Wahrscheinlichkeitsdichtefunktion
Eine Wahrscheinlichkeitsdichtefunktion, oft kurz Dichtefunktion, Wahrscheinlichkeitsdichte, Verteilungsdichte oder nur Dichte genannt und mit WDF oder englisch PDF (probability density function) abgekürzt, ist eine spezielle reellwertige Funktion in der Stochastik. Dort dienen die Wahrscheinlichkeitsdichtefunktionen zur Konstruktion von Wahrscheinlichkeitsverteilungen mithilfe von Integralen sowie zur Untersuchung und Klassifikation von Wahrscheinlichkeitsverteilungen.
Im Gegensatz zu Wahrscheinlichkeiten können Wahrscheinlichkeitsdichtefunktionen auch Werte über eins annehmen. Die Konstruktion von Wahrscheinlichkeitsverteilungen über Wahrscheinlichkeitsdichtefunktionen beruht auf der Idee, dass die Fläche zwischen der Wahrscheinlichkeitsdichtefunktion und der x-Achse von einem Punkt bis zu einem Punkt der Wahrscheinlichkeit entspricht, einen Wert zwischen und zu erhalten. Nicht der Funktionswert der Wahrscheinlichkeitsdichtefunktion ist somit relevant, sondern die Fläche unter ihrem Funktionsgraphen, also das Integral.
In einem allgemeineren Kontext handelt es sich bei Wahrscheinlichkeitsdichtefunktionen um Dichtefunktionen (im Sinne der Maßtheorie) bezüglich des Lebesgue-Maßes.
Während im diskreten Fall Wahrscheinlichkeiten von Ereignissen durch Aufsummieren der Wahrscheinlichkeiten der einzelnen Elementarereignisse berechnet werden können (ein idealer Würfel zeigt beispielsweise jede Zahl mit einer Wahrscheinlichkeit von ), gilt dies nicht mehr für den stetigen Fall. Beispielsweise sind zwei Menschen kaum exakt gleich groß, sondern nur bis auf Haaresbreite oder weniger. In solchen Fällen sind Wahrscheinlichkeitsdichtefunktionen nützlich. Mit Hilfe dieser Funktionen lässt sich die Wahrscheinlichkeit für ein beliebiges Intervall – beispielsweise eine Körpergröße zwischen 1,80 m und 1,81 m – bestimmen, obwohl unendlich viele Werte in diesem Intervall liegen, von denen jeder einzelne die Wahrscheinlichkeit hat.
Definition
BearbeitenWahrscheinlichkeitsdichten können auf zwei Arten definiert werden: einmal als Funktion, aus der sich eine Wahrscheinlichkeitsverteilung konstruieren lässt, das andere Mal als Funktion, die aus einer Wahrscheinlichkeitsverteilung abgeleitet wird. Der Unterschied ist also die Richtung der Herangehensweise.
Zur Konstruktion von Wahrscheinlichkeitsmaßen
BearbeitenGegeben sei eine reelle Funktion
- , für die gilt:
- ist nichtnegativ, das heißt, für alle .
- ist integrierbar.
- ist normiert in dem Sinne, dass
- .
Dann heißt eine Wahrscheinlichkeitsdichtefunktion und definiert durch
eine Wahrscheinlichkeitsverteilung auf den reellen Zahlen.
Aus Wahrscheinlichkeitsmaßen abgeleitet
BearbeitenGegeben sei eine Wahrscheinlichkeitsverteilung oder eine reellwertige Zufallsvariable .
Existiert eine reelle Funktion , sodass für alle
bzw.
gilt, so heißt die Wahrscheinlichkeitsdichtefunktion von bzw. von .
Beispiele
BearbeitenEine Wahrscheinlichkeitsverteilung, die über eine Wahrscheinlichkeitsdichtefunktion definiert werden kann, ist die Exponentialverteilung. Sie besitzt die Wahrscheinlichkeitsdichtefunktion
Hierbei ist ein reeller Parameter. Insbesondere überschreitet die Wahrscheinlichkeitsdichtefunktion für Parameter an der Stelle den Funktionswert , wie in der Einleitung beschrieben. Dass es sich bei wirklich um eine Wahrscheinlichkeitsdichtefunktion handelt, folgt aus den elementaren Integrationsregeln für die Exponentialfunktion, Positivität und Integrierbarkeit der Exponentialfunktion sind klar.
Eine Wahrscheinlichkeitsverteilung, aus der eine Wahrscheinlichkeitsdichtefunktion abgeleitet werden kann, ist die stetige Gleichverteilung auf dem Intervall . Sie ist definiert durch
- für und
Außerhalb des Intervalls erhalten alle Ereignisse die Wahrscheinlichkeit null. Gesucht ist nun eine Funktion , für die
gilt, falls . Die Funktion
erfüllt dies. Sie wird dann außerhalb des Intervalles durch die Null fortgesetzt, um problemlos über beliebige Teilmengen der reellen Zahlen integrieren zu können. Eine Wahrscheinlichkeitsdichtefunktion der stetigen Gleichverteilung wäre somit
Ebenso wäre die Wahrscheinlichkeitsdichtefunktion
möglich, da sich beide nur auf einer Lebesgue-Nullmenge unterscheiden und beide den Anforderungen genügen. Man könnte beliebig viele Wahrscheinlichkeitsdichtefunktionen allein durch Abwandlung des Wertes an einem Punkt erzeugen. Faktisch ändert dies nichts an den Eigenschaft der Funktion, Wahrscheinlichkeitsdichtefunktion zu sein, da das Integral diese kleinen Modifikationen ignoriert.
Weitere Beispiele für Wahrscheinlichkeitsdichten sind in der Liste univariater Wahrscheinlichkeitsverteilungen zu finden.
Bemerkungen zur Definition
BearbeitenStreng genommen handelt es sich bei dem Integral in der Definition um ein Lebesgue-Integral bezüglich des Lebesgue-Maßes und es müsste dementsprechend als geschrieben werden. In den meisten Fällen ist das herkömmliche Riemann-Integral aber ausreichend, weshalb hier geschrieben wird. Nachteil des Riemann-Integrals auf struktureller Ebene ist, dass es sich nicht wie das Lebesgue-Integral in einen allgemeinen maßtheoretischen Rahmen einbetten lässt. Für Details zur Beziehung von Lebesgue- und Riemann-Integral siehe Riemann- und Lebesgue-Integral.
Manche Autoren unterscheiden die beiden obigen Herangehensweisen auch namentlich. So wird die Funktion, die zur Konstruktion von Wahrscheinlichkeitsverteilungen verwendet wird, dann Wahrscheinlichkeitsdichte genannt, die aus einer Wahrscheinlichkeitsverteilung abgeleitete Funktion hingegen Verteilungsdichte.[1]
Existenz und Eindeutigkeit
BearbeitenKonstruktion von Wahrscheinlichkeitsverteilungen
BearbeitenDas in der Definition beschriebene liefert wirklich eine Wahrscheinlichkeitsverteilung. Denn aus der Normiertheit folgt . Dass die Wahrscheinlichkeiten alle positiv sind, folgt aus der Positivität der Funktion. Die σ-Additivität folgt aus dem Satz von der majorisierten Konvergenz mit der Wahrscheinlichkeitsdichtefunktion als Majorante und der Funktionenfolge
- ,
mit paarweise disjunkten Mengen .
Hierbei bezeichnet die charakteristische Funktion auf der Menge .
Dass die Wahrscheinlichkeitsverteilung eindeutig ist, folgt aus dem Maßeindeutigkeitssatz und der Schnittstabilität des Erzeugers der Borelschen σ-Algebra, hier das Mengensystem der abgeschlossenen Intervalle.
Aus einer Wahrscheinlichkeitsdichtefunktion abgeleitet
BearbeitenDie zentrale Aussage über die Existenz einer Wahrscheinlichkeitsdichtefunktion zu einer vorgegebenen Wahrscheinlichkeitsverteilung ist der Satz von Radon-Nikodým:
- Die Wahrscheinlichkeitsverteilung besitzt genau dann eine Wahrscheinlichkeitsdichtefunktion, wenn sie absolut stetig bezüglich des Lebesgue-Maßes ist. Das bedeutet, dass aus immer folgen muss.
Es kann durchaus mehr als eine solche Wahrscheinlichkeitsdichtefunktion existieren, aber diese unterscheiden sich nur auf einer Menge vom Lebesgue-Maß 0 voneinander, sind also fast überall identisch.
Somit können diskrete Wahrscheinlichkeitsverteilungen keine Wahrscheinlichkeitsdichtefunktion besitzen, denn für sie gilt immer für ein passendes Element . Solche Punktmengen besitzen aber immer das Lebesgue-Maß 0, somit sind diskrete Wahrscheinlichkeitsverteilungen nicht absolut stetig bezüglich des Lebesgue-Maßes.
Berechnung von Wahrscheinlichkeiten
BearbeitenGrundlage
BearbeitenDie Wahrscheinlichkeit für ein Intervall lässt sich mit der Wahrscheinlichkeitsdichte berechnen als
- .
Diese Formel gilt ebenso für die Intervalle , und , denn es liegt in der Natur stetiger Zufallsvariablen, dass die Wahrscheinlichkeit für das Annehmen eines konkreten Wertes ist. Formal ausgedrückt gilt:
Für komplexere Mengen kann die Wahrscheinlichkeit analog durch Integrieren über Teilintervalle ermittelt werden. Allgemein erhält die Wahrscheinlichkeit die Form
- .
Hilfreich ist oft die σ-Additivität der Wahrscheinlichkeitsverteilung. Das bedeutet: Sind paarweise disjunkte Intervalle und ist
die Vereinigung all dieser Intervalle, so gilt
- .
Dabei sind die Intervalle von der Form . Dies gilt auch für endlich viele Intervalle. Ist somit die Wahrscheinlichkeit von disjunkten Intervallen zu berechnen, so kann man entsprechend zuerst die Wahrscheinlichkeit jedes einzelnen Intervalles berechnen und diese Wahrscheinlichkeiten dann aufsummieren.
Beispiel: Zeit zwischen Anrufen in einem Callcenter
BearbeitenDie Zeit zwischen zwei Anrufen in einem Callcenter ist erfahrungsgemäß ungefähr exponentialverteilt zu einem Parameter und besitzt demnach die Wahrscheinlichkeitsdichtefunktion
vergleiche auch den Abschnitt Beispiele und den Artikel Poisson-Prozess. Dabei ist die x-Achse mit einer beliebigen Zeiteinheit versehen (Stunden, Minuten, Sekunden). Der Parameter entspricht dann der mittleren Anzahl von Anrufen pro Zeiteinheit.
Die Wahrscheinlichkeit, dass der nächste Anruf ein bis zwei Zeiteinheiten nach dem vorangegangenen eintritt, ist dann
- .
Angenommen, eine Servicekraft im Callcenter benötigt fünf Zeiteinheiten für eine Pause. Die Wahrscheinlichkeit, dass sie keinen Anruf verpasst, ist gleich der Wahrscheinlichkeit, dass der nächste Anruf zum Zeitpunkt fünf oder später eingeht. Es ist damit
Eigenschaften
BearbeitenZusammenhang von Verteilungsfunktion und Dichtefunktion
BearbeitenDie Verteilungsfunktion einer Zufallsvariablen oder einer Wahrscheinlichkeitsverteilung mit Wahrscheinlichkeitsdichtefunktion beziehungsweise wird als Integral über die Dichtefunktion gebildet:
Dies folgt direkt aus der Definition der Verteilungsfunktion. Die Verteilungsfunktionen von Zufallsvariablen oder Wahrscheinlichkeitsverteilungen mit Wahrscheinlichkeitsdichtefunktion sind somit immer stetig.
Wenn die Verteilungsfunktion differenzierbar ist, ist ihre Ableitung eine Dichtefunktion der Verteilung:
Dieser Zusammenhang gilt auch dann noch, wenn stetig ist und es höchstens abzählbar viele Stellen gibt, an denen nicht differenzierbar ist; welche Werte man an diesen Stellen für verwendet, ist unerheblich.
Allgemein existiert eine Dichtefunktion genau dann, wenn die Verteilungsfunktion absolut stetig ist. Diese Bedingung impliziert unter anderem, dass stetig ist und fast überall eine Ableitung besitzt, die mit der Dichte übereinstimmt.
Es ist jedoch zu beachten, dass es Verteilungen wie die Cantor-Verteilung gibt, die eine stetige, fast überall differenzierbare Verteilungsfunktion besitzen, aber dennoch keine Wahrscheinlichkeitsdichte. Fast überall differenzierbar sind Verteilungsfunktionen immer, aber die entsprechende Ableitung erfasst generell nur den absolutstetigen Anteil der Verteilung.
Dichten auf Teilintervallen
BearbeitenDie Wahrscheinlichkeitsdichte einer Zufallsvariablen , die nur Werte in einem Teilintervall der reellen Zahlen annimmt, kann so gewählt werden, dass sie außerhalb des Intervalls den Wert hat. Ein Beispiel ist die Exponentialverteilung mit . Alternativ kann die Wahrscheinlichkeitsdichte als eine Funktion betrachtet werden, d. h. als eine Dichte der Verteilung auf bezüglich des Lebesgue-Maßes auf .
Nichtlineare Transformation
BearbeitenAuch im Falle einer nichtlinearen Transformation gilt für den Erwartungswert der Zufallsgröße
- .
Eine Berechnung der Wahrscheinlichkeitsdichtefunktion von selbst ist also gar nicht nötig.
Faltung und Summe von Zufallsvariablen
BearbeitenFür Wahrscheinlichkeitsverteilungen mit Wahrscheinlichkeitsdichtefunktionen kann die Faltung (von Wahrscheinlichkeitsverteilungen) auf die Faltung (von Funktionen) der entsprechenden Wahrscheinlichkeitsdichtefunktionen zurückgeführt werden. Sind Wahrscheinlichkeitsverteilungen mit Wahrscheinlichkeitsdichtefunktionen und , so ist
- .
Hierbei bezeichnet die Faltung von und und die Faltung der Funktionen und . Die Wahrscheinlichkeitsdichtefunktion der Faltung zweier Wahrscheinlichkeitsverteilungen ist somit genau die Faltung der Wahrscheinlichkeitsdichtefunktionen der Wahrscheinlichkeitsverteilungen.
Diese Eigenschaft überträgt sich direkt auf die Summe von stochastisch unabhängigen Zufallsvariablen. Sind zwei stochastisch unabhängige Zufallsvariablen mit Wahrscheinlichkeitsdichtefunktionen und gegeben, so ist
- .
Die Wahrscheinlichkeitsdichtefunktion der Summe ist somit die Faltung der Wahrscheinlichkeitsdichtefunktionen der einzelnen Zufallsvariablen.
Bestimmung von Kennzahlen durch Wahrscheinlichkeitsdichtefunktionen
BearbeitenViele der typischen Kennzahlen einer Zufallsvariablen beziehungsweise einer Wahrscheinlichkeitsverteilung lassen sich bei Existenz der Wahrscheinlichkeitsdichtefunktionen direkt aus dieser herleiten.
Modus
BearbeitenDer Modus einer Wahrscheinlichkeitsverteilung bzw. Zufallsvariablen wird direkt über die Wahrscheinlichkeitsdichtefunktion definiert. Ein heißt ein Modus, wenn die Wahrscheinlichkeitsdichtefunktion an der Stelle ein lokales Maximum besitzt.[2] Das bedeutet, es ist
- für alle
für ein .
Selbstverständlich kann eine Wahrscheinlichkeitsdichtefunktion auch zwei oder mehrere lokale Maxima besitzen (bimodale Verteilungen und multimodale Verteilungen). Im Falle der Gleichverteilung im obigen Beispielabschnitt besitzt die Wahrscheinlichkeitsdichtefunktion sogar unendlich viele lokale Maxima.
Median
BearbeitenDer Median wird gewöhnlicherweise über die Verteilungsfunktion oder spezieller über die Quantilfunktion definiert. Existiert eine Wahrscheinlichkeitsdichtefunktion, so ist ein Median gegeben durch dasjenige , für das
und
gilt. Aufgrund der Stetigkeit der zugehörigen Verteilungsfunktion existiert in diesem Fall immer, ist aber im Allgemeinen nicht eindeutig.
Erwartungswert
BearbeitenDer Erwartungswert einer Zufallsvariable mit Wahrscheinlichkeitsdichtefunktion ist gegeben durch
- ,
falls das Integral existiert.
Varianz und Standardabweichung
BearbeitenIst eine Zufallsvariable mit Wahrscheinlichkeitsdichtefunktion gegeben, und bezeichnet
den Erwartungswert der Zufallsvariablen, so ist die Varianz der Zufallsvariablen gegeben durch
- .
Alternativ gilt auch nach dem Verschiebungssatz
- .
Auch hier gelten die Aussagen wieder nur, wenn alle vorkommenden Integrale existieren. Die Standardabweichung lässt sich dann direkt als die Wurzel aus der Varianz berechnen.
Höhere Momente, Schiefe und Wölbung
BearbeitenMittels der oben angegebenen Vorschrift für nichtlineare Transformationen lassen sich auch höhere Momente direkt berechnen. So gilt für das k-te Moment einer Zufallsvariablen mit Wahrscheinlichkeitsdichtefunktion
und für das k-te absolute Moment
- .
Bezeichnet den Erwartungswert von , so ergibt sich für die zentralen Momente
und die absoluten zentralen Momente
- .
Über die zentralen Momente können die Schiefe und die Wölbung der Verteilung direkt bestimmt werden, siehe die entsprechenden Hauptartikel.
Beispiel
BearbeitenGegeben sei wieder die Wahrscheinlichkeitsdichtefunktion der Exponentialverteilung zum Parameter , also
Ein Modus der Exponentialverteilung ist immer . Denn auf dem Intervall ist die Wahrscheinlichkeitsdichtefunktion konstant gleich null, und auf dem Intervall ist sie streng monoton fallend, somit ist an der Stelle 0 ein lokales Maximum. Aus der Monotonie folgt dann auch direkt, dass es sich um das einzige lokale Maximum handelt, der Modus ist also eindeutig bestimmt.
Zur Bestimmung des Medians bildet man (da die Wahrscheinlichkeitsdichtefunktion links der Null verschwindet)
- .
Durch kurze Rechnung erhält man
- .
Dieses erfüllt auch die zweite der beiden Gleichungen im obigen Abschnitt Median und ist somit ein Median.
Für den Erwartungswert erhält man unter Zuhilfenahme der partiellen Integration
- .
Analog lässt sich durch zweimaliges Anwenden der partiellen Integration die Varianz bestimmen.
Weitere Beispiele
BearbeitenDurch für sowie für und für ist eine Dichtefunktion gegeben, denn ist auf ganz nichtnegativ und es gilt
- .
Für gilt:
Die Verteilungsfunktion lässt sich schreiben als
Ist eine Zufallsvariable mit der Dichte , so folgt daher beispielsweise
- .
Für den Erwartungswert von ergibt sich
- .
Mehrdimensionale Zufallsvariablen
BearbeitenWahrscheinlichkeitsdichten kann man auch für mehrdimensionale Zufallsvariablen, also für Zufallsvektoren definieren. Ist eine -wertige Zufallsvariable, so heißt eine Funktion Wahrscheinlichkeitsdichte (bezüglich des Lebesgue-Maßes) der Zufallsvariablen , falls gilt
für alle Borelmengen .
Speziell folgt dann für -dimensionale Intervalle mit reellen Zahlen :
- .
Der Begriff der Verteilungsfunktion lässt sich ebenfalls auf mehrdimensionale Zufallsvariablen erweitern. Hier ist in der Notation das ein Vektor und das -Zeichen komponentenweise zu lesen. ist also hierbei eine Abbildung von in das Intervall [0,1] und es gilt
- .
Wenn n-mal stetig differenzierbar ist, erhält man eine Wahrscheinlichkeitsdichte durch partielle Differentiation:
Die Dichten der Komponentenvariablen lassen sich als Dichten der Randverteilungen durch Integration über die übrigen Variablen berechnen.
Des Weiteren gilt: Ist eine -wertige Zufallsvariable mit Dichte, so sind äquivalent:
- besitzt eine Dichte der Form , wobei die reelle Wahrscheinlichkeitsdichte von ist.
- Die Zufallsvariablen sind unabhängig.
Schätzung einer Wahrscheinlichkeitsdichte anhand diskreter Daten
BearbeitenDiskret erfasste, aber eigentlich stetige Daten (beispielsweise die Körpergröße in Zentimetern) können als Häufigkeitsdichte repräsentiert werden. Das so erhaltene Histogramm ist eine stückweise konstante Schätzung der Dichtefunktion. Alternativ kann beispielsweise mit sogenannten Kerndichteschätzern die Dichtefunktion durch eine stetige Funktion geschätzt werden. Der dazu verwendete Kern sollte dem erwarteten Messfehler entsprechen.
Grenzübergang
BearbeitenEs sei eine approximierende Zufallsvariable mit den Ausprägungen und den Wahrscheinlichkeiten . Der Grenzübergang von einer approximierenden diskreten Zufallsvariable zu einer stetigen Zufallsvariable kann durch ein Wahrscheinlichkeitshistogramm modelliert werden. Dazu unterteilt man den Wertebereich der Zufallsvariable in gleich große Intervalle . Diese Intervalle mit der Länge und den entsprechenden Klassenmitten dienen der Approximation der Dichtefunktion durch das Wahrscheinlichkeitshistogramm, das aus Rechtecken mit der Fläche besteht, die sich über den Klassenmitten befinden. Für kleine kann als Approximation der stetigen Zufallsvariable aufgefasst werden. Wenn man die Intervalllängen verkleinert, verbessert sich die Approximation von durch . Der Grenzübergang für alle Intervalle führt im Falle der Varianz zu[3]
und im Falle des Erwartungswertes zu
- .
Aus dieser Approximation ergibt sich die Definition der Varianz bei stetigen Zufallsvariablen.
Literatur
Bearbeiten- Hans-Otto Georgii: Stochastik: Einführung in die Wahrscheinlichkeitstheorie und Statistik. 4. Auflage. de Gruyter Lehrbuch, Berlin 2009, ISBN 978-3-11-021526-7.
- Norbert Henze: Stochastik für Einsteiger. 7. Auflage. Vieweg Verlag, Wiesbaden 2008, ISBN 978-3-8348-0423-5.
- Achim Klenke: Wahrscheinlichkeitstheorie. 2. Auflage. Springer-Verlag, ISBN 978-3-540-76317-8.
- Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 12. Auflage. Springer-Verlag, Berlin / Heidelberg 2006, ISBN 978-3-540-32160-6.
Weblinks
Bearbeiten- N.G. Ushakov: Density of a probability distribution. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
- Eric W. Weisstein: Probability Density Function. In: MathWorld (englisch).
Siehe auch
BearbeitenEinzelnachweise
Bearbeiten- ↑ Georgii: Stochastik. 2009, S. 19, 24.
- ↑ A.V. Prokhorov: Mode. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).
- ↑ L. Fahrmeir, R. Künstler u. a.: Statistik. Der Weg zur Datenanalyse. 8. Auflage. Springer 2016, S. 262 ff.