4000 (four thousand) is the natural number following 3999 and preceding 4001. It is a decagonal number.[1]

← 3999 4000 4001 →
Cardinalfour thousand
Ordinal4000th
(four thousandth)
Factorization25 × 53
Greek numeral,Δ´
Roman numeralMV, or IV
Unicode symbol(s)MV, mv, IV, iv
Binary1111101000002
Ternary121110113
Senary303046
Octal76408
Duodecimal239412
HexadecimalFA016
ArmenianՏ
Egyptian hieroglyph𓆿

Selected numbers in the range 4001–4999

edit

4001 to 4099

edit

4100 to 4199

edit

4200 to 4299

edit

4300 to 4399

edit

4400 to 4499

edit

4500 to 4599

edit

4600 to 4699

edit

4700 to 4799

edit

4800 to 4899

edit

4900 to 4999

edit

Prime numbers

edit

There are the 119 prime numbers between 4000 and 5000:[44][45]

4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999

References

edit
  1. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ a b c d e f g h i j k Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A006037 (Weird numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ a b c d e f g h Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^ a b c Sloane, N. J. A. (ed.). "Sequence A050217 (Super-Poulet numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A001262 (Strong pseudoprimes to base 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ a b c Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^ Sloane, N. J. A. (ed.). "Sequence A005231 (Odd abundant numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^ Sloane, N. J. A. (ed.). "Sequence A076046 (Ramanujan-Nagell numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  11. ^ Sloane, N. J. A. (ed.). "Sequence A019279 (Superperfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^ Sloane, N. J. A. (ed.). "Sequence A000110 (Bell or exponential numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^ a b Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ Sloane, N. J. A. (ed.). "Sequence A000219 (Number of planar partitions (or plane partitions) of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ Sloane, N. J. A. (ed.). "Sequence A000605 (Number of points of norm <= n in cubic lattice)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^ Sloane, N. J. A. (ed.). "Sequence A000045 (Fibonacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^ Sloane, N. J. A. (ed.). "Sequence A002559 (Markoff (or Markov) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  19. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A001106 (9-gonal (or enneagonal or nonagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^ a b Sloane, N. J. A. (ed.). "Sequence A002411 (Pentagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^ a b c d Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^ Sloane, N. J. A. (ed.). "Sequence A000682 (Semimeanders)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  24. ^ a b Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  25. ^ a b c Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  26. ^ Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  28. ^ a b Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  29. ^ Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  30. ^ Sloane, N. J. A. (ed.). "Sequence A005165 (Alternating factorials)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  31. ^ Sloane, N. J. A. (ed.). "Sequence A031971 (a(n) = Sum_{k=1..n} k^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  32. ^ Sloane, N. J. A. (ed.). "Sequence A051015 (Zeisel numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  33. ^ Sloane, N. J. A. (ed.). "Sequence A005900 (Octahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  34. ^ Sloane, N. J. A. (ed.). "Sequence A003261 (Woodall numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  35. ^ Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.
  36. ^ Sloane, N. J. A. (ed.). "Sequence A070996 (Numbers n whose sum of divisors and number of divisors are both triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  37. ^ Sloane, N. J. A. (ed.). "Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  38. ^ Sloane, N. J. A. (ed.). "Sequence A007629 (Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  39. ^ Sloane, N. J. A. (ed.). "Sequence A002648 (A variant of the cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  40. ^ Sloane, N. J. A. (ed.). "Sequence A000108 (Catalan numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  41. ^ a b Sloane, N. J. A. (ed.). "Sequence A006886 (Kaprekar numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  42. ^ Sloane, N. J. A. (ed.). "Sequence A005898 (Centered cube numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  43. ^ Sloane, N. J. A. (ed.). "Sequence A066436 (Primes of the form 2*n^2 - 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  44. ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  45. ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.