Fysisk pendul
Det fysiske pendul er en fysisk beregningsmodel, som i modsætning til det matematiske pendul kan bruges på alle penduler, der foretager små udsving. Et fysisk pendul er et legeme med massen , og med inertimomentet omkring den akse, pendulet kan dreje omkring. Hvis afstanden mellem omdrejningsaksen og legemets massemidtpunkt er , kan svingningstiden beregnes approksimativt som:
hvor er den lokale tyngdeacceleration, som er ca. 9,8 m/s² de fleste steder på Jordens overflade.
Resultatet er en tilnærmelse, fordi formlen bygger på, at vinklen er lille:[1]
Til visse penduler kan man bruge en simplere beregningsmodel, det såkaldte matematiske pendul, som involverer hverken massen eller inertimomentet.
Udledning
[redigér | rediger kildetekst]Hvert infinitesimale punkt på pendulet bliver påvirket af samme tyngdekraft givet ved:
hvor er den infinitesimale masse, mens angiver, at tyngekraften peger nedad. Kraftmomentet er da
hvor er afstandsvektoren til origo. Ved integration findes det samlede kraftmoment på hele legemet:
Massemidtpunktet er givet ved:
Dette indsættes i stedet for integralet:
Krydsproduktets størrelse er blot størrelsen på - dvs. massemidtpunktets afstand til origo - gange sinus til vinklen i forhold til lodret. Størrelsen på kraftmomentet er derfor:
Kraftmomentet er relateret til vinkelaccelerationen ved
hvor er inertimomentet, der afhænger af legemets præcise form. Vinkelaccelerationen er altså:
For den lille vinkel reducer sinusfunktionen til bare at være vinklen:
Løsningen til denne differentialligning kan udover en evt. fase generelt skrives som:
hvor er tiden, og er konstanter, og er vinkelfrekvensen givet ved:
Dermed opnås en periode på:[1]
Hvis al masse er i massemidtpunktet, forsimples dette udtryk og bliver identisk med det matematiske pendul.
Eksempler
[redigér | rediger kildetekst]Det følgende er eksempler med forskellige inertimomenter.
Matematisk pendul
[redigér | rediger kildetekst]Hvis loddet er en punktmasse, der hænger i en masseløs snor, er blot snorens længde, mens intertimomentet er givet ved:
Differentialligningen bliver derfor med den approksimative periode
Som forventet er det matematiske pendul altså et specialetilfælde af det fysiske pendul.
Tynd stang
[redigér | rediger kildetekst]Det svingende legeme er nu én lang stang, der er så tynd, at dens diameter kan ignoreres. Hvis massen er fordelt ligeligt med konstant massedensitet - masse pr. længde - og stangens længde er , bliver afstanden til massemidtpunktet:
Her er det brugt, at:
Siden
kan afstanden til massemidtpunktet skrives som:
Dvs. at massemidtpunktet er midt på stangen, hvilket er forventeligt. Inertimomentet er tilsvarende:
Dermed bliver perioden:
I forhold til det matematiske pendul er perioden for et stangpendul altså en smule kortere med en faktor .
Kildehenvisninger
[redigér | rediger kildetekst]- ^ a b Nave, Carl Rod. "Physical Pendulum" (engelsk). Georgia State University. Arkiveret fra originalen 28. april 2020. Hentet 31. marts 2020.