In mathematical analysis, and especially in real, harmonic analysis and functional analysis, an Orlicz space is a type of function space which generalizes the Lp spaces. Like the Lp spaces, they are Banach spaces. The spaces are named for Władysław Orlicz, who was the first to define them in 1932.

Besides the Lp spaces, a variety of function spaces arising naturally in analysis are Orlicz spaces. One such space L log+ L, which arises in the study of Hardy–Littlewood maximal functions, consists of measurable functions f such that the

Here log+ is the positive part of the logarithm. Also included in the class of Orlicz spaces are many of the most important Sobolev spaces. In addition, the Orlicz sequence spaces are examples of Orlicz spaces.

Terminology

edit

These spaces are called Orlicz spaces by an overwhelming majority of mathematicians and by all monographies studying them, because Władysław Orlicz was the first who introduced them, in 1932.[1] Some mathematicians, including Wojbor Woyczyński, Edwin Hewitt and Vladimir Mazya, include the name of Zygmunt Birnbaum as well, referring to his earlier joint work with Władysław Orlicz. However in the Birnbaum–Orlicz paper the Orlicz space is not introduced, neither explicitly nor implicitly, hence the name Orlicz space is preferred. By the same reasons this convention has been also openly criticized by another mathematician (and an expert in the history of Orlicz spaces), Lech Maligranda.[2] Orlicz was confirmed as the person who introduced Orlicz spaces already by Stefan Banach in his 1932 monograph.[3]

Definition

edit

Setup

edit

μ is a σ-finite measure on a set X,

 , is a Young function, i.e. convex, lower semicontinuous, and non-trivial, in the sense that it is not the zero function   , and it is not the convex dual of the zero function  

Orlicz spaces

edit

Let   be the set of measurable functions f : XR such that the integral

 

is finite, where, as usual, functions that agree almost everywhere are identified.

This might not be a vector space (i.e., it might fail to be closed under scalar multiplication). The vector space of functions spanned by   is the Orlicz space, denoted  . In other words, it is the smallest linear space containing  . In other words, There is another Orlicz space (the "small" Orlicz space) defined by In other words, it is the largest linear space contained in  .

Norm

edit

To define a norm on  , let Ψ be the Young complement of Φ; that is,

 

Note that Young's inequality for products holds:

 

The norm is then given by

 

Furthermore, the space   is precisely the space of measurable functions for which this norm is finite.

An equivalent norm,[4]: §3.3  called the Luxemburg norm, is defined on LΦ by

 

and likewise   is the space of all measurable functions for which this norm is finite.

Proposition.[5]

  • The two norms are equivalent in the sense that   for all measurable  .
  • By monotone convergence theorem, if  , then  .

Examples

edit

For any  , the   space is the Orlicz space with Orlicz function  . Here  

When  , the small and the large Orlicz spaces for   are equal:  .

Example where   is not a vector space, and is strictly smaller than  . Suppose that X is the open unit interval (0,1), Φ(x) = exp(x) – 1 – x, and f(x) = log(x). Then af is in the space   but is only in the set   if |a| < 1.

Properties

edit

Proposition. The Orlicz norm is a norm.

Proof. Since   for some  , we have   a.e.. That   is obvious by definition. For triangular inequality, we have: Theorem. The Orlicz space   is a Banach space — a complete normed vector space.

Theorem.[5]   are topological dual Banach spaces.

In particular, if  , then   are topological dual spaces. In particular,   are dual Banach spaces when   and  .

Relations to Sobolev spaces

edit

Certain Sobolev spaces are embedded in Orlicz spaces: for   and   open and bounded with Lipschitz boundary  , we have

 

for

 

This is the analytical content of the Trudinger inequality: For   open and bounded with Lipschitz boundary  , consider the space   with   and  . Then there exist constants   such that

 

Orlicz norm of a random variable

edit

Similarly, the Orlicz norm of a random variable characterizes it as follows:

 

This norm is homogeneous and is defined only when this set is non-empty.

When  , this coincides with the p-th moment of the random variable. Other special cases in the exponential family are taken with respect to the functions   (for  ). A random variable with finite   norm is said to be "sub-Gaussian" and a random variable with finite   norm is said to be "sub-exponential". Indeed, the boundedness of the   norm characterizes the limiting behavior of the probability distribution function:

 

so that the tail of the probability distribution function is bounded above by  .

The   norm may be easily computed from a strictly monotonic moment-generating function. For example, the moment-generating function of a chi-squared random variable X with K degrees of freedom is  , so that the reciprocal of the   norm is related to the functional inverse of the moment-generating function:

 

References

edit
  1. ^ Über eine gewisse Klasse von Räumen vom Typus B, Bull. Internat. Acad. Polon. Sci. Lett., Class. Sci. Math. Natur.: Sér. A, Sci. Math. 1932:8/9, 207–220.
  2. ^ Lech Maligranda, Osiągnięcia polskich matematyków w teorii interpolacji operatorów: 1910–1960, 2015, „Wiadomości matematyczne”, 51, 239-281 (in Polish).
  3. ^ Stefan Banach, 1932, Théorie des opérations linéaires, Warszawa (p.202)
  4. ^ Rao, M.M.; Ren, Z.D. (1991). Theory of Orlicz Spaces. Pure and Applied Mathematics. Marcel Dekker. ISBN 0-8247-8478-2.
  5. ^ a b Léonard, Christian. "Orlicz spaces." (2007).

Further reading

edit
edit