Jump to content

Prince Creek Formation

Coordinates: 70°00′N 151°30′W / 70.0°N 151.5°W / 70.0; -151.5
From Wikipedia, the free encyclopedia
Prince Creek Formation
Stratigraphic range: Early Maastrichtian
70.6–69.1 Ma
General location of the Prince Creek Formation, in red
TypeGeological formation
Unit ofColville Group
Sub-unitsKikak-Tegoseak Quarry, Kogosukruk Tongue, Ocean Point, Coleville River Bluff
UnderliesSagavanirktok Formation
OverliesSchrader Bluff Formation
Lithology
PrimarySandstone, mudstone[1]
Othersiltstone, carbonaceous shale, ash-fall[1]
Location
Coordinates70°00′N 151°30′W / 70.0°N 151.5°W / 70.0; -151.5
Approximate paleocoordinates83°12′N 115°54′W / 83.2°N 115.9°W / 83.2; -115.9
Region Alaska
Country USA

The Prince Creek Formation is a geological formation in Alaska with strata dating to the Early Maastrichtian stage of the Late Cretaceous. Dinosaur remains are among the fossils that have been recovered from the formation.[2]

Age

[edit]

The Prince Creek Formation aged from 80 to 61.7 million years ago. The Kikak-Tegoseak Quarry, where almost all of the dinosaur fossil are from, is located near the middle of the formation, and is about 70.6 to 69.1 million years ago.[3][4] A lower section, the Kogosukruk Tongue, ages from 72 to 71 million years ago, in the latest Campanian.[5] The youngest part of the formation is Ocean Point, which extends into the Paleogene, at the end of the Danian, based on the age of ostracods and mollusks.[6] In the middle of the formation is the Coleville River Bluff, which extends from the Late Campanian to the Middle/Late Maastrichtian, in which pollen spores are common.[7]

Habitat

[edit]
Hadrosaurids of the Liscomb Bonebed in their habitat

During the time when the Prince Creek Formation was deposited, Earth was going through a greenhouse phase. The rocks in it are alluvial, and were, at the time of burial, on a muddy coastal plain. Leafy plants, roots and pollen are known from the formation, and they show that trampling by dinosaurs was common. It can be proven that during the Maastrichtian the Prince Creek Formation bordered a large body of water by the presence of gypsum and pyrite in nearby rock. Large amounts of plants material are represented by peridonoid dinocysts, algae, fungal hyphae, fern and moss spores, projectates, Wodehouseia edmontonicola, hinterland bisaccate pollen, and pollen from trees, shrubs, and herbs. Based on the large amounts of dinosaur and plant remains, the Prince Creek Formation was deduced to be largely an ice-free woodland with an understory of angiosperm dominated by dinosaurs. The mean temperature was 5 to 6 °C (41 to 43 °F), with the mean temperature during the cold months being 2 to 4 °C (36 to 39 °F) and the mean temperature during the warm months being 10 to 12 °C (50 to 54 °F). Mean annual precipitation was 500 to 1,500 millimetres (20 to 59 in)/year.[1] The paleolatitude of the formation at the time of deposition was around 80°–85°N, high in the Arctic Circle, and would have likely experienced 120 days of winter darkness.[8]

Vertebrate paleofauna

[edit]

Dinosaurs

[edit]

Theropods

[edit]

Indeterminate tyrannosaurid remains are present, mostly in the form of teeth. The teeth are from the Kikak-Tegoseak Quarry, Liscomb Quarry, and Byers Bed, totaling 8 teeth.[9]

Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Theropods
Genus Species Location Abundance Notes Images

Dromaeosaurus[9][10]

D. cf albertensis[9][10]

Liscomb Quarry[9]

Kikak-Tegoseak Quarry[9]

Byers Bed[9]

Fossilized teeth[9]

A dromaeosaur.

Gruipeda[11]

G. vegrandiunis[11]

Denali Park[11]

Footprints from a small bird.[11]

Ornithomimosauria indet.[12] Indeterminate[12] Old Bone Beach Distal metatarsal IV Possibly an ornithomimid.

Saurornitholestinae indet.[13]

Indeterminate

Pediomys Point - Liscomb Quarry[13]

Small dentary tip from a juvenile.[13]

A new species of dromaeosaurid closely related to Saurornitholestes.[13]

Nanuqsaurus[3]

N. hoglundi[3]

Kikak-Tegoseak Quarry[3]

One partial skull including a bone near the front of the maxilla and the front of the lower jaw.[3]

Nanuqsaurus is a tyrannosaurid closely related to Lythronax, Tyrannosaurus, and Tarbosaurus.[3]

Saurornitholestes[9][10]

S. cf. langstoni[9][10]

Old Bone Beach[9]

Teeth[9]

A dromaeosaur.

Troodon[3]

T. sp[3]

Kikak-Tegoseak Quarry[3]

Liscomb Quarry[9]

Byers Bed[9]

Magical Mystery Bar[14]

Dental remains,[3] including teeth.[9] Braincases have also been found.[14]

Remains of T. sp. are approximately 50% larger than specimens from Alberta and Montana.[3] Remains were previously assigned to T. formosus.[10] The most abundant theropod.[14] As of 2011, a dubious genus.[15]

Ornithischians

[edit]
Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Ornithischians of the Prince Creek Formation
Genus Species Location Abundance Notes Images

Alaskacephale[16]

A. gangloffi[16]

Kogosukruk Tongue[17]

A squamosal, and the back of the dome.[5]

The first pachycephalosaurine from Alaska discovered.[5]

Pachyrhinosaurus[4][18]

P. perotorum[4][18]

Kikak-Tegoseak Quarry[4]

An abundance of skeletal remains,[4] including an immature juvenile.[18]

The youngest of the Pachyrhinosaurus species, found in one of the highest latitudes of centrosaurine discoveries.[4] A discovery in the Kikak-Tegoseak Quarry was identified in 2013 as a juvenile of Pachyrhinosaurus perotorum. This discovery shows that the crest started to develop in the front of the snout, then extending farther back until it reaches the eye.[18]

Thescelosaurinae indet.[19]

Indeterminate

Teeth[19]

Remains previously attributed to Thescelosaurus.[19]

Leptoceratopsidae[8] Indeterminate Remains of adult and juvenile individuals[8]

Edmontosaurus[20]

E. cf. regalis[21]

Liscomb Bonebed[20]
Kikak-Tegoseak Quarry[4]

Disassociated parts from multiple juveniles

Originally identified as a distinct genus (Ugrunaaluk), recent studies have found it ontogenetically indistinguishable from Edmontosaurus.[20][21]

Lambeosaurinae indet.[22] Indeterminate Liscomb Bonebed A supraoccipital The first confirmed lambeosaurine in the Prince Creek Formation.

Ornithopoda indet.[19]

Indeterminate[19]

One tooth[19]

A single "hypsilophodontid" cheek tooth not attributable to Parksosaurus or Thescelosaurus.[19]

Mammals

[edit]
Mammals of the Prince Creek Formation
Genus Species Location Stratigraphic position Abundance Notes Images
Cimolodon[23] C. cf. nitidus Lower Maastrichtian Isolated teeth A small multituberculate.
Gypsonictops[23] G. sp. Lower Maastrichtian Isolated teeth A small eutherian.
Multituberculata indet.[23] Indeterminate Lower Maastrichtian Isolated teeth
Marsupialia indet.[23] Indeterminate Lower Maastrichtian Most common in the Prince Creek Formation
Sikuomys[24] S. mikros Lower Colville River. Upper Campanian A tiny eutherian.
Unnuakomys[25] U. hutchisoni Pediomys Point Lower Maastrichtian Over 60 specimens A small metatherian.

Plants

[edit]
Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Plants of the Prince Creek Formation[7]
Genus Species Location Abundance Notes Images

Parataxodium[17]

P. wigginsii[17]

Kogosukruk Tongue[17]

A conifer, one of two from the region.[17] It dominated the forest community of the Kogosukruk Tongue.

Hollickia[17]

H. quercifolia[17]

Kogosukruk Tongue[17]

Leaves[17]

An angiosperm, known from leaves.[17]

Quereuxia[17]

Q. angulata[17]

Kogosukruk Tongue[17]

An aquatic angiosperm.[17]

Equisetites[17]

E. sp.[17]

Kogosukruk Tongue[17]

A sphenophyte.[17]

Pulcheripollenites

P. krempii

Coleville River Bluff

Pollen spores

Also found in the Schrader Bluff Formation.

cf. Proteacidites

cf. P. sp.

Coleville River Bluff

Pollen spores

Also found in the Schrader Bluff Formation.

cf. Polycingulatisporites

cf. P. reduncus

Coleville River Bluff

Pollen spores

Also found in the Schrader Bluff Formation.

Podocarpidites

P. sp.

Coleville River Bluff

Pollen spores

Also found in the Schrader Bluff Formation.

Ovoidites

O.? sp.

Coleville River Bluff

Pollen spores

Also found in the Schrader Bluff Formation.

O. sp.

Coleville River Bluff

Pollen spores

Also found in the Schrader Bluff Formation.

O. parvus

Coleville River Bluff

Pollen spores

Also found in the Schrader Bluff Formation.

O. arcticus

Coleville River Bluff

Pollen spores

Also found in the Schrader Bluff Formation.

Osmundacidites

O. wellmanii

Coleville River Bluff

Pollen remains

Common in the Early Maastrichtian. Also found in the Schrader Bluff Formation.

Mantonisporites

M. sp. indet

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Mancicorpus

M. pseudosenonicus

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Lycopodiacidites

L. sp.

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Lunatadinium

L. dissolutum

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Indeterminate

Indeterminate

Coleville River Bluff

Septate fungal hypha.

Also found in the Schrader Bluff Formation.

Leosphaeridia

L. "stellata"

Coleville River Bluff

Pollen remains

Common in the Early Maastrichtian. Also found in the Schrader Bluff Formation.

Lairidordites

L. magnus

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Laegivatosporites

L. spp.

Coleville River Bluff

Pollen remains

Indeterminate remains abundant in the Early Maastrichtian, and still numerous in the Late Maastrichtian. Also found in the Schrader Bluff Formation.

L. sp.

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Kurtzipites

K. trispissatus

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Integricorpus

I. sp.

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Ischyosporites

I. sp.

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Ischyosporites

I. sp.

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Inundatisporis

I. tappaniae

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Impardecispora

I. marylandensis

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Hannisporis

H. scollardensis

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

H. amplus

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Gleicheniidites

G. senonicus

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Foveosporites

F sp.

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Foraminisporis

F. undulosus

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Fibulapollis

F. scabratus

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Expressipollis

cf. E. accuratus

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Erdtmannipollis

E. procumbentformis

Coleville River Bluff

Pollen spores

Also found in the Schrader Bluff Formation.

Dictyophyllidites

D. sp.

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Deltoidospora

D. spp.

Coleville River Bluff

Preserved pollen samples

Very abundant in the early Maastrichtian and Indeterminate level of the formation, becoming rarer until the Middle/Late Maastrichtian. Also found in the Schrader Bluff Formation.

Cycadopites

C. fragilis

Coleville River Bluff

Samples of distinct pollen

Also found in the Schrader Bluff Formation.

Crassispora?

cf. C. apisulacea

Coleville River Bluff

Pollen samples

Also found in the Schrader Bluff Formation.

cf. Converrucosisporites

cf. C. sp.

Coleville River Bluff

Specimens of preserved pollen spores

Also found in the Schrader Bluff Formation.

Clavatisporites

C. sp.

Coleville River Bluff

Preserved pollen samples

Also found in the Schrader Bluff Formation.

Circulodinium

C. sp.

Coleville River Bluff

Pollen samples

Also found in the Schrader Bluff Formation.

Cingutriletes

cf. C. congruens

Coleville River Bluff

Pollen remains

Also found in the Schrader Bluff Formation.

Cingulizonates

C. bialatus

Coleville River Bluff

Pollen samples

Also found in the Schrader Bluff Formation.

Cicatricosisporites

C. sp. 1

Coleville River Bluff

Distinct pollen remains

Also found in the Schrader Bluff Formation.

C. spp.

Coleville River Bluff

Preserved pollen

Also found in the Schrader Bluff Formation.

cf. C. dorogensis

Coleville River Bluff

Fossilized pollen spores

Also found in the Schrader Bluff Formation.

Cibotiumspora

C. sp.

Coleville Bluff Formation

Pollen spores

Also found in the Schrader Bluff Formation.

Camarozonosporites

C. ambigens

Coleville River Bluff

Pollen specimens

Also found in the Schrader Bluff Formation.

Botryococcus

B. braunii

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

Indeterminate

Indeterminate

Coleville River Bluff

Bissacate gymnosperm pollen

Common and abundant in the Early Maastrichtian, becoming rarer towards the Late Maastrichtian. Also found in the Schrader Bluff Formation.

Balmeisporites

B. sp.

Coleville River Bluff

Pollen spore remains

Also found in the Schrader Bluff Formation.

Azonia

cf. A. cribrata

Coleville River Bluff

Carbonized pollen

Also found in the Schrader Bluff Formation.

Aquilapollenites

A. trialatus

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

A. spp.

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

A. sp.

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

cf. A. dentatus

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

A. amygdaloides

Coleville River Bluff

Pollen

Numerous in the Late Campanian, becoming abundant in the Maastrichtian. Also found in the Schrader Bluff Formation.

Annulispora

A. sp.

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

Anacololsidites

A. sp. 1

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

A. sp.

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

Alete

A. clavate

Coleville River Formation

Pollen

Also found in the Schrader Bluff Formation.

Aequitriradites

cf. A. spinulosus

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

Aequitriradite

A. sp.

Coleville River Bluff

Pollen

Also found in the Schrader Bluff Formation.

See also

[edit]

References

[edit]
  1. ^ a b c Flaig, P.P.; McCarthy, P.J.; Fiorillo, A.R. (2013). "Anatomy, Evolution, and Paleoenvironmental Interpretation of an Ancient Arctic Coastal Plain: Integrated Paleopedology and Palynology from the Upper Cretaceous (Maastrichtian) Prince Creek Formation, North Slope, Alaska, USA". In Driese, S.G.; Nordt, L.C. (eds.). New Frontiers in Paleopedology and Terrestrial Paleoclimatology: Paleosols and Soil Surface Analog Systems. Vol. 104. pp. 179–230. doi:10.2110/sepmsp.104.14. ISBN 9781565763227. {{cite book}}: |journal= ignored (help)
  2. ^ Weishampel, David B; et al. (2004). "Dinosaur distribution (Late Cretaceous, North America)." In: Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.): The Dinosauria, 2nd, Berkeley: University of California Press. Pp. 574-588. ISBN 0-520-24209-2.
  3. ^ a b c d e f g h i j k Fiorillo, A. R.; Tykoski, R. S. (2014). Dodson, Peter (ed.). "A Diminutive New Tyrannosaur from the Top of the World". PLoS ONE. 9 (3): e91287. Bibcode:2014PLoSO...991287F. doi:10.1371/journal.pone.0091287. PMC 3951350. PMID 24621577.
  4. ^ a b c d e f g Fiorillo, A.R.; Tykoski, R.S.T. (2012). "A new species of the centrosaurine ceratopsid Pachyrhinosaurus from the North Slope (Prince Creek Formation: Maastrichtian) of Alaska". Acta Palaeontologica Polonica. 57 (3): 561–573. doi:10.4202/app.2011.0033.
  5. ^ a b c Gangloff, R.A.; Fiorillo, A.R.; Norton, D.W. (2005). "The First Pachycephalosaurine (Dinosauria) from the Paleo-Arctic of Alaska and its Paleogeographic Implications". Journal of Paleontology. 79 (5): 997–1001. doi:10.1666/0022-3360(2005)079[0997:tfpdft]2.0.co;2. S2CID 130669713.
  6. ^ Marincovich, L.; Brouwers, E. M.; Carter, L. D. (1985). "Early Tertiary marine fossils from northern Alaska: Implications for Arctic Ocean paleogeography and faunal evolution". Geology. 13 (11): 770. Bibcode:1985Geo....13..770M. doi:10.1130/0091-7613(1985)13<770:ETMFFN>2.0.CO;2.
  7. ^ a b Flores, R.M.; Myers, M.D.; Houseknecht, D.W.; Stricker, G.D.; Brizzolara, D.W.; Ryherd, T.J.; Takahashi, K.I. (2007). "Stratigraphy and Facies of Cretaceous Schrader Bluff and Prince Creek Formations in Colville River Bluffs, North Slope, Alaska" (PDF). U.S. Geological Survey Professional Paper. 1748: 52.
  8. ^ a b c Druckenmiller, Patrick S.; Erickson, Gregory M.; Brinkman, Donald; Brown, Caleb M.; Eberle, Jaelyn J. (June 2021). "Nesting at extreme polar latitudes by non-avian dinosaurs". Current Biology. 31 (16): 3469–3478.e5. Bibcode:2021CBio...31E3469D. doi:10.1016/j.cub.2021.05.041. ISSN 0960-9822. PMID 34171301.
  9. ^ a b c d e f g h i j k l m n Fiorillo, A.R.; Gangloff, R.A. (2000). "Theropod Teeth from the Prince Creek Formation (Cretaceous) of Northern Alaska, with Speculations on Arctic Dinosaur Paleoecology". Journal of Vertebrate Paleontology. 20 (4): 675–682. doi:10.1671/0272-4634(2000)020[0675:ttftpc]2.0.co;2. S2CID 130766946.
  10. ^ a b c d e "3.33 Alaska, United States; 3. Prince Creek Formation," in Weishampel, et al. (2004). Page 587.
  11. ^ a b c d Fiorillo, A. R.; Hasiotis, S. T.; Kobayashi, Y.; Breithaupt, B. H.; McCarthy, P. J. (2011). "Bird tracks from the Upper Cretaceous Cantwell Formation of Denali National Park, Alaska, USA: a new perspective on ancient northern polar vertebrate biodiversity". Journal of Systematic Palaeontology. 9 (1): 33–49. Bibcode:2011JSPal...9...33F. doi:10.1080/14772019.2010.509356.
  12. ^ a b Watanabe, Akinobu; Erickson, Gregory M.; Druckenmiller, Patrick S. (2013-09-01). "An ornithomimosaurian from the Upper Cretaceous Prince Creek Formation of Alaska". Journal of Vertebrate Paleontology. 33 (5): 1169–1175. Bibcode:2013JVPal..33.1169W. doi:10.1080/02724634.2013.770750. ISSN 0272-4634. S2CID 130049294.
  13. ^ a b c d Chiarenza, A. A.; Fiorillo, A. R.; Tykoski, R. S.; McCarthy, P. J.; Flaig, P. P.; Contreras, D. L. (2020). "The first juvenile dromaeosaurid (Dinosauria: Theropoda) from Arctic Alaska". PLOS ONE. 15 (7): e0235078. Bibcode:2020PLoSO..1535078C. doi:10.1371/journal.pone.0235078. PMC 7343144. PMID 32639990.
  14. ^ a b c Fiorillo, A.R.; Tykoski, R.S.; Currie, P.J.; Mccarthy, P.J.; Flaig, P. (2009). "Description of two partial Troodon braincases from the Prince Creek Formation (Upper Cretaceous), North Slope Alaska". Journal of Vertebrate Paleontology. 29 (1): 178–187. Bibcode:2009JVPal..29..178F. doi:10.1080/02724634.2009.10010370. S2CID 197535475.
  15. ^ Zanno, Lindsay E.; Varricchio, David J.; O'Connor, Patrick M.; Titus, Alan L.; Knell, Michael J. (2011-09-19). "A New Troodontid Theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America". PLOS ONE. 6 (9): e24487. Bibcode:2011PLoSO...624487Z. doi:10.1371/journal.pone.0024487. ISSN 1932-6203. PMC 3176273. PMID 21949721.
  16. ^ a b Sullivan, R.M. (2006). "A taxonomic review of the Pachycephalosauridae (Dinosauria: Ornithischia)". New Mexico Museum of Natural History and Science Bulletin. 35: 347–365.
  17. ^ a b c d e f g h i j k l m n o p q r Spicer, R.A.; Parrish, J.T. (1987). "Plant Megafossils, Vertebrate Remains, and Paleoclimate of the Kogosukruk Tongue (Late Cretaceous), North Slope, Alaska". In Hamilton, Thomas D.; Galloway, John P. (eds.). Geologic Studies in Alaska. pp. 47–48. {{cite book}}: |journal= ignored (help)
  18. ^ a b c d Fiorillo, A.R.; Tykoski, R.S. (2013). Farke, Andrew A. (ed.). "An Immature Pachyrhinosaurus perotorum (Dinosauria: Ceratopsidae) Nasal Reveals Unexpected Complexity of Craniofacial Ontogeny and Integument in Pachyrhinosaurus". PLoS ONE. 8 (6): e65802. Bibcode:2013PLoSO...865802F. doi:10.1371/journal.pone.0065802. PMC 3686821. PMID 23840371.
  19. ^ a b c d e f g Brown, C.M.; Druckenmiller, P. (2011). "Basal ornithopod (Dinosauria: Ornithischia) teeth from the Prince Creek Formation (early Maastrichtian) of Alaska". Canadian Journal of Earth Sciences. 48 (9): 1342–1354. Bibcode:2011CaJES..48.1342B. doi:10.1139/e11-017.
  20. ^ a b c Re-examination of the cranial osteology of the Arctic Alaskan hadrosaurine with implications for its taxonomic status Ryuji Takasaki, Anthony R. Fiorillo, Ronald S. Tykoski, Yoshitsugu Kobayashi.
  21. ^ a b Sharpe, Henry S.; Powers, Mark J.; Dyer, Aaron D.; Rhodes, Matthew M.; McIntosh, Annie P.; Garros, Christiana W.; Currie, Philip J.; Funston, Gregory F. (2024-04-16). "Craniomandibular anatomy of a juvenile specimen of Edmontosaurus regalis Lambe, 1917 clarifies issues in ontogeny and biogeography". Journal of Vertebrate Paleontology. doi:10.1080/02724634.2024.2326644. ISSN 0272-4634.
  22. ^ McCarthy, Paul J.; Tykoski, Ronald S.; Kobayashi, Yoshitsugu; Fiorillo, Anthony R.; Takasaki, Ryuji (2019-03-29). "The First Definite Lambeosaurine Bone From the Liscomb Bonebed of the Upper Cretaceous Prince Creek Formation, Alaska, United States". Scientific Reports. 9 (1): 5384. Bibcode:2019NatSR...9.5384T. doi:10.1038/s41598-019-41325-8. ISSN 2045-2322. PMC 6440964. PMID 30926823.
  23. ^ a b c d Thurston, D.K.; Fujita, K. (1994). 1992 Proceedings, International Conference on Arctic Margins. Anchorage, Alaska: U.S. Dept. of the Interior, Minerals Management Service, Alaska Outer Continental Shelf Region. ISBN 978-1125448038.
  24. ^ Eberle, Jaelyn J.; Clemens, William A.; Erickson, Gregory M.; Druckenmiller, Patrick S. (2023-01-01). "A new tiny eutherian from the Late Cretaceous of Alaska". Journal of Systematic Palaeontology. 21 (1). Bibcode:2023JSPal..2132359E. doi:10.1080/14772019.2023.2232359. ISSN 1477-2019. S2CID 260668330.
  25. ^ Eberle, Jaelyn J.; Clemens, William A.; McCarthy, Paul J.; Fiorillo, Anthony R.; Erickson, Gregory M.; Druckenmiller, Patrick S. (2019-02-14). "Northernmost record of the Metatheria: a new Late Cretaceous pediomyid from the North Slope of Alaska". Journal of Systematic Palaeontology. 17 (21): 1805–1824. Bibcode:2019JSPal..17.1805E. doi:10.1080/14772019.2018.1560369. ISSN 1477-2019. S2CID 92613824.

Bibliography

[edit]
  • Flaig, P.P. (2010). "Depositional Environments of the Late Cretaceous (Maaastrichtian) Dinosaur-Bearing Prince Creek Formation: Colville River Region, North Slope, Alaska". Unpublished Ph.D. Dissertations, the University of Alaska-Fairbanks: 311.
  • Flaig, P.P.; McCarthy, P.J.; Fiorillo, A.R. (2011). "A Tidally-Influenced, High-Latitude Coastal-Plain: the Upper Cretaceous (Maastrichtian) Prince Creek Formation, North Slope, Alaska". In Stephanie K. Davidson; Sophie Leleu; Colin P. North (eds.). From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation. Vol. 97. Society for Sedimentary Geology. pp. 233–264. doi:10.2110/sepmsp.097.233. ISBN 9781565763074.
  • Flaig, P.P.; Fiorillo, A.R.; McCarthy, P.J. (2014). "Dinosaur-bearing hyperconcentrated flows of Cretaceous Arctic Alaska—Recurring catastrophic event beds on a distal paleopolar coastal plain". PALAIOS. 29 (11): 594–611. Bibcode:2014Palai..29..594F. doi:10.2110/palo.2013.133. S2CID 128713816.
  • Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.): The Dinosauria, 2nd, Berkeley: University of California Press. 861 pp. ISBN 0-520-24209-2.