Jump to content

P wave: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Tag: references removed
Line 8: Line 8:


==Nomenclature==
==Nomenclature==
The name P-wave can (as it is formed from alternating [[compression (physical)|compression]]s and [[rarefaction]]s) or '''primary wave''' (as it has high velocity and is therefore the first wave to be recorded by a seismograph).<ref name="John">{{cite book|last=Milsom|first=J.|title=Field Geophysics|publisher=John Wiley and Sons|year=2003|series=The geological field guide series|volume=25|page=232|isbn=978-0-470-84347-5|url=https://books.google.com/books?id=T7CKj8bqVlwC&pg=PA179|accessdate=2010-02-25}}</ref>
The name P-wave can (as it is formed from alternating [[compression (physical)|compression]]s and [[rarefaction]]s) or '''primary wave'''


==Seismic waves in the Earth==
==Seismic waves in the Earth==

Revision as of 23:31, 31 August 2020

[[Image:Onde

Representation of the propagation of a P-wave on a 2D grid (empirical shape)[clarification needed]

A P-wave is one of the two main types of elastic body waves, called seismic waves in seismology. P-waves travel faster than other seismic waves and hence are the first signal from an earthquake to arrive at any affected location or at a seismograph. P-waves may be transmitted through gases, liquids, or solids.

Nomenclature

The name P-wave can (as it is formed from alternating compressions and rarefactions) or primary wave

Seismic waves in the Earth

Velocity of seismic waves in the Earth versus depth.[1] The negligible S-wave velocity in the outer core occurs because it is liquid, while in the solid inner core the S-wave velocity is non-zero.

Primary and secondary waves are body waves that travel within the Earth. The motion and behavior of both P-type and S-type in the Earth are monitored to probe the interior structure of the Earth. Discontinuities in velocity as a function of depth are indicative of changes in phase or composition. Differences in arrival times of waves originating in a seismic event the Earth's inner structure.[2][3]

P-wave shadow zone

P-wave shadow zone (from USGS)

Almost all the information available on the structure of the Earth's deep interior is derived from observations of the travel times, reflections, refractions and phase transitions of seismic body waves, or normal modes. P-waves travel through the fluid layers of the Earth's interior, and yet they are refracted slightly when they pass through the transition between the semisolid mantle and the liquid outer core. As a result, there is a P-wave "shadow zone" between 103° and 142°[4] from the earthquake's focus, where the initial P-waves are not registered on seismometers. In contrast, S-waves do not travel through liquids.

As an earthquake warning

Advance earthquake warning is possible by detecting the nondestructive primary waves that travel more quickly through the Earth's crust than do the destructive secondary and Rayleigh waves.

The amount of advance warning depends on the delay between the arrival of the P-wave and other destructive waves, generally on the order of seconds up to about 60 to 90 seconds for deep, distant, large quakes such as the 2011 Tohoku earthquake. The effectiveness of advance warning depends on accurate detection of the P-waves and rejection of ground vibrations caused by local activity (such as trucks or construction). Earthquake early warning systems can be automated to allow for immediate safety actions, such as issuing alerts, stopping elevators at the nearest floors and switching off utilities.

Propagation

Velocity

In isotropic and homogeneous solids, a P-wave travels in a straight line longitudinal; thus, the particles in the solid vibrate along the axis of propagation (the direction of motion) of the wave energy. The velocity of P-waves in such a medium is given by

where K is the bulk modulus (the modulus of incompressibility), is the shear modulus (modulus of rigidity, sometimes denoted as G and also called the second Lamé parameter), is the density of the material through which the wave propagates, and is the first Lamé parameter.

In typical situations the interior of the Earth, the density ρ usually varies much less than K or μ, so the velocity is mostly "controlled" by these two parameters.

The elastic moduli P-wave modulus, , is defined so that and thereby

Typical values for P-wave velocity in earthquakes are in the range 5 to 8 km/s. The precise speed varies according to the region of the Earth's interior, from less than 6 km/s in the Earth's crust to 13.5 km/s in the lower mantle, and 11 km/s through the inner core.[5]

Velocity of Common Rock Types[6]
Rock Type Velocity [m/s] Velocity [ft/s]
Unconsolidated Sandstone 4600 - 5200 15000 - 17000
Consolidated Sandstone 5800 19000
Shale 1800 - 4900 6000 -16000
Limestone 5800 - 6400 19000 - 21000
Dolomite 6400 - 7300 21000 - 24000
Anhydrite 6100 20000
Granite 5800 - 6100 19000 - 20000
Gabbro 7200 23600

Geologist Francis Birch discovered a relationship between the velocity of P waves and the density of the material the waves are traveling in:

which later became known as Birch's law.

See also

References

  1. ^ GR Helffrich & BJ Wood (2002). "The Earth's Mantle" (PDF). Nature. 412 (2 August): 501–7. doi:10.1038/35087500. PMID 11484043.
  2. ^ Justin L Rubinstein, DR Shelly & WL Ellsworth (2009). "Non-volcanic tremor: A window into the roots of fault zones". In S. Cloetingh, Jorg Negendank (ed.). New Frontiers in Integrated Solid Earth Sciences. Springer. p. 287 ff. ISBN 978-90-481-2736-8. The analysis of seismic waves provides a direct high-resolution means for studying the internal structure of the Earth...
  3. ^ CMR Fowler (2005). "§4.1 Waves through the Earth". The solid earth: an introduction to global geophysics (2nd ed.). Cambridge University Press. p. 100. ISBN 978-0-521-58409-8. Seismology is the study of the passage of elastic waves through the Earth. It is arguably the most powerful method available for studying the structure of the interior of the Earth, especially the crust and mantle.
  4. ^ Lowrie, William. The Fundamentals of Geophysics. Cambridge University Press, 1997, p. 149.
  5. ^ Dziewonski, Adam M.; Anderson, Don L. (1981). "Preliminary reference Earth model". Physics of the Earth and Planetary Interiors. 25 (4): 297–356. Bibcode:1981PEPI...25..297D. doi:10.1016/0031-9201(81)90046-7.
  6. ^ "Acoustic Logging". epa.gov. 2011-12-12. Retrieved 2015-02-03.