fig.7 The expected number of hash accesses in a Merkle tree with N blocks 
if two blocks are non-conforming. 

 
Fig. 8.  Number of hashes accessed for a burst error of length l and a total of 
2 blocks in a binary Merkle tree. The x-axis has n and the y-axis the number 
of hashes. 



Merkle grids and compare these values with those obtained in 
the previous section for Merkle trees. Strictly speaking, we 
should make a distinction between taking the hash of objects and 
the hash of hashes as the latter are considerably smaller. 

A. Basic Merkle Grids 

Let us consider first the case when we have a single non-
conforming block to locate. In that case, the faulty block can be 
uniquely identified by its row and its column indices and the 
total number of hashes we need to compute is the total number 
of row and column hashes, that is, 2√𝑁  or 2𝑛. 

If the file contains two non-conforming blocks, we still need 
to compute the hashes of the 2𝑛 line hashes but they are not 
necessarily enough to identify the two faulty blocks. We have 
two subcases to consider: 

Case 1: The two non-conforming blocks share either a 
common row or a common column. In that case, we can 
uniquely identify the two blocks by their row and column 
indices. 

Case 2: The two non-conforming blocks do not share a 
common row nor a common column. In that case, the row and 
column indices identify four potential non-conforming blocks 
without telling us how many of these blocks are faulty. 
Identifying the two non-conforming blocks will thus require 

computing four extra hashes. There are ቀ𝑛
ଶ

2
ቁ distinct ways the 

two non-conforming blocks can be located on the grid and 

2 ቀ
𝑛
2ቁ

ଶ
distinct ways these blocks would not share a common 

row nor a common column. 

Assuming that the two non-conforming blocks are uniformly 
distributed over the square array, the probability of having to 
compute four additional hashes is  

2 ቀ
𝑛
2ቁ

ଶ

ቀ𝑛
ଶ

2
ቁ
ൌ
𝑛ଶሺ𝑛 െ 1ሻଶ

𝑛ଶሺ𝑛ଶ െ 1ሻ
ൌ
𝑛 െ 1
𝑛  1

ൌ 1 െ
2

𝑛  1
 

and the average number of hashes required to identify two non-
conforming blocks is 

2𝑛  4 ൬1 െ
2

𝑛  1
൰ ൎ 2𝑛  4 ൌ  2√𝑁  4  

If there are three non-conforming blocks, we have to take 
into consideration the four distinct failure patterns displayed in 
Fig. 9. We can distinguish them by noting how many rows and 
columns contain non-conforming blocks. The possibilities are 
Case 1: 1 ൈ 3 and 3 ൈ 1, Case 2: 2 ൈ 2, Case 3: 2 ൈ 3 and 3 ൈ
2, and Case 4: 3 ൈ 3. 

Case 1: There are twice 𝑛 ቀ
𝑛
3ቁ possibilities to select a single 

row and three different columns or a single column and three 
different rows. This selection not only determines the non-
conforming blocks, but also their number. No additional hash 
computations are required as we can infer the identities of the 
three non-conforming blocks from their row and column indices.  

Case 2: There are ቀ
𝑛
2ቁ

ଶ
 possibilities to select two rows and 

two columns in the grid. There are then four possibilities to 
select the three non-conforming blocks at the four intersection 

points of these rows and columns for a total of 4 ቀ
𝑛
2ቁ

ଶ
 

possibilities.  We also need to ascertain the four object hashes to 
diagnose as we do not know a priori that we only have three 
non-conforming blocks.  

Case 3: There are ቀ
𝑛
2ቁ ቀ

𝑛
3ቁ ways to select two rows and three 

columns for the non-conforming blocks and the same number to 
select three rows and two columns. In both cases, there are then 
six possibilities to select three non-conforming blocks such that 
each row / column selected has at least one non-conforming 

block. The total number of patterns is therefore 2 ⋅ 6 ⋅ ቀ
𝑛
2ቁ ቀ

𝑛
3ቁ. 

All object hashes at the six intersection points need to be 
compared.  

Case 4: There are ቀ
𝑛
3ቁ ቀ

𝑛
3ቁways to select three rows and 

three columns for the non-conforming blocks. There are 6 
possibilities to place the three non-conforming blocks in the nine 
intersections such that all non-conforming blocks are in three 
different rows and three different columns. In this case, we need 
nine additional hashes in order to ascertain number and locations 
of non-conforming objects as the algorithm has no a priori 
knowledge of the number of non-conforming objects. 

Taking everything together, the expected number of 
additional hashes is 

8   9 ሺ𝑛 െ 2ሻ𝑛
 𝑛ଶ െ 2

 , 

which converges slowly to 9. The number of total hashes is  

2𝑛 
8   9 ሺ𝑛 െ 2ሻ𝑛

 𝑛ଶ െ 2
. 

As Fig. 10 shows, the number of expected hashes for a 
Merkle Grid is better than that of an equivalent Merkle tree for 
small sizes, but since the former grow linearly with the number 
of objects, the logarithmic growth for Merkle trees soon wins 
out.  

We also investigated the behavior of basic Merkle grids with 
2  leaves in case of a burst error of size 𝑙  using the same 
technique as we did for Merkle trees. As Fig. 11 shows, the 

 

Fig. 9. Case Distinctions for three non-compliant objects in a Merkle Grid. 



number of hashes to be accessed for simple Merkle grids in the 
presence of burst errors is again dominated by the need to access 
all row and column hashes. This eliminates the potential of 
having to access more than the needed block hashes if the burst 
stretches over two rows. As can be seen from the Figure, the 
curves lie virtually on top of each other for all bursts regardless 
of their length. This is shown more clearly in Fig. 12, which 
focuses on small grids. 

B. Extended Merkle grids 

As we have seen, Merkle trees can authenticate a single 
block among 𝑁  blocks by providing logଶሺ𝑁ሻ  hashes and 

potentially verifying one signature. Merkle grids need the sender 
to send the √𝑁 hashes of all column hashes and the √𝑁 hashes 
of the blocks in the same column as the one to be authenticated,  

We depict the situation for an extended Merkle grid in Fig. 
13.  We want to verify the block in red. Both sides calculate its 
hash. We then send the hashes of the blocks in the same column 
to the receiver. Alternatively, we could have chosen the row 
instead of the column. The receiver then calculates the column 
hash (indicated by the red-white double striping of the square 
representing the hash) from the hash of the block at its side and 
the witness hashes just sent. The sender sends a companion hash, 
i.e. the column hash of the column next to the column with the 
block to be authenticated, of the lowest leaf layer of the column 
Merkle tree (indicated in violet) as a witness. The receiver now 
calculates the hash of the concatenation of both and starts this 
way working up the tree. At each step, there is a just calculated 
hash and a companion hash sent by the sender. When the top of 
the Merkel tree is reached, the hash is compared to the 
corresponding part of the signed concatenation of two root 
hashes. This finishes authentication. We have 𝑛 object hashes 
and logଶሺ𝑛ሻ  hashes of hashes to calculate. We also need 
logଶሺ𝑛ሻ witness hashes to be sent possibly in a single message 
from sender to receiver.  

We now calculate the cost of an Extended Merkle Grid with 
2 ൈ 2 ൌ 2ଶ  objects. If only a single block is non-
conforming, then the row and column Merkle trees will need 
twice 2𝑚 additional hashes to isolate the non-conforming row 
and column hashes, which suffice to uniquely identify the non-
conforming block uniquely. This gives a total of 4𝑚 additional 
hashes. Recall that we always assume that the root hash is shown 
to be not compliant.  

 

Fig. 13.   Authenticating a single block in the extended Merkle grid 

 
Fig. 10. Expected number of hash accesses needed to identify one, 
two or three non-conforming objects in a Merkle Tree or a Basic 
Merkle Grid with 2ଶ objects. 

Fig. 11. Number of hashes to be accessed for simple Merkle grids in 
the presence of burst errors of length l. 

 

Fig. 12. Number of hashes to be accessed for simple Merkle grids 
counting 64, 256 or 1,024 objects in the presence of burst errors of 
length l. 



For two non-compliant blocks, we use the same four case 
distinctions as before. In Case 1, the two non-conforming 
objects share a row or a column, and no additional hashes from 
the grid are required. The non-conformance requires accessing 
4𝑚 hashes in one Merkle tree and  

𝑎 ൌ 2 ൬
1

2 െ 1
 2൰𝑚 െ 4 

hashes in the other. In Case 2, four hashes in the grid are needed 
as well as 2𝑎 in the two trees. In total, we have  

െ4   4 ൬2 
1

െ1   4
൰𝑚 

accesses by taking the expected number.  

For three non-compliant blocks, we again use the same case 
distinctions as before, see Fig. 9. In Case 1 (3 ൈ 1 or1 ൈ 3), no 
additional hashes in the grid itself are needed, and 2𝑚 hashes in 
one tree and 𝜏 in the other tree. In Case 2 (2 ൈ 2), four hashes 
from the grid itself and 2𝑎 in the trees are needed. In Case 3 
(2 ൈ 3 or3 ൈ 2), 6 additional hashes in the grid itself and 𝑎 
𝜏 in the trees are required. Finally, in Case 4 (3 ൈ 3ሻ, we need 
2𝜏 accesses in the trees and nine in the grid itself. We already 
calculated the probabilities for these cases before assuming that 
non-conformity is equally likely for all objects. The resulting 
expectation simplifies into 

െ36   9 ⋅ 2ଵ ା ଷ     4ሺ47 െ  72 𝑚ሻ    24 𝑚  16 ሺെ29   36 𝑚ሻ
3 ሺ2 െ  3 ⋅ 4    16ሻ

. 

This value is virtually indistinguishable from that for the 
binary Merkle tree.  

Finally, we consider the effects of a burst error affecting 𝑙 
consecutive objects. In the basic Merkle grid, this cost is 
dominated by accessing all line hashes, whereas in the Merkle 
tree, it is almost as efficient as finding a single non-conforming 
object, see Fig. 9. An extended Merkle grid has almost the same 
performance as a Merkle tree. We obtained our results, given in 
Fig.14, through a program that enumerated all possible locations 
of 𝑙 bursts and collected the mean number of hashes accessed. 
The numbers are slightly worse than for the Merkle tree.  

C. Our findings 

Looking at Fig. 14, we can see that the performance of the 
Merkle tree and the extended Merkle scheme are almost 
identical. For the basic scheme, we have better or almost 
identical performance for small sizes.  Since we can assume that 
the probability of encountering non-conforming blocks is very 
low, that fact is of little practical interest. 

An important consideration is the cost of authenticating all 
blocks. To perform this task, a Merkle tree must verify all its 
elements, which requires 2ேାଵ െ 1 steps. A basic Merkle grid 
would just have to authenticate its master hash and compute 
2√𝑁 hashes. An extended Merkle grid would just have to verify 
its master hash and its two auxiliary trees, which would require 
4√𝑁 െ 1  hashes. The savings can be quite considerable for 
large files or large collections of messages. Consider for instance 
a file consisting of 1,024 blocks. A Merkle tree authentication 
would require 2,047 hashes while a basic Merkle grid and an 
extended Merkle grid would respectively require 65 and 128 
hashes. 

Our findings are summarized in Table I.They highlight the 
excellent performance of extended Merkle grids that take 
slightly more space than basic Merkle grids—and much less 
space than Merkle trees, but still perform as well or better than 
Merkle trees in all the cases we investigated. 

V. RELATED WORK 

Originally used for a public key signature scheme [2] [ 10–
13], Merkle trees have been used in a wide array of settings.  We 
only present here some of them.  He, Xu, Fu, and Zhou [4] as 
well as Lin and Sung [8] use Merkle trees for authenticating the 
sender of multicast messages. In multicasting, the sender will 
not automatically retransmit lost packets and the communication 
between receiver and sender must be minimized. At the same 
time, the cost of authenticating messages should be amortized 
over a large number of messages. Both sets of authors propose 
to group the messages into the leaves of a Merkle tree and 
judiciously append partial matches to spread calculations over 
the processing of each message. As is usual, only the root hash 
is signed by the sender and authenticated by receivers. Ferrag 
and his colleagues [7] mention various applications of Merkle 
trees for authentication protocols for the Internet of Things.  

File systems use checkpointing extensively [15] and often 
use checksums [5] to implement them. For instance, Open 
Solaris’s ZFS file system uses checksums for detecting data 
corruption. ZFS organizes all on-disk data and metadata into 
objects that are further grouped into object sets.  Checksums for 
on-disk blocks are kept separate by storing them into a parent 
block. They form part of a Merkle tree. In this manner, ZFS can 
detect all types of silent data corruption [16].  

 
Fig. 14. Number of hashes accessed for a burst error of length 𝑙 and a total of 
2 ൈ 2 objects in an Extended Merkle Grid. The x-axis has 2𝑛, that is the 
logarithm of the number of objects, and the y-axis the number of hashes. 

TABLE I.  COMPARISON OF SCHEMES FOR 2ଶ OBJECTS 

Costs 
Binary 
Tree 

Basic  
Grid 

Extended 
Grid 

No. of hashes 2ଶାଵ െ 1 𝟐𝟐𝒎  𝟐𝒎ା𝟏  𝟏 2ଶ  2ାଶ െ 1 

Authenticating all 
objects 

2ଶାଵ െ 1 𝟐𝒎ା𝟏  𝟏 2ାଶ െ 1 

Locating one non-
conforming object 𝟒𝒎 2ାଵ 𝟒𝒎 

Locating two non-
conforming objects ൎ 𝟖𝒎 2ାଵ  4 ൎ 𝟖𝒎 



Another problem area where Merkle hash trees are used is 
the authentication of outsourced data, especially that of a data-
base. Li and colleagues propose to embed Merkle trees in the 
nodes of a B+ tree [6] Niaz and Saake [14] propose to replace 
the binary structure of Merkle trees with a B+ tree. In this 
context, Martel and colleagues [9] propose to replace binary 
Merkle trees with generalized directed acyclic graphs (DAGs) 
in the context of authenticating general data structures. The 
owner of a data structure provides first a deterministic search 
procedure that takes a query, searches the data structure, and 
returns the correct answer. The procedure is modeled as 
accessing nodes in a DAG. Each leaf node contains the hash of 
the data found there, and all interior nodes contain a hash of a 
concatenation of the hashes of their child nodes.  

Auvolat and Traïani [1] have introduced Merkle Search 
Trees and proposed to use them to build causally consistent 
event stores that can provide causally consistent eventual 
delivery of updates to all connected nodes of a distributed 
system. Dahlberg, Pulls, and Peeters [3] investigated sparse 
Merkle trees and presented the first complete, succinct, and 
recursive definitions of sparse Merkle trees and related 
operations. 

VI. CONCLUSION 

We have presented a new data organization that replicates 
the functionality of Merkle trees while reducing their transmis-
sion and storage costs by up to 50 percent. All Merkle grids 
organize the objects whose conformity they monitor in a square 
array. They supplement this array with: 

1. Row hashes that contain the hash of the concatenation 
of the hashes of all the objects in their respective row 

2. Column hashes that contain the hash of the 
concatenation of the hashes of all the objects in their 
respective column. 

3. A single signed master block that contains the hash of 
the concatenation of all row and column hashes. 

Extended Merkle grids add to this basic scheme two auxil-
iary Merkle trees to speed up searches among both row hashes 
and column hashes. 

While both basic and extended Merkle grids perform 
authentication of all blocks better than Merkle trees, only 
extended Merkle grids can locate individual non-conforming 
objects or authenticate a single non-conforming object as fast as 
Merkle trees. In addition, both basic and extended Merkle grid 
can authenticate 𝑁 objects much faster than Merkle trees, as the 
number of steps they take is proportional to √𝑁 instead of being 
proportional to 𝑁. 
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