Jump to content

User:Agmartin

From Wikipedia, the free encyclopedia

Nice Model Reading List

[edit]

grand tack Mojzsis

Primary

[edit]
Origin of the orbital architecture of the giant planets of the Solar System
Tsiganis, K.; Gomes, R.; Morbidelli, A.; Levison, H. F. (2005)
Nature, Volume 435, Issue 7041, pp. 459-461.
http://www.nature.com/nature/journal/v435/n7041/abs/nature03539.html
Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets
Gomes, R.; Levison, H. F.; Tsiganis, K.; Morbidelli, A. (2005)
Nature, Volume 435, Issue 7041, pp. 466-469.
http://www.nature.com/nature/journal/v435/n7041/abs/nature03676.html
Chaotic capture of Jupiter's Trojan asteroids in the early Solar System
Morbidelli, A.; Levison, H. F.; Tsiganis, K.; Gomes, R. (2005)
Nature, Volume 435, Issue 7041, pp. 462-465.
http://www.nature.com/nature/journal/v435/n7041/abs/nature03540.html
Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture
Morbidelli, Alessandro; Tsiganis, Kleomenis; Crida, Aurélien; Levison, Harold F.; Gomes, Rodney (2007)
The Astronomical Journal, Volume 134, Issue 5, pp. 1790-1798.
http://iopscience.iop.org/1538-3881/134/5/1790/
http://arxiv.org/pdf/0706.1713.pdf
Capture of Irregular Satellites during Planetary Encounters
Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2007)
The Astronomical Journal, Volume 133, Issue 5, pp. 1962-1976.
http://iopscience.iop.org/1538-3881/133/5/1962/
Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune
Levison, Harold F.; Morbidelli, Alessandro; Van Laerhoven, Christa; Gomes, Rodney; Tsiganis, Kleomenis (2008)
Icarus, Volume 196, Issue 1, p. 258-273.
http://www.sciencedirect.com/science/article/pii/S0019103507006094
http://arxiv.org/pdf/0712.0553v1.pdf
Contamination of the asteroid belt by primordial trans-Neptunian objects
Levison, Harold F.; Bottke, William F.; Gounelle, Matthieu; Morbidelli, Alessandro; Nesvorný, David; Tsiganis, Kleomenis (2009)
Nature, Volume 460, Issue 7253, pp. 364-366.
http://www.nature.com/nature/journal/v460/n7253/full/nature08094.html
Chaotic Capture of Neptune Trojans
Nesvorný, David; Vokrouhlický, David (2009)
The Astronomical Journal, Volume 137, Issue 6, pp. 5003-5011.
http://iopscience.iop.org/1538-3881/137/6/5003/
Constructing the secular architecture of the solar system I. The giant planets
Morbidelli, A.; Brasser, R.; Tsiganis, K.; Gomes, R.; Levison, H. F. (2009)
Astronomy and Astrophysics, Volume 507, Issue 2, pp.1041-1052.
http://www.aanda.org/articles/aa/abs/2009/44/aa12876-09/aa12876-09.html
http://arxiv.org/pdf/0909.1886v1.pdf
Constructing the secular architecture of the solar system II. the terrestrial planets
Brasser, R.; Morbidelli, A.; Gomes, R.; Tsiganis, K.; Levison, H. F. (2009)
Astronomy and Astrophysics, Volume 507, Issue 2, pp.1053-1065.
http://www.aanda.org/articles/aa/abs/2009/44/aa12878-09/aa12878-09.html
http://arxiv.org/pdf/0909.1891.pdf
Evidence from the Asteroid Belt for a Violent Past Evolution of Jupiter's Orbit
Morbidelli, Alessandro; Brasser, Ramon; Gomes, Rodney; Levison, Harold F.; Tsiganis, Kleomenis (2010)
The Astronomical Journal, Volume 140, Issue 5, pp. 1391-1401.
http://iopscience.iop.org/1538-3881/140/5/1391/
http://arxiv.org/pdf/1009.1521.pdf
Early Dynamical Evolution of the Solar System. Pinning Down the Initial Conditions of the Nice Model
Batygin, Konstantin; Brown, Michael E. (2010)
The Astrophysical Journal, Volume 716, Issue 2, pp. 1323-1331.
http://iopscience.iop.org/0004-637X/716/2/1323/
http://arxiv.org/pdf/1004.5414.pdf
A coherent and comprehensive model of the evolution of the outer Solar System
Morbidelli, Alessandro (2010)
Comptes Rendus Physique, v. 11, iss. 9-10, p. 651-659.
http://www.sciencedirect.com/science/article/pii/S1631070510001532
http://arxiv.org/pdf/1010.6221.pdf
Late Orbital Instabilities in the Outer Planets Induced by Interaction with a Self-gravitating Planetesimal Disk
Levison, Harold F.; Morbidelli, Alessandro; Tsiganis, Kleomenis; Nesvorný, David; Gomes, Rodney (2011)
The Astronomical Journal, Volume 142, Issue 5, article id. 152, 11 pp.
http://iopscience.iop.org/1538-3881/142/5/152
Young Solar System's Fifth Giant Planet?
Nesvorný, David (2011)
The Astrophysical Journal Letters, Volume 742, Issue 2, article id. L22, 6 pp.
http://iopscience.iop.org/2041-8205/742/2/L22/
http://arxiv.org/pdf/1109.2949v1.pdf
Instability-driven Dynamical Evolution Model of a Primordially Five-planet Outer Solar System
Batygin, Konstantin; Brown, Michael E.; Betts, Hayden (2012)
The Astrophysical Journal Letters, Volume 744, Issue 1, article id. L3, 5 pp.
http://iopscience.iop.org/2041-8205/744/1/L3/
http://arxiv.org/pdf/1111.3682v1.pdf
Statistical Study of the Early Solar System's Instability with Four, Five, and Six Giant Planets
Nesvorný, David; Morbidelli, Alessandro (2012)
The Astronomical Journal, Volume 144, Issue 4, article id. 117, 20 pp.
http://iopscience.iop.org/1538-3881/144/4/117/
http://arxiv.org/pdf/1208.2957v1.pdf
An Archaean heavy bombardment from a destabilized extension of the asteroid belt
Bottke, WilliamF.; Vokrouhlický, David; Minton, David; Nesvorný, David; Morbidelli, Alessandro; Brasser, Ramon; Simonson, Bruce; Levison, :Harold F. (2012)
Nature, Volume 485, Issue 7396, pp. 78-81.
http://www.nature.com/nature/journal/v485/n7396/full/nature10967.html
Capture of Trojans by Jumping Jupiter;
Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2013)
The Astrophysical Journal, Volume 768, Issue 1, article id. 45, 8 pp.
http://iopscience.iop.org/0004-637X/768/1/45/
http://arxiv.org/pdf/1303.2900v1.pdf
Capture of Irregular Satellites at Jupiter
Nesvorny, D.; Vokrouhlicky, D.; Deienno, R. (2014)
The Astrophysical Journal, Volume 784, Number 1, article id. 22
http://iopscience.iop.org/0004-637X/784/1/22
http://arxiv.org/pdf/1401.0253v1.pdf

Planetesimal-driven Migration

[edit]
Some dynamical aspects of the accretion of Uranus and Neptune
the exchange of orbital angular momentum with planetesimals
Fernandez, J. A.; Ip, W.-H. (1984)
Icarus, vol. 58, April 1984, p. 109-120.
http://www.sciencedirect.com/science/article/pii/0019103584901015
Planet Migration in Planetesimal Disks
Levison, H. F.; Morbidelli, A.; Gomes, R.; Backman, D. (2007)
Protostars and Planets V, B. Reipurth, D. Jewitt, and K. Keil (eds.), University of Arizona Press, Tucson, 951 pp., 2007., p.669-684 p.669-684
Planet Migration through a Self-Gravitating Planetesimal Disk
Moore, Alexander J.; Quillen, Alice C.; Edgar, Richard G. (2008)
http://arxiv.org/pdf/0809.2855v1.pdf
Two dynamical classes of Centaurs
Bailey, Brenae L.; Malhotra, Renu (2009)
Icarus, Volume 203, Issue 1, p. 155-163.
http://www.sciencedirect.com/science/article/pii/S0019103509001651
http://arxiv.org/pdf/0906.4795v1.pdf
Simulations of planet migration driven by planetesimal scattering
Kirsh, David R.; Duncan, Martin; Brasser, Ramon; Levison, Harold F. (2009)
Icarus, Volume 199, Issue 1, p. 197-209.
http://www.sciencedirect.com/science/article/pii/S0019103508003084
Migration of Planets Embedded in a Circumstellar Disk
Bromley, Benjamin C.; Kenyon, Scott J. (2011)
The Astrophysical Journal, Volume 735, Issue 1, article id. 29, 15 pp.
http://iopscience.iop.org/0004-637X/735/1/29/
http://arxiv.org/pdf/1101.4025v2.pdf
Planetesimal-driven planet migration in the presence of a gas disk
Capobianco, Christopher C.; Duncan, Martin; Levison, Harold F. (2011)
Icarus, Volume 211, Issue 1, p. 819-831.
http://www.sciencedirect.com/science/article/pii/S0019103510003374
http://arxiv.org/pdf/1009.4525v1.pdf
Migration Rates of Planets due to Scattering of Planetesimals
Ormel, C. W.; Ida, S.; Tanaka, H. (2012)
The Astrophysical Journal, Volume 758, Issue 2, article id. 80, 17 pp.
http://iopscience.iop.org/0004-637X/758/2/80/
http://arxiv.org/pdf/1207.7104v1.pdf

Planetary Scattering

[edit]
Modeling the Diversity of Outer Planetary Systems
Levison, Harold F.; Lissauer, Jack J.; Duncan, Martin J. (1998)
The Astronomical Journal, Volume 116, Issue 4, pp. 1998-2014.
http://iopscience.iop.org/1538-3881/116/4/1998/
The Formation of Ice Giants in a Packed Oligarchy. Instability and Aftermath
Ford, Eric B.; Chiang, Eugene I. (2007)
The Astrophysical Journal, Volume 661, Issue 1, pp. 602-615.
http://iopscience.iop.org/0004-637X/661/1/602/
http://arxiv.org/pdf/astro-ph/0701745v2.pdf
Models of the collisional damping scenario for ice-giant planets and Kuiper belt formation
Levison, Harold F.; Morbidelli, Alessandro (2007)
Icarus, Volume 189, Issue 1, p. 196-212.
http://www.sciencedirect.com/science/article/pii/S0019103507000371
http://arxiv.org/pdf/astro-ph/0701544v1.pdf
From Mean Motion Resonances to Scattered Planets. Producing the Solar System, Eccentric Exoplanets, and Late Heavy Bombardments
Thommes, Edward W.; Bryden, Geoffrey; Wu, Yanqin; Rasio, Frederic A. (2008)
The Astrophysical Journal, Volume 675, Issue 2, pp. 1538-1548.
http://iopscience.iop.org/0004-637X/675/2/1538/
http://arxiv.org/pdf/0706.1235v1.pdf
Dynamical Evolution of Planetary Systems
Morbidelli, Alessandro (2013)
Planets, Stars and Stellar Systems, by Oswalt, Terry D.; French, Linda M.; Kalas, Paul, Springer Science+Business Media Dordrecht, 2013, p. 63
http://link.springer.com/referenceworkentry/10.1007%2F978-94-007-5606-9_2
http://arxiv.org/pdf/1106.4114.pdf
Planetary system disruption by Galactic perturbations to wide binary stars
Kaib, Nathan A.; Raymond, Sean N.; Duncan, Martin (2013)
Nature, Volume 493, Issue 7432, pp. 381-384.
http://www.nature.com/nature/journal/v493/n7432/full/nature11780.html
http://arxiv.org/pdf/1301.3145v1.pdf
The Fate of Scattered Planets
Bromley, Benjamin C.; Kenyon, Scott J.
The Astrophysical Journal, Volume 796, Issue 2, article id. 141, 9 pp. (2014).
http://iopscience.iop.org/0004-637X/796/2/141/
http://arxiv.org/pdf/1410.2816v1.pdf

Jupiter-core-core-Saturn

[edit]
The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System
Thommes, Edward W.; Duncan, Martin J.; Levison, Harold F. (1999)
Nature, Volume 402, Issue 6762, pp. 635-638
http://www.nature.com/nature/journal/v402/n6762/abs/402635a0.html
The Formation of Uranus and Neptune among Jupiter and Saturn
Thommes, E. W.; Duncan, M. J.; Levison, H. F. (2002)
The Astronomical Journal, Volume 123, Issue 5, pp. 2862-2883.
http://iopscience.iop.org/1538-3881/123/5/2862/
http://arxiv.org/pdf/astro-ph/0111290v1.pdf
A Fairy Tale about the Formation of Uranus and Neptune and the Lunar Late Heavy Bombardment
Levison, H. F.; Thommes, E.; Duncan, M. J.; Dones, L. (2004)
ASP Conference Series, Vol. 324, Proceedings of the conference held 11-13 April, 2002 , p.152
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?2004ASPC..324..152L&

Initial Conditions

[edit]
Reversing type II migration resonance trapping of a lighter giant protoplanet
Masset, F.; Snellgrove, M. (2001)
Monthly Notices of the Royal Astronomical Society, Volume 320, Issue 4, pp. L55-L59.
http://mnras.oxfordjournals.org/content/320/4/L55
http://arxiv.org/pdf/astro-ph/0003421v2.pdf
The dynamics of Jupiter and Saturn in the gaseous proto-planetary disk
Morbidelli, Alessandro; Crida, Aurélien (2007)
Icarus, Volume 191, Issue 1, p. 158-171.
http://www.sciencedirect.com/science/article/pii/S0019103507001480
http://arxiv.org/pdf/0704.1210v1.pdf
Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture
Morbidelli, Alessandro; Tsiganis, Kleomenis; Crida, Aurélien; Levison, Harold F.; Gomes, Rodney (2007)
The Astronomical Journal, Volume 134, Issue 5, pp. 1790-1798.
http://iopscience.iop.org/1538-3881/134/5/1790/
http://arxiv.org/pdf/0706.1713.pdf
Constraints on resonant–trapping for two planets embedded in a protoplanetary disc
Pierens, A.; Nelson, R. P. (2008)
Astronomy and Astrophysics, Volume 482, Issue 1, pp.333-340.
http://www.aanda.org/articles/aa/abs/2008/16/aa9062-07/aa9062-07.html
http://arxiv.org/pdf/0802.2033.pdf
On the Orbital Evolution of a Giant Planet Pair Embedded in a Gaseous Disk. I. Jupiter-Saturn Configuration
Zhang, Hui; Zhou, Ji-Lin (2010)
The Astrophysical Journal, Volume 714, Issue 1, pp. 532-548.
http://iopscience.iop.org/0004-637X/714/1/532/
http://arxiv.org/pdf/1002.2201v2.pdf
Early Dynamical Evolution of the Solar System. Pinning Down the Initial Conditions of the Nice Model
Batygin, Konstantin; Brown, Michael E. (2010)
The Astrophysical Journal, Volume 716, Issue 2, pp. 1323-1331.
http://iopscience.iop.org/0004-637X/716/2/1323/
http://arxiv.org/pdf/1004.5414.pdf
Outward Migration of Jupiter and Saturn in Evolved Gaseous Disks
D'Angelo, Gennaro; Marzari, Francesco (2012)
The Astrophysical Journal, Volume 757, Issue 1, article id. 50, 23 pp.
http://iopscience.iop.org/0004-637X/757/1/50/
http://arxiv.org/pdf/1207.2737v2.pdf
Mass Growth and Evolution of Giant Planets on Resonant Orbits
Marzari, Francesco; D'Angelo, G. (2013)
American Astronomical Society, DPS meeting #45, #113.04
http://adsabs.harvard.edu/abs/2013DPS....4511304M
Planet-Disk Interactions and Early Evolution of Planetary Systems
Baruteau, C.; Crida, A.; Paardekooper, S.-J.; Masset, F.; Guilet, J.; Bitsch, B.; Nelson, R.; Kley, W.; Papaloizou, J. (2013)
Protostars and Planets VI, Henrik Beuther, Ralf S. Klessen, Cornelis P. Dullemond, and Thomas Henning (eds.), University of Arizona Press, Tucson, 914 pp., p.667-689
https://www.youtube.com/watch?v=_HMw4Lh7IOo
https://arxiv.org/pdf/1312.4293.pdf
Stability of the Outer Planets in Multiresonant Configurations with a Self-gravitating Planetesimal Disk
Reyes-Ruiz, Mauricio; Aceves, Hector; Chavez, Carlos E. (2015)
The Astrophysical Journal, Volume 804, Issue 2, article id. 91, 13 pp.
http://iopscience.iop.org/article/10.1088/0004-637X/804/2/91
http://arxiv.org/pdf/1406.2341v1.pdf
The structure of protoplanetary discs around evolving young stars
Bitsch, Bertram; Johansen, Anders; Lambrechts, Michiel; Morbidelli, Alessandro (2015)
Astronomy & Astrophysics, Volume 575, id.A28, 17 pp.
https://www.aanda.org/articles/aa/abs/2015/03/aa24964-14/aa24964-14.html
https://arxiv.org/pdf/1411.3255.pdf
Migration of Two Massive Planets into (and out of) First Order Mean Motion Resonances
Deck, Katherine M.; Batygin, Konstantin (2015)
The Astrophysical Journal, Volume 810, Issue 2, article id. 119, 20 pp.
http://iopscience.iop.org/article/10.1088/0004-637X/810/2/119
http://arxiv.org/pdf/1506.01382v1.pdf
Outwards migration for planets in stellar irradiated 3D discs
Lega, E.; Morbidelli, A.; Bitsch, B.; Crida, A.; Szulágyi, J. (2015)
Monthly Notices of the Royal Astronomical Society, Volume 452, Issue 2, p.1717-1726
https://academic.oup.com/mnras/article-abstract/452/2/1717/1064683/
https://arxiv.org/pdf/1506.07348.pdf
The growth of planets by pebble accretion in evolving protoplanetary discs
Bitsch, Bertram; Lambrechts, Michiel; Johansen, Anders (2015)
Astronomy & Astrophysics, Volume 582, id.A112, 24 pp.
https://www.aanda.org/articles/aa/abs/2015/10/aa26463-15/aa26463-15.html
https://arxiv.org/pdf/1507.05209.pdf
Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn
Izidoro, Andre; Morbidelli, Alessandro; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud (2015)
Astronomy & Astrophysics, Volume 582, id.A99, 16 pp.
http://www.aanda.org/articles/aa/abs/2015/10/aa25525-14/aa25525-14.html
http://arxiv.org/pdf/1506.03029v1.pdf
Fossilized condensation lines in the Solar System protoplanetary disk
Morbidelli, A.; Bitsch, B.; Crida, A.; Gounelle, M.; Guillot, T.; Jacobson, S.; Johansen, A.; Lambrechts, M.; Lega, E. (2016)
Icarus, Volume 267, p. 368-376.
http://www.sciencedirect.com/science/article/pii/S0019103515005448
https://arxiv.org/pdf/1511.06556.pdf
Influence of the water content in protoplanetary discs on planet migration and formation
Bitsch, Bertram; Johansen, Anders (2016)
Astronomy & Astrophysics, Volume 590, id.A101, 15 pp.
https://www.aanda.org/articles/aa/abs/2016/06/aa27676-15/aa27676-15.html
https://arxiv.org/pdf/1603.01125.pdf
Trapping planets in an evolving protoplanetary disk, preferred time, locations, and planet mass
Baillié, K.; Charnoz, S.; Pantin, E. (2016)
Astronomy & Astrophysics, Volume 590, id.A60, 12 pp.
https://www.aanda.org/articles/aa/abs/2016/06/aa28027-15/aa28027-15.html
https://arxiv.org/pdf/1603.07674.pdf
Challenges in planet formation
Morbidelli, Alessandro; Raymond, Sean N. (2016)
Journal of Geophysical Research: Planets, Volume 121, Issue 10, pp. 1962-1980
http://onlinelibrary.wiley.com/doi/10.1002/2016JE005088/abstract
https://arxiv.org/pdf/1610.07202.pdf
Evolution of protoplanetary discs with magnetically driven disc winds
Suzuki, Takeru K.; Ogihara, Masahiro; Morbidelli, Alessandro; Crida, Aurélien; Guillot, Tristan (2016)
Astronomy & Astrophysics, Volume 596, id.A74, 15 pp.
https://www.aanda.org/articles/aa/abs/2016/12/aa28955-16/aa28955-16.html
https://arxiv.org/pdf/1609.00437.pdf
Constraining the Giant Planets’ Initial Configuration from Their Evolution. Implications for the Timing of the Planetary Instability
Deienno, Rogerio; Morbidelli, Alessandro; Gomes, Rodney S.; Nesvorný, David (2017)
The Astronomical Journal, Volume 153, Issue 4, article id. 153, 13 pp.
http://iopscience.iop.org/article/10.3847/1538-3881/aa5eaa/meta
https://arxiv.org/pdf/1702.02094.pdf
Dynamics of the Giant Planets due to a Fully Self-gravitating Planetesimal Disk
Quarles, Billy L.; Kaib, Nathan A. (2017)
American Astronomical Society, AAS Meeting #229, id.112.02
Runaway gas accretion and gap opening versus type I migration
Crida, A.; Bitsch, B. (2017)
Icarus, Volume 285, p. 145-154.
http://www.sciencedirect.com/science/article/pii/S0019103516306686
https://arxiv.org/pdf/1610.05403.pdf

Grand Tack

[edit]
Formation of the Terrestrial Planets from a Narrow Annulus
Hansen, Brad M. S. (2009)
The Astrophysical Journal, Volume 703, Issue 1, pp. 1131-1140.
http://iopscience.iop.org/0004-637X/703/1/1131/
http://arxiv.org/pdf/0908.0743v1.pdf
A low mass for Mars from Jupiter's early gas-driven migration
Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M. (2011)
Nature, Volume 475, Issue 7355, pp. 206-209.
http://www.nature.com/nature/journal/v475/n7355/full/nature10201.html
http://arxiv.org/pdf/1201.5177v1.pdf
Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula
Pierens, A.; Raymond, S. N. (2011)
Astronomy & Astrophysics, Volume 533, id.A131, 14 pp.
http://www.aanda.org/articles/aa/abs/2011/09/aa17451-11/aa17451-11.html
http://arxiv.org/pdf/1107.5656v1.pdf
Populating the asteroid belt from two parent source regions due to the migration of giant planets—"The Grand Tack"
Walsh, Kevin J.; Morbidelli, A.; Raymond, S. N.; O'Brien, D. P.; Mandell, A. M. (2012)
Meteoritics & Planetary Science, Volume 47, Issue 12, pp. 1941-1947.
http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2012.01418.x/abstract
Lunar and terrestrial planet formation in the Grand Tack scenario
Jacobson, S. A.; Morbidelli, A.
Phil. Trans. R. Soc. A, Vol. 372, id. 0174
http://rsta.royalsocietypublishing.org/content/372/2024/20130174
http://arxiv.org/pdf/1406.2697v1.pdf
The Grand Tack model a critical review
Raymond, Sean N.; Morbidelli, Alessandro
eprint arXiv:1409.6340
http://arxiv.org/pdf/1409.6340v1.pdf
Outward migration of Jupiter and Saturn in 3/2 or 2/1 resonance in radiative disks, implications for the Grand Tack and Nice models
Pierens, Arnaud; Raymond, Sean N.; Nesvorny, David; Morbidelli, Alessandro (2014)
The Astrophysical Journal Letters, Volume 795, Issue 1, article id. L11, 6 pp.
http://iopscience.iop.org/2041-8205/795/1/L11/
http://arxiv.org/pdf/1410.0543v1.pdf
Jupiter's Decisive Role in the Inner Solar System's Early Evolution
Batygin, Konstantin; Laughlin, Greg (2015)
Proceedings of the National Academy of Sciences, vol. 112, issue 14, pp. 4214-4217
http://www.pnas.org/content/112/14/4214
http://arxiv.org/pdf/1503.06945v1.pdf
Earth and Terrestrial Planet Formation
Jacobson, Seth A.; Walsh, Kevin J.
The Early Earth: Accretion and Differentiation
http://onlinelibrary.wiley.com/doi/10.1002/9781118860359.ch3/summary
https://arxiv.org/pdf/1502.03852.pdf
Analysis of Terrestrial Planet Formation by the Grand Tack Model. System Architecture and Tack Location
Brasser, R.; Matsumura, S.; Ida, S.; Mojzsis, S. J.; Werner, S. C. (2016)
The Astrophysical Journal, Volume 821, Issue 2, article id. 75, 18 pp.
http://iopscience.iop.org/article/10.3847/0004-637X/821/2/75
https://arxiv.org/pdf/1603.01009http://iopscience.iop.org/article/10.3847/0004-637X/821/2/75
Terrestrial Planet Formation from an Annulus
Walsh, Kevin J.; Levison, Harold F. (2016)
The Astronomical Journal, Volume 152, Issue 3, article id. 68, 11 pp.
http://iopscience.iop.org/article/10.3847/0004-6256/152/3/68/meta
https://arxiv.org/pdf/1609.06639.pdf
The cool and distant formation of Mars
Brasser, R.; Mojzsis, S. J.; Matsumura, S.; Ida, S. (2017)
Earth and Planetary Science Letters, Volume 468, p. 85-93.
http://www.sciencedirect.com/science/article/pii/S0012821X1730184X
https://arxiv.org/pdf/1704.00184
Timing of the formation and migration of giant planets as constrained by CB chondrites
Johnson, B. C.; Walsh, K. J.; Minton, D. A.; Krot, A. N.; Levison, H. F.
Science Advances, vol. 2, issue 12, pp. e1601658-e1601658
http://advances.sciencemag.org/content/2/12/e1601658
The Trouble with Building Planets Too Quickly
Rapid Accretion in Grand Tack Simulations Requires Extremely Efficient Mantle Equilibration of Hf-W
Zube, N. G.; Nimmo, F.; Jacobson, S. A.; Fischer, R.
48th Lunar and Planetary Science Conference
https://www.hou.usra.edu/meetings/lpsc2017/pdf/1750.pdf

Alternates

[edit]
Terrestrial Planet Formation in a Protoplanetary Disk with a Local Mass Depletion
A Successful Scenario for the Formation :Izidoro, A.; Haghighipour, N.; Winter, O. C.; Tsuchida, M. (2014)
The Astrophysical Journal, Volume 782, Issue 1, article id. 31, 20 pp.
http://iopscience.iop.org/article/10.1088/0004-637X/782/1/31/meta
https://arxiv.org/pdf/1312.3959
Gas Giant Planets as Dynamical Barriers to Inward-Migrating Super-Earths
Izidoro, André; Raymond, Sean N.; Morbidelli, Alessandro; Hersant, Franck; Pierens, Arnaud (2015)
The Astrophysical Journal Letters, Volume 800, Issue 2, article id. L22, 5 pp.
http://iopscience.iop.org/article/10.1088/2041-8205/800/2/L22/meta
https://arxiv.org/pdf/1501.06308
Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn
Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud (2015)
Astronomy & Astrophysics, Volume 582, id.A99, 16 pp.
https://www.aanda.org/articles/aa/abs/2015/10/aa25525-14/aa25525-14.html
https://arxiv.org/pdf/1506.03029
Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects
Levison, Harold F.; Kretke, Katherine A.; Walsh, Kevin; Bottke, William (2015)
Proceedings of the National Academy of Sciences, vol. 112 no. 4, p. 14180-14185
http://www.pnas.org/content/112/46/14180
http://arxiv.org/pdf/1510.02095v1
Terrestrial planet formation constrained by Mars and the structure of the asteroid belt
Izidoro, André; Raymond, Sean N.; Morbidelli, Alessandro; Winter, Othon C. (2016)
Monthly Notices of the Royal Astronomical Society, Volume 453, Issue 4, p.3619-3634
https://academic.oup.com/mnras/article-abstract/453/4/3619/2593672/
https://arxiv.org/pdf/1508.01365
Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?
Raymond, Sean N.; Izidoro, Andre; Bitsch, Bertram; Jacobson, Seth A. (2016)
Monthly Notices of the Royal Astronomical Society, Volume 458, Issue 3, p.2962-2972
https://academic.oup.com/mnras/article-abstract/458/3/2962/2589174/
https://arxiv.org/pdf/1602.06573
On the water delivery to terrestrial embryos by ice pebble accretion
Sato, Takao; Okuzumi, Satoshi; Ida, Shigeru
Astronomy & Astrophysics, Volume 589, id.A15, 19 pp.
https://www.aanda.org/articles/aa/abs/2016/05/aa27069-15/aa27069-15.html
https://arxiv.org/pdf/1512.02414.pdf
The Asteroid Belt as a Relic from a Chaotic Early Solar System
Izidoro, André; Raymond, Sean N.; Pierens, Arnaud; Morbidelli, Alessandro; Winter, Othon C.; Nesvorny`, David (2016)
The Astrophysical Journal, Volume 833, Issue 1, article id. 40, 18 pp.
http://iopscience.iop.org/article/10.3847/1538-4357/833/1/40/meta
https://arxiv.org/pdf/1609.04970
Planetesimal Clearing and Size-dependent Asteroid Retention by Secular Resonance Sweeping during the Depletion of the Solar Nebula
Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N.
The Astrophysical Journal, Volume 836, Issue 2, article id. 207, 21 pp.
http://iopscience.iop.org/article/10.3847/1538-4357/836/2/207/meta
https://arxiv.org/pdf/1610.09670
Terrestrial Planet Formation. Dynamical Shake-up and the Low Mass of Mars
Bromley, Benjamin C.; Kenyon, Scott J. (2017)
The Astronomical Journal, Volume 153, Issue 5, article id. 216, 17 pp.
http://iopscience.iop.org/article/10.3847/1538-3881/aa6aaa/meta
https://arxiv.org/pdf/1703.10618
An Early Instabilities Effect on Terrestrial Planetary Formation
Clement, Matthew; Kaib, Nathan A.
American Astronomical Society, DDA meeting #48, id.102.01
Origin of water in the inner Solar System. Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion
Raymond, Sean N.; Izidoro, Andre (2017)
Icarus, Volume 297, p. 134-148.
http://www.sciencedirect.com/science/article/pii/S0019103517302592
https://arxiv.org/pdf/1707.01234
The Empty Primordial Asteroid Belt
Raymond, Sean N.; Izidoro, Andre
arXiv:1709.04242
https://arxiv.org/pdf/1709.04242

Jumping Jupiter

[edit]
Constructing the secular architecture of the solar system I. The giant planets
Morbidelli, A.; Brasser, R.; Tsiganis, K.; Gomes, R.; Levison, H. F. (2009)
Astronomy and Astrophysics, Volume 507, Issue 2, pp.1041-1052.
http://www.aanda.org/articles/aa/abs/2009/44/aa12876-09/aa12876-09.html
http://arxiv.org/pdf/0909.1886v1.pdf
Constructing the secular architecture of the solar system II. the terrestrial planets
Brasser, R.; Morbidelli, A.; Gomes, R.; Tsiganis, K.; Levison, H. F. (2009)
Astronomy and Astrophysics, Volume 507, Issue 2, pp.1053-1065.
http://www.aanda.org/articles/aa/abs/2009/44/aa12878-09/aa12878-09.html
http://arxiv.org/pdf/0909.1891.pdf
Evidence from the Asteroid Belt for a Violent Past Evolution of Jupiter's Orbit
Morbidelli, Alessandro; Brasser, Ramon; Gomes, Rodney; Levison, Harold F.; Tsiganis, Kleomenis (2010)
The Astronomical Journal, Volume 140, Issue 5, pp. 1391-1401.
http://iopscience.iop.org/1538-3881/140/5/1391/
http://arxiv.org/pdf/1009.1521.pdf
On the Migration of Jupiter and Saturn. Constraints from Linear Models of Secular Resonant Coupling with the Terrestrial Planets
Agnor, Craig B.; Lin, D. N. C. (2012)
The Astrophysical Journal, Volume 745, Issue 2, article id. 143, 20 pp.
http://iopscience.iop.org/0004-637X/745/2/143/
http://arxiv.org/pdf/1110.5042v2.pdf

Additional Planets

[edit]
Young Solar System's Fifth Giant Planet?
Nesvorný, David (2011)
The Astrophysical Journal Letters, Volume 742, Issue 2, article id. L22, 6 pp.
http://iopscience.iop.org/2041-8205/742/2/L22/
http://arxiv.org/pdf/1109.2949v1.pdf
Instability-driven Dynamical Evolution Model of a Primordially Five-planet Outer Solar System
Batygin, Konstantin; Brown, Michael E.; Betts, Hayden (2012)
The Astrophysical Journal Letters, Volume 744, Issue 1, article id. L3, 5 pp.
http://iopscience.iop.org/2041-8205/744/1/L3/
http://arxiv.org/pdf/1111.3682v1.pdf
Statistical Study of the Early Solar System's Instability with Four, Five, and Six Giant Planets
Nesvorný, David; Morbidelli, Alessandro (2012)
The Astronomical Journal, Volume 144, Issue 4, article id. 117, 20 pp.
http://iopscience.iop.org/1538-3881/144/4/117/
http://arxiv.org/pdf/1208.2957v1.pdf

Late Heavy Bombardment

[edit]

Overview

[edit]
What are the Real Constraints on Commencement of the Late Heavy Bombardment?
Chapman, C. R.; Cohen, B. A.; Grinspoon, D. H. (2002)
33rd Annual Lunar and Planetary Science Conference, March 11-15, 2002, Houston, Texas, abstract no.1627
http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1627.pdf
Geochemical and Geochronological Constraints on Early Lunar Bombardment History
Cohen, B. A. (2002)
33rd Annual Lunar and Planetary Science Conference, March 11-15, 2002, Houston, Texas, abstract no.1984
http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1984.pdf
Review of the population of impactors and the impact cratering rate in the inner solar system
Michel, Patrick; Morbidelli, Alessandro (2007)
Meteoritics & Planetary Science, vol. 42, Issue 11, p.1861-1869
http://articles.adsabs.harvard.edu/full/2007M%26PS...42.1861M
What are the real constraints on the existence and magnitude of the late heavy bombardment?
Chapman, Clark R.; Cohen, Barbara A.; Grinspoon, David H. (2007)
Icarus, Volume 189, Issue 1, p. 233-245.
http://www.sciencedirect.com/science/article/pii/S0019103507000255
Chronology of Impact Bombardment in the Early Solar System. An Overview
Bogard, D. D. (2008)
Workshop on the Early Solar System Impact Bombardment, held November 19-20, 2008 in Houston, Texas. LPI Contribution No. 1439., p.17-18
http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3003.pdf
The Lunar Cataclysm Hypothesis. Status and Prospects
Norman, M. D. (2008)
39th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXIX), held March 10-14, 2008 in League City, Texas. LPI Contribution No. 1391., p.1126
http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1126.pdf
Impact bombardment of the terrestrial planets and the early history of the Solar System
Fassett, Caleb I.; Minton, David A. (2013)
Nature Geoscience, Volume 6, Issue 7, pp. 520-524.
http://www.nature.com/ngeo/journal/v6/n7/full/ngeo1841.html
The Late Heavy Bombardment
Bottke, William F.; Norman, Marc D. (2017)
Annual Review of Earth and Planetary Sciences, vol. 45, issue 1, pp. 619-647
http://www.annualreviews.org/doi/10.1146/annurev-earth-063016-020131

Supportive

[edit]
The Lunar Time Scale and A Summary of Isotopic Evidence For A Terminal Lunar Cataclysm
Tera, F.; Papanastassiou, D. A.; Wasserburg, G. J. (1974)
Abstracts of the Lunar and Planetary Science Conference, volume 5, page 792.
http://articles.adsabs.harvard.edu/full/1974LPI.....5..792T
Late heavy bombardment of the moon and terrestrial planets
Wetherill, G. W. (1975)
Lunar Science Conference, 6th, Houston, Tex., March 17-21, 1975, Proceedings. Volume 2. (A78-46668 21-91) New York, Pergamon Press, Inc., 1975, p. 1539-1561. , G. W.
http://articles.adsabs.harvard.edu/full/1975LPSC....6.1539W
Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages
Cohen, B. A.; Swindle, T. D.; Kring, D. A. (2000)
Science, Volume 290, Issue 5497, pp. 1754-1756.
http://www.sciencemag.org/content/290/5497/1754
Lifting the Veil. A Pre-Cataclysm Lunar Impact Melt
Norman, M.; Taylor, L.; Shih, C.; Reese, Y.; Nyquist, L.; Bowen-Thomas, J. (2005)
Meteoritics & Planetary Science, Vol. 40, Supplement, Proceedings of 68th Annual Meeting of the Meteoritical Society, held September 12-16, 2005 in Gatlinburg, Tennessee., p.5147
http://www.lpi.usra.edu/meetings/metsoc2005/pdf/5147.pdf
Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites. Implications for lunar bombardment history
Cohen, B. A.; Swindle, T. D.; Kring, D. A. (2005)
Meteoritics & Planetary Science, Vol. 40, p.755
http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2005.tb00978.x/abstract
http://articles.adsabs.harvard.edu/full/2005M%26PS...40..755C
Understanding the Impact Flux on the Moon over the Last 4.6 Gy
Bottke, W. F.; Levison, H.; Morbidelli, A. (2008)
Workshop on the Early Solar System Impact Bombardment, held November 19-20, 2008 in Houston, Texas. LPI Contribution No. 1439., p.19-20
http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3005.pdf
The onset of the lunar cataclysm as recorded in its ancient crater populations
Marchi, Simone; Bottke, William F.; Kring, David A.; Morbidelli, Alessandro (2012)
Earth and Planetary Science Letters, Volume 325, p. 27-38.
http://www.sciencedirect.com/science/article/pii/S0012821X12000374

Skeptical

[edit]
The case for an Imbrium origin of the Apollo Th-rich impact-melt breccias
Haskin, Larry A.; Korotev, Randy L.; Rockow, Kaylynn M.; Jolliff, Bradley L. (1998)
Meteoritics & Planetary Science, vol. 33, no. 5, pp. 959-975.
http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.1998.tb01703.x/abstract
http://articles.adsabs.harvard.edu/full/1998M%26PS...33..959H
Megaregolith evolution and cratering cataclysm models--Lunar cataclysm as a misconception (28 years later)
Hartmann, W. K. (2003)
Meteoritics &Planetary Science, vol. 38, no. 4, p.579-593
http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2003.tb00028.x/abstract
http://articles.adsabs.harvard.edu/full/2003M%26PS...38..579H
Lunar Prospector Data Imply an Age of 4.1 Ga for the Nectaris Basin, and Other Problems with the Lunar 'Cataclysm' Hypothesis
Warren, P. H. (2003)
Third International Conference on Large Meteorite Impacts, to be held August 5-7, 2003, Nördlingen, Germany, abstract no.4129
http://www.lpi.usra.edu/meetings/largeimpacts2003/pdf/4129.pdf
The lunar cataclysm. Reality or "Mythconception"?
Norman, Marc D. (2009)
Elements, Vol. 5, Issue 1, pp. 23-28.
http://elements.geoscienceworld.org/content/5/1/23.abstract
The Problem of The Proposed Late Cratering Cataclysm
Hartmann, William K. (2009)
American Astronomical Society, DPS meeting #41, #58.08
http://adsabs.harvard.edu/abs/2009DPS....41.5808H
The Sculptured Hills of the Taurus Highlands. Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon
Spudis, Paul D.; Wilhelms, Don E.; Robinson, Mark S. (2011)
Journal of Geophysical Research, Volume 116, CiteID E00H03
http://onlinelibrary.wiley.com/doi/10.1029/2011JE003903/abstract
On the History of Early Meteoritic Bombardment of the Moon. Did the Lunar Terminal Cataclysm Occur?
Neukum, G.; Basilevsky, A. T.; Kneissl, T.; Michael, G. G.; Ivanov, B. A. (2012)
Workshop on the Early Solar System Bombardment II, held 1-3 February 2012, in Houston, Texas. LPI Contribution No. 1649, p.55-56
http://www.lpi.usra.edu/meetings/bombardment2012/pdf/4022.pdf
Heavy Bombardment of the Moon at ~4.2 Ga. Evidence from Ages of Lunar Melt Breccias and Zircons
Norman, M. D.; Nemchin, A. A. (2012)
43rd Lunar and Planetary Science Conference, held March 19-23, 2012 at The Woodlands, Texas. LPI Contribution No. 1659, id.1368
http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1368.pdf
What is the Age of the Nectaris Basin? New Re-Os Constraints for a Pre-4.0 Ga Bombardment History of the Moon
Fischer-Gödde, M.; Becker, H. (2011)
42nd Lunar and Planetary Science Conference, held March 7-11, 2011 at The Woodlands, Texas. LPI Contribution No. 1608, p.1414
http://www.lpi.usra.edu/meetings/lpsc2011/pdf/1414.pdf
Lunar impact basins. Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data
Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T. (2012)
Journal of Geophysical Research, Volume 117, CiteID E00H06
http://onlinelibrary.wiley.com/doi/10.1029/2011JE003951/abstract
Reviewing "Terminal Cataclysm". What Does it Mean?
Hartmann, W. K. (2015)
Workshop on Early Solar System Impact Bombardment III, LPI Contribution No. 1826, p.3003
http://www.hou.usra.edu/meetings/bombardment2015/pdf/3003.pdf
Terminal Cataclysm Epistemology. A Cataclysm that Never Happened?
Hartmann, W. K.(2015)
78th Annual Meeting of the Meteoritical Society, LPI Contribution No. 1856, p.5026
http://www.hou.usra.edu/meetings/metsoc2015/pdf/5026.pdf

Inner solar System

[edit]
Cataclysmic bombardment throughout the inner solar system 3.9-4.0 Ga
Kring, David A.; Cohen, Barbara A. (2002)
Journal of Geophysical Research (Planets), Volume 107, Issue E2, pp. 4-1
http://onlinelibrary.wiley.com/doi/10.1029/2001JE001529/abstract
Late Heavy Bombardment. Evidence From Cratering Histories of the Moon, Planets, Satellites, and Asteroids
Chapman, Clark R. (2007)
American Astronomical Society, DPS meeting #39, #46.01; Bulletin of the American Astronomical Society, Vol. 39, p.504
http://adsabs.harvard.edu/abs/2007DPS....39.4601C
Chronological Evidence for the Late Heavy Bombardment in Ordinary Chondrite Meteorites
Swindle, T. D.; Kring, D. A. (2008)
Workshop on the Early Solar System Impact Bombardment, held November 19-20, 2008 in Houston, Texas. LPI Contribution No. 1439., p.59-60
http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3004.pdf
Ages of very large impact basins on Mars. Implications for the late heavy bombardment in the inner solar system
Frey, Herbert (2008)
Geophysical Research Letters, Volume 35, Issue 13, CiteID L13203
http://onlinelibrary.wiley.com/doi/10.1029/2008GL033515/abstract;jsessionid=8CA2BB67DF47DBD41F98B3F882B2DFC3.d03t02?
LHB Evidence on Asteroids
Bogard, D. D. (2012)
Workshop on the Early Solar System Bombardment II, held 1-3 February 2012, in Houston, Texas. LPI Contribution No. 1649, p.4-5
http://www.lpi.usra.edu/meetings/bombardment2012/pdf/4001.pdf
Impact History of Large Bolides at Mars. Implications for the Late-Heavy Bombardment and Isochron Uncertainties
Robbins, S. J.; Hynek, B. M. (2012)
43rd Lunar and Planetary Science Conference, held March 19-23, 2012 at The Woodlands, Texas. LPI Contribution No. 1659, id.1649
http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1649.pdf
The Vestan cataclysm. Impact-melt clasts in howardites and the bombardment history of 4 Vesta
Cohen, Barbara A. (2012)
Meteoritics & Planetary Science, Volume 48, Issue 5, pp. 771-785.
http://onlinelibrary.wiley.com/doi/10.1111/maps.12101/abstract;jsessionid=1EB1A62256EF01B77A75A79E1FC6BA33.d04t04?
http://www.lpi.usra.edu/meetings/lpsc2012/pdf/1265.pdf
High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites
Marchi, S.; Bottke, W. F.; Cohen, B. A.; Wünnemann, K .D.; Kring, A.; McSween, H. Y.; De Sanctis, M. C.; O’Brien, D. P.; Schenk, P.; Raymond, C. A.; Russell, C. T. (2013)
Nature Geoscience, Volume 6, Issue 4, pp. 303-307.
http://www.nature.com/ngeo/journal/v6/n4/abs/ngeo1769.html
Global resurfacing of Mercury 4.0-4.1 billion years ago by heavy bombardment and volcanism
Marchi, Simone; Chapman, Clark R.; Fassett, Caleb I.; Head, James W.; Bottke, W. F.; Strom, Robert G. (2013)
Nature, Volume 499, Issue 7456, pp. 59-61.
http://www.nature.com/nature/journal/v499/n7456/full/nature12280.html
The inner solar system cratering record and the evolution of impactor populations
Strom, Robert G.; Malhotra, Renu; Xiao, Zhiyong; Ito, Takashi; Yoshida, Fumi; Ostrach, Lillian R. (2015)
Research in Astronomy and Astrophysics, Volume 15, Issue 3, article id. 407
http://iopscience.iop.org/article/10.1088/1674-4527/15/3/009
http://arxiv.org/pdf/1407.4521v1.pdf
Dating the Moon-forming impact event with asteroidal meteorites
Bottke, W. F.; Vokrouhlický, D.; Marchi, S.; Swindle, T.; Scott, E. R. D.; Weirich, J. R.; Levison, H. (2015)
Science, Volume 348, Issue 6232, pp. 321-323
http://science.sciencemag.org/content/348/6232/321

Impactors

[edit]
The Origin of Planetary Impactors in the Inner Solar System
Strom, Robert G.; Malhotra, Renu; Ito, Takashi; Yoshida, Fumi; Kring, David A. (2005)
Science, Volume 309, Issue 5742, pp. 1847-1850.
http://www.sciencemag.org/content/309/5742/1847
http://arxiv.org/pdf/astro-ph/0510200v1.pdf
Can Impactors from the Main Asteroid Belt Erase a Cometary Cratering Record on the Moon?
Minton, D. A.; Strom, R. G.; Malhotra, R. (2008)
Workshop on the Early Solar System Impact Bombardment, LPI Contribution No. 1439., p.43-44
http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3022.pdf
The Late Heavy Bombardment and deficiency of impact vapour condensate on the Moon
Svetsov, V. (2011)
EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France. p.857
http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-857.pdf
Understanding The Apparent Lack Of Cometary Impactors During The Late Heavy Bombardment On The Moon
Minton, David A.; Richardson, J. (2012)
American Astronomical Society, DPS meeting #44, #401.04
http://adsabs.harvard.edu/abs/2012DPS....4440104M
The Earth-Moon system during the late heavy bombardment period - Geochemical support for impacts dominated by comets
Gråe Jørgensen, Uffe; Appel, Peter W. U.; Hatsukawa, Yuichi; Frei, Robert; Oshima, Masumi; Toh, Yosuke; Kimura, Atsushi (2009)
Icarus, Volume 204, Issue 2, p. 368-380.
http://www.sciencedirect.com/science/article/pii/S0019103509002905
http://arxiv.org/pdf/0907.4104v1.pdf
Direct Detection of Projectile Relics from the End of the Lunar Basin-Forming Epoch
Joy, Katherine H.; Zolensky, Michael E.; Nagashima, Kazuhide; Huss, Gary R.; Ross, D. Kent; McKay, David S.; Kring, David A. (2012)
Science, Volume 336, Issue 6087, pp. 1426-
http://science.sciencemag.org/content/336/6087/1426.full
Re-examining the main asteroid belt as the primary source of ancient lunar craters
Minton, David A.; Richardson, James E.; Fassett, Caleb I. (2014)
Icarus, Volume 247, p. 172-190
http://www.sciencedirect.com/science/article/pii/S0019103514005570
http://arxiv.org/pdf/1408.5304v1.pdf
On Asteroid Impacts, Crater Scaling Laws, and a Proposed Younger Surface Age for Venus
Bottke, W. F.; Vokrouhlicky, D.; Ghent, B.; Mazrouei, S.; Robbins, S.; Marchi, S. (2016)
47th Lunar and Planetary Science Conference
https://www.hou.usra.edu/meetings/lpsc2016/pdf/2036.pdf
Evidence for Two Impacting Populations in the Early Bombardment of Mars and the Moon
Bottke, W. F.; Nesvorny, D.; Roig, F.; Marchi, S.; Vokrouhlicky, D. (2017)
48th Lunar and Planetary Science Conference.
https://www.hou.usra.edu/meetings/lpsc2017/pdf/2572.pdf
Cometary impact rates on the Moon and planets during the late heavy bombardment
Rickman, H.; Wiśniowski, T.; Gabryszewski, R.; Wajer, P.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A. (2017)
Astronomy & Astrophysics, Volume 598, id.A67, 15 pp.
https://www.aanda.org/articles/aa/abs/2017/02/aa29376-16/aa29376-16.html

Extended

[edit]
An Extended Episode of Early Bombardment in the Inner Solar System. Evidence from Lunar Samples and Meteorites
Norman, M. D.; Nemchin, A. A. (2012)
Third Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life, held May 21-25, 2012, in Lake Tahoe, Nevada. LPI Contribution No. 1680, id.7051
http://www.lpi.usra.edu/meetings/earlymars2012/pdf/7051.pdf
Impact spherules as a record of an ancient heavy bombardment of Earth
Johnson, B. C.; Melosh, H. J. (2012)
Nature, Volume 485, Issue 7396, pp. 75-77.
http://www.nature.com/nature/journal/v485/n7396/full/nature10982.html
A sawtooth-like timeline for the first billion years of lunar bombardment
Morbidelli, A.; Marchi, S.; Bottke, W. F.; Kring, D. A. (2012)
Earth and Planetary Science Letters, Volume 355, p. 144-151.
http://www.sciencedirect.com/science/article/pii/S0012821X12004190
http://arxiv.org/pdf/1208.4624v1.pdf
Empirical Studies of Lunar Bombardment Around 3.6-4 Gy Ago
Hartmann, W. K. (2012)
Workshop on the Early Solar System Bombardment II, held 1-3 February 2012, in Houston, Texas. LPI Contribution No. 1649, p.28-29
http://www.lpi.usra.edu/meetings/bombardment2012/pdf/4025.pdf
The bombardment history of the Moon as recorded by 40Ar-39Ar chronology
Fernandes, V. A.; Fritz, J.; Weiss, B. P.; Garrick-Bethell, I.; Shuster, D. L. (2013)
Meteoritics & Planetary Science, Volume 48, Issue 2, pp. 241-269
http://onlinelibrary.wiley.com/doi/10.1111/maps.12054/abstract
Ages of large lunar impact craters and implications for bombardment during the Moon's middle age
Kirchoff, Michelle R.; Chapman, Clark R.; Marchi, Simone; Curtis, Kristen M.; Enke, Brian; Bottke, William F. (2013)
Icarus, Volume 225, Issue 1, p. 325-341.
http://www.sciencedirect.com/science/article/pii/S0019103513001322
Cataclysm No More
New Views on the Timing and Delivery of Lunar Impactors
Zellner, Nicolle E. B.
Origins of Life and Evolution of Biospheres, Volume 47, Issue 3, pp.261-280
https://link.springer.com/article/10.1007%2Fs11084-017-9536-3
https://arxiv.org/ftp/arxiv/papers/1704/1704.06694.pdf

Mechanisms

[edit]
Could the Lunar Late Heavy Bombardment Have Been Triggered by the Formation of Uranus and Neptune?
Levison, Harold F.; Dones, Luke; Chapman, Clark R.; Stern, S. Alan; Duncan, Martin J.; Zahnle, Kevin (2001)
Icarus, Volume 151, Issue 2, pp. 286-306.
http://www.sciencedirect.com/science/article/pii/S0019103501966084
A plausible cause of the late heavy bombardment
Morbidelli, A.; Petit, J.-M.; Gladman, B.; Chambers, J. (2001)
Meteoritics & Planetary Science, vol. 36, no. 3, p. 371-380
http://articles.adsabs.harvard.edu/full/2001M%26PS...36..371M
Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets
Gomes, R.; Levison, H. F.; Tsiganis, K.; Morbidelli, A. (2005)
Nature, Volume 435, Issue 7041, pp. 466-469.
http://www.nature.com/nature/journal/v435/n7041/abs/nature03676.html
Dynamical transport of asteroid fragments from the ν6 resonance
Ito, Takashi; Malhotra, Renu (2006)
Advances in Space Research, Volume 38, Issue 4, p. 817-825.
http://www.sciencedirect.com/science/article/pii/S0273117706004182
http://arxiv.org/pdf/astro-ph/0611548v1.pdf
On the stability of a planet between Mars and the asteroid belt. Implications for the Planet V hypothesis
Chambers, J. E. (2007)
Icarus, Volume 189, Issue 2, p. 386-400.
http://www.sciencedirect.com/science/article/pii/S0019103507000644
A New Dynamical Model for the Lunar Late Heavy Bombardment
33rd Annual Lunar and Planetary Science Conference, March 11-15, 2002, Houston, Texas, abstract no.1093
http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1093.pdf
Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment?
Bottke, William F.; Levison, Harold F.; Nesvorný, David; Dones, Luke (2007)
Icarus, Volume 190, Issue 1, p. 203-223.
http://www.sciencedirect.com/science/article/pii/S0019103507000966
Orbital Evolution of the Moon and the Lunar Cataclysm
Cuk, M. (2008)
Workshop on the Early Solar System Impact Bombardment, held November 19-20, 2008 in Houston, Texas. LPI Contribution No. 1439., p.29
http://www.lpi.usra.edu/meetings/bombardment2008/pdf/3006.pdf
The fate of primordial lunar Trojans
Ćuk, Matija; Gladman, Brett J. (2009)
Icarus, Volume 199, Issue 2, p. 237-244.
http://www.sciencedirect.com/science/article/pii/S0019103508003862
Dynamical evolution of the Hungaria asteroids
McEachern, Firth M.; Ćuk, Matija; Stewart, Sarah T. (2010)
Icarus, Volume 210, Issue 2, p. 644-654.
http://www.sciencedirect.com/science/article/pii/S001910351000309X
Constraints on the source of lunar cataclysm impactors
Ćuk, Matija; Gladman, Brett J.; Stewart, Sarah T. (2010)
Icarus, Volume 207, Issue 2, p. 590-594.
http://www.sciencedirect.com/science/article/pii/S0019103509005028
http://arxiv.org/pdf/0912.1847v1.pdf
Comment on "Constraints on the source of lunar cataclysm impactors" (Cuk et al., 2010, Icarus 207, 590-594)
Malhotra, Renu; Strom, Robert G. (2011)
Icarus, Volume 216, Issue 1, p. 359-362.
http://www.sciencedirect.com/science/article/pii/S0019103510004586
Rebuttal to the comment by Malhotra and Strom on "Constraints on the source of lunar cataclysm impactors"
Ćuk, Matija; Gladman, Brett J.; Stewart, Sarah T. (2011)
Icarus, Volume 216, Issue 1, p. 363-365.
http://www.sciencedirect.com/science/article/pii/S0019103511003289
The terrestrial Planet V hypothesis as the mechanism for the origin of the late heavy bombardment
Brasser, R.; Morbidelli, A. (2011)
Astronomy & Astrophysics, Volume 535, id.A41, 8 pp.
http://www.aanda.org/articles/aa/abs/2011/11/aa17336-11/aa17336-11.html
An Archaean heavy bombardment from a destabilized extension of the asteroid belt
Bottke, William F.; Vokrouhlický, David; Minton, David; Nesvorný, David; Morbidelli, Alessandro; Brasser, Ramon; Simonson, Bruce; Levison, Harold F. (2012)
Nature, Volume 485, Issue 7396, pp. 78-81.
http://www.nature.com/nature/journal/v485/n7396/full/nature10967.html
Chronology and sources of lunar impact bombardment
Ćuk, Matija (2012)
Icarus, Volume 218, Issue 1, p. 69-79.
http://www.sciencedirect.com/science/article/pii/S0019103511004581
http://arxiv.org/pdf/1112.0046v1.pdf
Long-term stability of horseshoe orbits
Ćuk, Matija; Hamilton, Douglas P.; Holman, Matthew J. (2012)
Monthly Notices of the Royal Astronomical Society, Volume 426, Issue 4, pp. 3051-3056
http://mnras.oxfordjournals.org/content/426/4/3051
http://arxiv.org/pdf/1206.1888v2.pdf
Consolidating and Crushing Exoplanets. Did It Happen Here?
Volk, Kathryn; Gladman, Brett (2015)
The Astrophysical Journal Letters, Volume 806, Issue 2, article id. L26, 6 pp.
http://iopscience.iop.org/article/10.1088/2041-8205/806/2/L26
http://arxiv.org/pdf/1502.06558v2.pdf
Debris from Borealis Basin Formation as the Primary Impactor Population of Late Heavy Bombardment
Minton, D. A.; Jackson, A. P.; Asphaug, E.; Fassett, C. I.; Richardson, J. E. (2015)
Workshop on Early Solar System Impact Bombardment III, LPI Contribution No. 1826, p.3033
http://www.hou.usra.edu/meetings/bombardment2015/pdf/3033.pdf
New Insights into the Martian Late Heavy Bombardment
Bottke, W. F.; Marchi, S.; Vokrouhlicky, D.; Robbins, S.; Hynek, B.; Morbidelli, A.
46th Lunar and Planetary Science Conference, LPI Contribution No. 1832, p.1484
http://www.hou.usra.edu/meetings/lpsc2015/pdf/1484.pdf
Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors
Johnson, Brandon C.; Collins, Gareth S.; Minton, David A.; Bowling, Timothy J.; Simonson, Bruce M.; Zuber, Maria T. (2016)
Icarus, Volume 271, p. 350-359.
http://www.sciencedirect.com/science/article/pii/S0019103516000907
Modeling the Historical Flux of Planetary Impactors
Nesvorný, David; Roig, Fernando; Bottke, William F. (2017)
The Astronomical Journal, Volume 153, Issue 3, article id. 103, 22 pp.
http://iopscience.iop.org/article/10.3847/1538-3881/153/3/103
https://arxiv.org/pdf/1612.08771.pdf
The Lunar Late Heavy Bombardment as a Tail-end of Planet Accretion
Morbidelli, A.; Nesvorny, D.; Laurenz, V.; Marchi, S.; Rubie, D. C.; Elkins-Tanton, L.; Jacobson, S. A. (2017)
48th Lunar and Planetary Science Conference
https://www.hou.usra.edu/meetings/lpsc2017/pdf/2298.pdf
Planetary Chaos and the (In)stability of Hungaria Asteroids
Ćuk, Matija; Nesvorný, David
eprint arXiv:1704.05552
https://arxiv.org/pdf/1704.05552

Life

[edit]
Microbial habitability of the Hadean Earth during the late heavy bombardment
Abramov, Oleg; Mojzsis, Stephen J. (2009)
Nature, Volume 459, Issue 7245, pp. 419-422.
http://www.nature.com/nature/journal/v459/n7245/full/nature08015.html

Terrestrial Planets

[edit]
Building the terrestrial planets. Constrained accretion in the inner Solar System
Raymond, Sean N.; O'Brien, David P.; Morbidelli, Alessandro; Kaib, Nathan A. (2009)
Icarus, Volume 203, Issue 2, p. 644-662. (Icarus Homepage)
http://www.sciencedirect.com/science/article/pii/S0019103509002279
http://arxiv.org/pdf/0905.3750v1.pdf
The Effect of an Early Planetesimal-Driven Migration of the Giant Planets on Terrestrial Planet Formation
Walsh, K. J.; Morbidelli, A. (2011)
Astronomy and Astrophysics, Volume 526, id.A126, 8 pp.
http://www.aanda.org/articles/aa/abs/2011/02/aa15277-10/aa15277-10.html
http://arxiv.org/pdf/1101.3776.pdf
Constraining the primordial orbits of the terrestrial planets
Brasser, R.; Walsh, K. J.; Nesvorný, D. (2013)
Monthly Notices of the Royal Astronomical Society, Volume 433, Issue 4, p.3417-3427
http://mnras.oxfordjournals.org/content/433/4/3417
http://arxiv.org/pdf/1306.0975v1.pdf
Terrestrial Planet Formation during the Migration and Resonance Crossings of the Giant Planets
Lykawka, Patryk Sofia; Ito, Takashi (2013)
The Astrophysical Journal, Volume 773, Issue 1, article id. 65, 16 pp.
http://iopscience.iop.org/0004-637X/773/1/65/
http://arxiv.org/ftp/arxiv/papers/1306/1306.3287.pdf
Terrestrial Planet Formation in a Protoplanetary Disk with a Local Mass Depletion. A Successful Scenario for the Formation of Mars
Izidoro, A.; Haghighipour, N.; Winter, O. C.; Tsuchida, M. (2014)
The Astrophysical Journal, Volume 782, Issue 1, article id. 31, 20 pp.
http://iopscience.iop.org/article/10.1088/0004-637X/782/1/31
http://arxiv.org/pdf/1312.3959v1.pdf
Terrestrial planet formation constrained by Mars and the structure of the asteroid belt
Izidoro, André; Raymond, Sean N.; Morbidelli, Alessandro; Winter, Othon C. (2015)
Monthly Notices of the Royal Astronomical Society, Volume 453, Issue 4, p.3619-3634
http://mnras.oxfordjournals.org/content/453/4/3619
http://arxiv.org/pdf/1508.01365v1.pdf
The fragility of the terrestrial planets during a giant-planet instability
Kaib, Nathan A.; Chambers, John E. (2016)
Monthly Notices of the Royal Astronomical Society, Volume 455, Issue 4, p.3561-3569
http://mnras.oxfordjournals.org/content/455/4/3561
http://arxiv.org/pdf/1510.08448v1.pdf
Jumping Jupiter Can Explain Mercury’s Orbit
Roig, Fernando; Nesvorný, David; DeSouza, Sandro Ricardo (2016)
The Astrophysical Journal Letters, Volume 820, Issue 2, article id. L30, 5 pp.
http://iopscience.iop.org/article/10.3847/2041-8205/820/2/L30/meta
https://arxiv.org/pdf/1603.02502
Effects of Dynamical Evolution of Giant Planets on the Delivery of Atmophile Elements During Terrestrial Planet Formation
Matsumura, Soko; Brasser, Ramon; Ida, Shigeru (2016)
eprint arXiv:1512.08182
Formation of terrestrial planets in disks with different surface density profiles
Haghighipour, Nader; Winter, Othon C. (2016)
Celestial Mechanics and Dynamical Astronomy, Volume 124, Issue 3, pp.235-268
http://link.springer.com/article/10.1007%2Fs10569-015-9663-y
http://arxiv.org/pdf/1512.02852v1.pdf

Asteroid Belt

[edit]
Secular resonances inside mean-motion commensurabilities. the 4/1, 3/1, 5/2 and 7/3 cases.
Moons, Michèle; Morbidelli, Alessandro (1995)
Icarus, Volume 114, Issue 1, p. 33-50.
http://www.sciencedirect.com/science/article/pii/S001910358571041X
The Determinant Role of Jupiter's Great Inequality in the Depletion of the Hecuba Gap
Ferraz-Mello, S.; Michtchenko, T. A.; Roig, F. (1998)
The Astronomical Journal, Volume 116, Issue 3, pp. 1491-1500.
http://iopscience.iop.org/1538-3881/116/3/1491
The Primordial Excitation and Clearing of the Asteroid Belt
Petit, Jean-Marc; Morbidelli, Alessandro; Chambers, John (2001)
Icarus, Volume 153, Issue 2, pp. 338-347.
http://www.sciencedirect.com/science/article/pii/S0019103501967028
Regular and Chaotic Dynamics in the Mean-Motion Resonances. Implications for the Structure and Evolution of the Asteroid Belt
Nesvorný, D.; Ferraz-Mello, S.; Holman, M.; Morbidelli, A. (2002)
Asteroids III, W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel (eds), University of Arizona Press, Tucson, p.379-394
http://adsabs.harvard.edu/abs/2002aste.conf..379N
The Effect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids
Bottke, W. F., Jr.; Vokrouhlický, D.; Rubincam, D. P.; Broz, M. (2002)
Asteroids III, W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel (eds), University of Arizona Press, Tucson, p.395-408
http://adsabs.harvard.edu/abs/2002aste.conf..395B
The Yarkovsky and Yorp Effects. Implications for Asteroid Dynamics
Bottke, William F., Jr.; Vokrouhlický, David; Rubincam, David P.; Nesvorný, David (2006)
Annual Review of Earth and Planetary Sciences, vol. 34, p.157-191
http://www.annualreviews.org/doi/abs/10.1146/annurev.earth.34.031405.125154
Non-gravitational forces acting on small bodies
Brož, Miroslav; Vokrouhlický, D.; Bottke, W. F.; Nesvorný, D.; Morbidelli, A.; Capek, D. (2006)
Asteroids, Comets, Meteors, Proceedings of the 229th Symposium of the International Astronomical Union held in Búzios, Rio de Janeiro, Brasil August 7-12, 2005, Edited by Daniela, L.; Sylvio Ferraz, M.; Angel, F. Julio Cambridge: Cambridge University Press, 2006., pp.351-36
http://articles.adsabs.harvard.edu/full/2006IAUS..229..351B
The primordial excitation and clearing of the asteroid belt—Revisited
O'Brien, David P.; Morbidelli, Alessandro; Bottke, William F. (2007)
Icarus, Volume 191, Issue 2, p. 434-452.
http://www.sciencedirect.com/science/article/pii/S0019103507002230
Asteroid families in the first-order resonances with Jupiter
Brož, M.; Vokrouhlický, D. (2008)
Monthly Notices of the Royal Astronomical Society, Volume 390, Issue 2, pp. 715-732.
http://mnras.oxfordjournals.org/content/390/2/715
http://arxiv.org/pdf/1104.4004v1.pdf
Contamination of the asteroid belt by primordial trans-Neptunian objects
Levison, Harold F.; Bottke, William F.; Gounelle, Matthieu; Morbidelli, Alessandro; Nesvorný, David; Tsiganis, Kleomenis (2009)
Nature, Volume 460, Issue 7253, pp. 364-366.
http://www.nature.com/nature/journal/v460/n7253/full/nature08094.html
A record of planet migration in the main asteroid belt
Minton, David A.; Malhotra, Renu (2009)
Nature, Volume 457, Issue 7233, pp. 1109-1111.
http://www.nature.com/nature/journal/v457/n7233/full/nature07778.html
http://arxiv.org/pdf/0906.4574v1.pdf
Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System
Minton, David A.; Malhotra, Renu (2010)
Icarus, Volume 207, Issue 2, p. 744-757.
http://www.sciencedirect.com/science/article/pii/S0019103509004953
http://arxiv.org/pdf/0909.3875v2.pdf
Secular Resonance Sweeping of the Main Asteroid Belt During Planet Migration
Minton, David A.; Malhotra, Renu (2011)
The Astrophysical Journal, Volume 732, Issue 1, article id. 53, 12 pp.
http://iopscience.iop.org/0004-637X/732/1/53/
http://arxiv.org/pdf/1102.3131v2.pdf
Did the Hilda collisional family form during the late heavy bombardment?
Brož, M.; Vokrouhlický, D.; Morbidelli, A.; Nesvorný, D.; Bottke, W. F. (2011)
Monthly Notices of the Royal Astronomical Society, Volume 414, Issue 3, pp. 2716-2727.
http://mnras.oxfordjournals.org/content/414/3/2716
http://arxiv.org/pdf/1109.1114v1.pdf
Origin of the orbital distribution of main-belt asteroid
Tsinganis, K. (2011)
10th Hellenic Astronomical Conference, Proceedings of the conference held at Ioannina, Greece, 5-8 September 2011. Edited by Iossif Papadakis and Anastasios Anastasiadis., pp.21-21
http://adsabs.harvard.edu/abs/2012hell.conf...21T
Where Did Ceres Accrete?
McKinnon, W. B. (2012)
Asteroids, Comets, Meteors 2012, Proceedings of the conference held May 16-20, 2012 in Niigata, Japan. LPI Contribution No. 1667, id.6475
http://www.lpi.usra.edu/meetings/acm2012/pdf/6475.pdf
Constraining the cometary flux through the asteroid belt during the late heavy bombardment
Brož, M.; Morbidelli, A.; Bottke, W. F.; Rozehnal, J.; Vokrouhlický, D.; Nesvorný, D. (2013)
Astronomy & Astrophysics, Volume 551, id.A117, 16 pp.
http://www.aanda.org/articles/aa/abs/2013/03/aa19296-12/aa19296-12.html
http://arxiv.org/pdf/1301.6221v1.pdf
On the Origin and Evolution of Differentiated Planetesimals
Bottke, W. F.; Asphaug, E. (2013)
44th Lunar and Planetary Science Conference, Contribution No. 1719, p.1672
http://www.lpi.usra.edu/meetings/lpsc2013/pdf/1672.pdf
The Evolution of Giant Impact Ejecta and the Age of the Moon
Bottke, W. F.; Vokrouhlicky, D.; Marchi, S.; Swindle, T.; Scott, E. R. D.; Weirich, J. R. (2014)
45th Lunar and Planetary Science Conference, held 17-21 March, 2014 at The Woodlands, Texas. LPI Contribution No. 1777, p.1611
http://www.hou.usra.edu/meetings/lpsc2014/pdf/1611.pdf
Solar System evolution from compositional mapping of the asteroid belt
DeMeo, F. E.; Carry, B. (2014)
Nature, Volume 505, Issue 7485, pp. 629-634.
http://www.nature.com/nature/journal/v505/n7485/full/nature12908.html
http://arxiv.org/ftp/arxiv/papers/1408/1408.2787.pdf
A six-part collisional model of the main asteroid belt
Cibulková, H.; Brož, M.; Benavidez, P. G. (2014)
Icarus, Volume 241, p. 358-372.
http://www.sciencedirect.com/science/article/pii/S0019103514003820
http://arxiv.org/pdf/1407.6143v1
The Dynamical Evolution of the Asteroid Belt
Morbidelli, Alessandro; Walsh, Kevin J.; O'Brien, David P.; Minton, David A.; Bottke, William F. (2015)
eprint arXiv:1501.06204
http://arxiv.org/pdf/1501.06204v1
The origin of long-lived asteroids in the 2/1 mean-motion resonance with Jupiter
Chrenko, O.; Brož, M.; Nesvorný, D.; Tsiganis, K.; Skoulidou, D. K. (2015)
Monthly Notices of the Royal Astronomical Society, Volume 451, Issue 3, p.2399-2416
http://mnras.oxfordjournals.org/content/451/3/2399
http://arxiv.org/pdf/1505.04329v1.pdf
The evolution of asteroids in the jumping-Jupiter migration model
Roig, Fernando; Nesvorný, David (2015)
eprint arXiv:1509.06105
http://arxiv.org/pdf/1509.06105v2.pdf
Dynamical dispersal of primordial asteroid families
Brasil, P. I. O.; Roig, F.; Nesvorný, D.; Carruba, V.; Aljbaae, S.; Huaman, M. E. (2016)
Icarus, Volume 266, p. 142-151.
http://www.sciencedirect.com/science/article/pii/S0019103515005254
Is the Grand Tack model compatible with the orbital distribution of main belt asteroids?
Deienno, Rogerio; Gomes, Rodney S.; Walsh, Kevin J.; Morbidelli, Alessandro; Nesvorný, David (2016)
Icarus, Volume 272, p. 114-124
http://www.sciencedirect.com/science/article/pii/S0019103516001214
There's Too Much Mantle Material in the Asteroid Belt
Jacobson, S. A.; DeMeo, F.; Morbidelli, A.; Carry, B.; Frost, D.; Rubie, D. C. (2016)
47th Lunar and Planetary Science Conference Contribution No. 1903, p.1895
http://www.hou.usra.edu/meetings/lpsc2016/pdf/1895.pdf
The Asteroid Belt as a Relic from a Chaotic Early Solar System
Izidoro, André; Raymond, Sean N.; Pierens, Arnaud; Morbidelli, Alessandro; Winter, Othon C.; Nesvorny`, David (2016)
The Astrophysical Journal, Volume 833, Issue 1, article id. 40, 18 pp
http://iopscience.iop.org/article/10.3847/1538-4357/833/1/40/meta
https://arxiv.org/pdf/1609.04970
Establishing different size distributions in the asteroid belt
Jacobson, Seth A.; Morbidelli, Alessandro (2016)
American Astronomical Society, DDA meeting #47, id.#300.04
http://adsabs.harvard.edu/abs/2016DDA....4730004J
Footprints of a possible Ceres asteroid paleo-family
Carruba, V.; Nesvorný, D.; Marchi, S.; Aljbaae, S. (2016)
Monthly Notices of the Royal Astronomical Society, Volume 458, Issue 1, p.1117-1126
http://mnras.oxfordjournals.org/content/458/1/1117
http://arxiv.org/pdf/1602.04736v1.pdf
Magnitude and timing of the giant planet instability. A reassessment from the perspective of the asteroid belt
Toliou, Athanasia; Morbidelli, Alessandro; Tsiganis, Kleomenis (2016)
Astronomy & Astrophysics, Volume 592, id.A72, 8 pp.
https://www.aanda.org/articles/aa/abs/2016/08/aa28658-16/aa28658-16.html
http://arxiv.org/pdf/1606.04330v1.pdf
Capture of Trans-Neptunian Planetesimals in the Main Asteroid Belt
Vokrouhlický, David; Bottke, William F.; Nesvorný, David (2016)
The Astronomical Journal, Volume 152, Issue 2, article id. 39, 20 pp
http://iopscience.iop.org/article/10.3847/0004-6256/152/2/39/meta
Scattering V-type asteroids during the giant planet instability, a step for Jupiter, a leap for basalt
Brasil, P. I. O.; Roig, F.; Nesvorný, D.; Carruba, V. (2017)
Monthly Notices of the Royal Astronomical Society, Volume 468, Issue 1, p.1236-1244
https://academic.oup.com/mnras/article-abstract/468/1/1236/3059980/
https://arxiv.org/pdf/1703.00474
The Color-Magnitude Distribution of Hilda Asteroids. Comparison with Jupiter Trojans
Wong, Ian; Brown, Michael E. (2017)
The Astronomical Journal, Volume 153, Issue 2, article id. 69, 7 pp.
http://iopscience.iop.org/article/10.3847/1538-3881/153/2/69/meta
https://arxiv.org/pdf/1701.00367
0.7-2.5 μm Spectra of Hilda Asteroids
Wong, Ian; Brown, Michael E.; Emery, Joshua P. (2017)
The Astronomical Journal, Volume 154, Issue 3, article id. 104, 9 pp.
http://iopscience.iop.org/article/10.3847/1538-3881/aa8406/meta
https://arxiv.org/pdf/1707.09064

Trojans

[edit]
The capture of Trojan asteroids by the giant planets during planetary migration
Lykawka, P. S.; Horner, J. (2010)
Monthly Notices of the Royal Astronomical Society, Volume 405, Issue 2, pp. 1375-1383.
http://mnras.oxfordjournals.org/content/405/2/1375
http://arxiv.org/ftp/arxiv/papers/1003/1003.2137.pdf
Capturing Trojans and Irregular Satellites - the key required to unlock planetary migration
Horner, Jonathan; Koch, F. Elliott; Sofia Lykawka, Patryk (2013)
http://arxiv.org/ftp/arxiv/papers/1302/1302.2304.pdf

Jupiter Trojans

[edit]
Dynamical Effects of Planetary Migration on Primordial Trojan-Type Asteroids
Gomes, R. S. (1998)
The Astronomical Journal, Volume 116, Issue 5, pp. 2590-2597
http://iopscience.iop.org/1538-3881/116/5/2590/
Planetary Migration and the Effects of Mean Motion Resonances on Jupiter's Trojan Asteroids
Michtchenko, T. A.; Beaugé, C.; Roig, F. (2001)
The Astronomical Journal, Volume 122, Issue 6, pp. 3485-3491.
http://iopscience.iop.org/1538-3881/122/6/3485/
Origin and Evolution of Trojan Asteroids
Marzari, F.; Scholl, H.; Murray, C.; Lagerkvist, C. (2002)
Asteroids III, W. F. Bottke Jr., A. Cellino, P. Paolicchi, and R. P. Binzel (eds), University of Arizona Press, Tucson, p.725-738
http://adsabs.harvard.edu/abs/2002aste.conf..725M
Clues to the origin of jupiter's trojans. the libration amplitude distribution
Marzari, F.; Tricarico, P.; Scholl, H. (2003)
Icarus, Volume 162, Issue 2, p. 453-459.
http://www.sciencedirect.com/science/article/pii/S0019103503000265
Chaotic capture of Jupiter's Trojan asteroids in the early Solar System
Morbidelli, A.; Levison, H. F.; Tsiganis, K.; Gomes, R. (2005)
Nature, Volume 435, Issue 7041, pp. 462-465.
http://www.nature.com/nature/journal/v435/n7041/abs/nature03540.html
The resonant structure of Jupiter's Trojan asteroids - I. Long-term stability and diffusion
Robutel, P.; Gabern, F. (2006)
Monthly Notices of the Royal Astronomical Society, Volume 372, Issue 4, pp. 1463-1482.
http://articles.adsabs.harvard.edu/full/2006MNRAS.372.1463R
Dynamics of Jupiter Trojans during the 2/1 mean motion resonance crossing of Jupiter and Saturn
Marzari, F.; Scholl, H. (2007)
Monthly Notices of the Royal Astronomical Society, Volume 380, Issue 2, pp. 479-488.
http://articles.adsabs.harvard.edu/full/2007MNRAS.380..479M
http://arxiv.org/pdf/0707.0617v1.pdf
The resonant structure of Jupiter's Trojan asteroids - II. What happens for different configurations of the planetary system
Robutel, P.; Bodossian, J. (2009)
Monthly Notices of the Royal Astronomical Society, Volume 399, Issue 1, pp. 69-87.
http://mnras.oxfordjournals.org/content/399/1/69
http://arxiv.org/pdf/0809.3526v2.pdf
A Dynamical Origin Of The Leading/trailing Asymmetry In Jupiter's Trojan Swarms?
O'Brien, David P. (2012)
American Astronomical Society, DPS meeting #44, #210.10
http://adsabs.harvard.edu/abs/2012DPS....4421010O
Capture of Trojans by Jumping Jupiter
Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2013)
The Astrophysical Journal, Volume 768, Issue 1, article id. 45, 8 pp.
http://iopscience.iop.org/0004-637X/768/1/45/
http://arxiv.org/pdf/1303.2900v1.pdf
Asymmetry Between the L4 and L5 Swarms of Jupiter Trojans
Slyusarev, I. G. (2013)
44th Lunar and Planetary Science Conference, held March 18-22, 2013 in The Woodlands, Texas. LPI Contribution No. 1719, p.2223
http://www.lpi.usra.edu/meetings/lpsc2013/pdf/2223.pdf
Giga-year evolution of Jupiter Trojans and the asymmetry problem
Di Sisto, Romina P.; Ramos, Ximena S.; Beaugé, Cristián (2014)
Icarus, Volume 243, p. 287-295.
http://www.sciencedirect.com/science/article/pii/S0019103514004643
The Complex History of Trojan Asteroids
Emery, Joshua P.; Marzari, Francesco; Morbidelli, Alessandro; French, Linda M.; Grav, Tommy (2015)
eprint arXiv:1506.01658
http://arxiv.org/pdf/1506.01658v1

Neptune Trojans

[edit]
How Long-Lived Are the Hypothetical Trojan Populations of Saturn, Uranus, and Neptune?
Nesvorný, D.; Dones, L. (2002)
Icarus, Volume 160, Issue 2, p. 271-288.
http://www.sciencedirect.com/science/article/pii/S0019103502969617
Resonance Occupation in the Kuiper Belt. Case Examples of the 5
2 and Trojan Resonances
Chiang, E. I.; Jordan, A. B.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Elliot, J. L.; Kern, S. D.; Trilling, D. E.; Meech, K. J.; Wagner, R. M. (2003)
The Astronomical Journal, Volume 126, Issue 1, pp. 430-443.
http://iopscience.iop.org/1538-3881/126/1/430/
http://arxiv.org/pdf/astro-ph/0301458v3.pdf
Survival of Trojan-type companions of Neptune during primordial planet migration
Kortenkamp, Stephen J.; Malhotra, Renu; Michtchenko, Tatiana (2004)
Icarus, Volume 167, Issue 2, p. 347-359.
http://www.sciencedirect.com/science/article/pii/S0019103503003221
http://arxiv.org/pdf/astro-ph/0305572v1.pdf
Neptune Trojans as a Test Bed for Planet Formation
Chiang, E. I.; Lithwick, Y. (2005)
The Astrophysical Journal, Volume 628, Issue 1, pp. 520-532.
http://iopscience.iop.org/0004-637X/628/1/520/
http://arxiv.org/pdf/astro-ph/0502276v2.pdf
On the stability of the Neptune Trojans
Dvorak, R.; Schwarz, R.; Süli, Á.; Kotoulas, T. (2007)
Monthly Notices of the Royal Astronomical Society, Volume 382, Issue 3, pp. 1324-1330.
http://mnras.oxfordjournals.org/content/382/3/1324
http://articles.adsabs.harvard.edu/full/2007MNRAS.382.1324D
The origin of the high-inclination Neptune Trojan 2005 TN53
Li, J.; Zhou, L.-Y.; Sun, Y.-S. (2007)
Astronomy and Astrophysics, Volume 464, Issue 2, pp.775-778
http://www.aanda.org/articles/aa/abs/2007/11/aa6297-06/aa6297-06.html
Chaotic Capture of Neptune Trojans
Nesvorný, David; Vokrouhlický, David (2009)
The Astronomical Journal, Volume 137, Issue 6, pp. 5003-5011.
http://iopscience.iop.org/1538-3881/137/6/5003/
The dynamics of Neptune Trojan - I. The inclined orbits
Zhou, Li-Yong; Dvorak, Rudolf; Sun, Yi-Sui (2009)
Monthly Notices of the Royal Astronomical Society, Volume 398, Issue 3, pp. 1217-1227.
http://mnras.oxfordjournals.org/content/398/3/1217
http://arxiv.org/pdf/0906.5075v1.pdf
The dynamics of Neptune Trojans - II. Eccentric orbits and observed objects
Zhou, Li-Yong; Dvorak, Rudolf; Sun, Yi-Sui (2011)
Monthly Notices of the Royal Astronomical Society, Volume 410, Issue 3, pp. 1849-1860.
http://mnras.oxfordjournals.org/content/410/3/1849
http://arxiv.org/pdf/1007.5362v1.pdf
Origin and dynamical evolution of Neptune Trojans - I. Formation and planetary migration
Lykawka, P. S.; Horner, J.; Jones, B. W.; Mukai, T. (2009)
Monthly Notices of the Royal Astronomical Society, Volume 398, Issue 4, pp. 1715-1729.
http://mnras.oxfordjournals.org/content/398/4/1715
http://arxiv.org/ftp/arxiv/papers/0909/0909.0404.pdf
Origin and dynamical evolution of Neptune Trojans - II. Long-term evolution
Lykawka, P. S.; Horner, J.; Jones, B. W.; Mukai, T. (2011)
Monthly Notices of the Royal Astronomical Society, Volume 412, Issue 1, pp. 537-550.
http://mnras.oxfordjournals.org/content/412/1/537
http://arxiv.org/ftp/arxiv/papers/1011/1011.1072.pdf
Formation and dynamical evolution of the Neptune Trojans - the influence of the initial Solar system architecture
Lykawka, P. S.; Horner, J.; Jones, B. W.; Mukai, T. (2010)
Monthly Notices of the Royal Astronomical Society, Volume 404, Issue 3, pp. 1272-1280.
http://mnras.oxfordjournals.org/content/404/3/1272
http://arxiv.org/ftp/arxiv/papers/1002/1002.3673.pdf
The Neptune Trojans. a window on the birth of the solar system
Horner, J.; Lykawka, P. S. (2011)
Astronomy & Geophysics, Volume 52, Issue 4, pp. 4.24-4.30.
http://astrogeo.oxfordjournals.org/content/52/4/4.24
The Intrinsic Neptune Trojan Orbit Distribution. Implications for the Primordial Disk and Planet Migration
Parker, Alex H. (2015)
Icarus, Volume 247, p. 112-125.
http://www.sciencedirect.com/science/article/pii/S0019103514005181
http://arxiv.org/pdf/1409.6735v1.pdf
The Formation of Neptune Trojans under a Planetary Instability Migration Model
Gomes, R. (2015)
European Planetary Science Congress EPSC2015-272
http://meetingorganizer.copernicus.org/EPSC2015/EPSC2015-272.pdf
The effect of orbital damping during planet migration on the Inclination and Eccentricity Distributions of Neptune Trojans
Yuan-Yuan, Chen; Yuehua, Ma; Jiaqing, Zheng
Monthly Notices of the Royal Astronomical Society, Volume 458, Issue 4, p.4277-4284
http://mnras.oxfordjournals.org/content/458/4/4277
http://arxiv.org/pdf/1602.04303v1.pdf
Neptune trojan formation during planetary instability and migration
Gomes, R.; Nesvorný, D. (2016)
Astronomy & Astrophysics, Volume 592, id.A146, 8 pp.
https://www.aanda.org/articles/aa/abs/2016/08/aa27757-15/aa27757-15.html

Outer Planets

[edit]
Did Saturn's rings form during the Late Heavy Bombardment?
Charnoz, Sébastien; Morbidelli, Alessandro; Dones, Luke; Salmon, Julien (2009)
Icarus, Volume 199, Issue 2, p. 413-428.
http://www.sciencedirect.com/science/article/pii/S0019103508003825
http://arxiv.org/ftp/arxiv/papers/0809/0809.5073.pdf
Calculation of the enrichment of the giant planet envelopes during the “late heavy bombardment”
Matter, A.; Guillot, T.; Morbidelli, A. (2009)
Planetary and Space Science, Volume 57, Issue 7, p. 816-821.
http://www.sciencedirect.com/science/article/pii/S0032063309000269
http://arxiv.org/pdf/1012.0692v1.pdf
Evolution of the Obliquities of the Giant Planets in Encounters during Migration
Lee, Man Hoi; Peale, S. J.; Pfahl, Eric; Ward, William R. (2007)
Icarus, Volume 190, Issue 1, p. 103-109.
http://www.sciencedirect.com/science/article/pii/S001910350700108X
http://arxiv.org/abs/astro-ph/0612330
Tilting Saturn without Tilting Jupiter or Ejecting an Ice Giant. Constraints on migration
McNeil, Douglas S.; Lee, M. H. (2010)
American Astronomical Society, DPS meeting #42, #4.04; Bulletin of the American Astronomical Society, Vol. 42, p.948
http://adsabs.harvard.edu/abs/2010DPS....42.0404M
Tilting Jupiter (a bit) and Saturn (a lot) during Planetary Migration
Vokrouhlický, David; Nesvorný, David (2015)
The Astrophysical Journal, Volume 806, Issue 1, article id. 143, 11 pp.
http://iopscience.iop.org/article/10.1088/0004-637X/806/1/143
http://arxiv.org/pdf/1505.02938v1
Tilting Saturn without tilting Jupiter. Constraints on giant planet migration
Brasser, R.; Lee, Man Hoi
eprint arXiv:1509.06834
http://arxiv.org/pdf/1509.06834v1

Regular Satellites

[edit]
Effects of Planetary Migration on Natural Satellites of the Outer Planets
Beaugé, C.; Roig, F.; Nesvorný, D. (2002)
Icarus, Volume 158, Issue 2, p. 483-498.
http://www.sciencedirect.com/science/article/pii/S0019103502968880
http://plutoportal.net/~davidn/papers/migration.pdf
Icy Satellites of Saturn. Impact Cratering and Age Determination
Dones, Luke; Chapman, Clark R.; McKinnon, William B.; Melosh, H. Jay; Kirchoff, Michelle R.; Neukum, Gerhard; Zahnle, Kevin J. (2009)
Saturn from Cassini-Huygens, by Dougherty, Michele K.; Esposito, Larry W.; Krimigis, Stamatios M., ISBN 978-1-4020-9216-9. Springer Science+Business Media B.V., 2009, p. 613
http://link.springer.com/chapter/10.1007/978-1-4020-9217-6_19
Origin of the Ganymede–Callisto dichotomy by impacts during the late heavy bombardment
Barr, Amy C.; Canup, Robin M. (2010)
Nature Geoscience, Volume 3, Issue 3, pp. 164-167.
http://www.nature.com/ngeo/journal/v3/n3/full/ngeo746.html
Exploring the Bombardment History of the Outer Solar System via Saturnian Satellite Cratering Records
Richardson, J. E.; Minton, D. A.; Thomas, P. C. (2012)
Workshop on the Early Solar System Bombardment II, held 1-3 February 2012, in Houston, Texas. LPI Contribution No. 1649, p.65-66
http://www.lpi.usra.edu/meetings/bombardment2012/pdf/4028.pdf
Impact-driven ice loss in outer Solar System satellites. Consequences for the Late Heavy Bombardment
Nimmo, F.; Korycansky, D. G. (2012)
Icarus, Volume 219, Issue 1, p. 508-510.
http://www.sciencedirect.com/science/article/pii/S0019103512000310
The Impact Rate on Solar System Satellites During the Late Heavy Bombardment
Dones, Henry C. Luke; Levison, H. F. (2013)
44th Lunar and Planetary Science Conference, LPI Contribution No. 1719, p.2772
http://www.lpi.usra.edu/meetings/lpsc2013/pdf/2772.pdf
Effects of the planetary migration on some primordial satellites of the outer planets. I. Uranus' case
Deienno, R.; Yokoyama, T.; Nogueira, E. C.; Callegari, N.; Santos, M. T. (2011)
Astronomy & Astrophysics, Volume 536, id.A57, 16 pp.
http://www.aanda.org/articles/aa/abs/2011/12/aa14862-10/aa14862-10.html
The Formation and Evolution of Gas Giant Satellites During Nice Model Orbital Migration
Fuse, Christopher R.; Verboncoeur, R. (2012)
American Astronomical Society, DPS meeting #44, #415.01
http://adsabs.harvard.edu/abs/2012DPS....4441501F
Formation of Regular Satellites from Ancient Massive Rings in the Solar System
Crida, A.; Charnoz, S. (2012)
Science, Volume 338, Issue 6111, pp. 1196-
http://science.sciencemag.org/content/338/6111/1196.full
https://arxiv.org/pdf/1301.3808
Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in a giant impact
Dombard, Andrew J.; Cheng, Andrew F.; McKinnon, William B.; Kay, Jonathan P.
Journal of Geophysical Research, Volume 117, Issue E3, CiteID E03002
http://onlinelibrary.wiley.com/doi/10.1029/2011JE004010/full
The Behavior of Regular Satellites During the Planetary Migration
Nogueira, Erica Cristina; Gomes, R. S.; Brasser, R. (2013)
American Astronomical Society, DDA meeting #44, #204.21
http://adsabs.harvard.edu/abs/2013DDA....4420421N
Constraints on Mechanisms of Comet Disruption from Icy Satellite Craters and Dynamical Simulations
Minton, David A.; Brasser, R.; Richardson, J. E. (2013)
American Astronomical Society, DDA meeting #44, #200.05
http://adsabs.harvard.edu/abs/2013DDA....4420005M
Analysis on the Evolution of a Pluto-like System During Close Encounters with the Giant Planets in the Framework of the Nice Model
Pires Dos Santos, Pryscilla Maria; Giuliatti-Winter, S. M.; Gomes, R. S. (2013)
American Astronomical Society, DDA meeting #44, #204.18
http://adsabs.harvard.edu/abs/2013DDA....4420418P
Orbital Perturbations of the Galilean Satellites During Planetary Encounters
Deienno, R.; Nesvorny, D.; Vokrouhlicky, D.; Yokoyama, T. (2014)
The Astronomical Journal, Volume 148, Issue 2, article id. 25, 9 pp.
http://iopscience.iop.org/1538-3881/148/2/25/
http://arxiv.org/pdf/1405.1880v1
Excitation of the Orbital Inclination of Iapetus during Planetary Encounters
Nesvorny, David; Vokrouhlicky, David; Deienno, Rogerio; Walsh, Kevin J. (2014)
The Astronomical Journal, Volume 148, Issue 3, article id. 52, 9 pp.
http://iopscience.iop.org/1538-3881/148/3/52/
http://arxiv.org/pdf/1406.3600v1.pdf
Constraints on Planetesimal Disk Mass from the Cratering Record and Equatorial Ridge on Iapetus
Rivera-Valentin, E. G.; Barr, A. C.; Lopez Garcia, E. J.; Kirchoff, M. R.; Schenk, P. M. (2014)
The Astrophysical Journal, Volume 792, Issue 2, article id. 127, 7 pp.
http://iopscience.iop.org/0004-637X/792/2/127/
http://arxiv.org/pdf/1406.6919v1.pdf
Topographic constraints on the origin of the equatorial ridge on Iapetus
Lopez Garcia, Erika J.; Rivera-Valentin, Edgard G.; Schenk, Paul M.; Hammond, Noah P.; Barr, Amy C. (2014)
Icarus, Volume 237, p. 419-421.
http://www.sciencedirect.com/science/article/pii/S0019103514002176
http://arxiv.org/pdf/1404.2337v1
Outer-Planet Satellite Survival During the Late Heavy Bombardment (II)
Movshovitz, N.; Korycansky, D. G.; Nimmo, F.; Asphaug, E.; Owen, J. M. (2014)
45th Lunar and Planetary Science Conference, LPI Contribution No. 1777, p.2308
http://www.hou.usra.edu/meetings/lpsc2014/pdf/2308.pdf
Disruption and reaccretion of midsized moons during an outer solar system Late Heavy Bombardment
Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E.; Owen, J. M.
Geophysical Research Letters, Volume 42, Issue 2, pp. 256-263
http://onlinelibrary.wiley.com/doi/10.1002/2014GL062133/abstract
http://www.hou.usra.edu/meetings/bombardment2015/pdf/3013.pdf
The evolution of a Pluto-like system during the migration of the ice giants
Pires, Pryscilla; Giuliatti Winter, Silvia M.; Gomes, Rodney S. (2015)
Icarus, Volume 246, p. 330-338.
http://www.sciencedirect.com/science/article/pii/S0019103514002218
Could Jupiter or Saturn Have Ejected a Fifth Giant Planet?
Cloutier, Ryan; Tamayo, Daniel; Valencia, Diana (2015)
The Astrophysical Journal, Volume 813, Issue 1, article id. 8, 11 pp.
http://iopscience.iop.org/article/10.1088/0004-637X/813/1/8
http://arxiv.org/pdf/1509.05397v1.pdf
Dynamical Evidence for a Late Formation of Saturn’s Moons
Ćuk, Matija; Dones, Luke; Nesvorný, David (2016)
The Astrophysical Journal, Volume 820, Issue 2, article id. 97, 16 pp.
http://iopscience.iop.org/article/10.3847/0004-637X/820/2/97/meta
https://arxiv.org/pdf/1603.07071
Could the Craters on the Mid-Sized Moons of Saturn Have Been Made by Satellite Debris?
Dones, Henry C. Luke; Alvarellos, Jose; Bierhaus, Edward B.; Bottke, William; Cuk, Matija; Hamill, Patrick; Nesvorny, David; Robbins, Stuart J.; Zahnle, Kevin (2016)
American Astronomical Society, DDA meeting #47, id.303.01

Irregular Satellites

[edit]
On the Inclination Distribution of the Jovian Irregular Satellites
Carruba, Valerio; Burns, Joseph A.; Nicholson, Philip D.; Gladman, Brett J. (2002)
Icarus, Volume 158, Issue 2, p. 434-449
http://www.sciencedirect.com/science/article/pii/S001910350296896X
Chaos-assisted capture of irregular moons
Astakhov, Sergey A.; Burbanks, Andrew D.; Wiggins, Stephen; Farrelly, David (2003)
Nature, Volume 423, Issue 6937, pp. 264-267
http://www.nature.com/nature/journal/v423/n6937/full/nature01622.html
An abundant population of small irregular satellites around Jupiter
Sheppard, Scott S.; Jewitt, David C. (2003)
Nature, Volume 423, Issue 6937, pp. 261-263.
http://www.nature.com/nature/journal/v423/n6937/full/nature01584.html
Orbital and Collisional Evolution of the Irregular Satellites
Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F. (2003)
The Astronomical Journal, Volume 126, Issue 1, pp. 398-429.
http://iopscience.iop.org/1538-3881/126/1/398/
Collisional Origin of Families of Irregular Satellites
Nesvorný, David; Beaugé, Cristian; Dones, Luke (2004)
The Astronomical Journal, Volume 127, Issue 3, pp. 1768-1783.
http://iopscience.iop.org/1538-3881/127/3/1768/
Gas-drag-assisted capture of Himalia's family
Cuk, Matija; Burns, Joseph A. (2004)
Icarus, Volume 167, Issue 2, p. 369-381.
http://www.sciencedirect.com/science/article/pii/S0019103503003269
The effect of Jupiter's mass growth on satellite capture. Retrograde case
Vieira Neto, E.; Winter, O. C.; Yokoyama, T. (2004)
Astronomy and Astrophysics, v.414, p.727-734
http://www.aanda.org/articles/aa/abs/2004/05/aah4593/aah4593.html
Irregular Satellites in the Context of Planet Formation
Jewitt, David; Sheppard, Scott (2005)
Space Science Reviews, Volume 116, Issue 1-2, pp. 441-455
http://link.springer.com/article/10.1007%2Fs11214-005-1965-z
Outer irregular satellites of the planets and their relationship with asteroids, comets and Kuiper Belt objects
Sheppard, Scott S. (2005)
Asteroids, Comets, Meteors, Proceedings of the 229th Symposium of the International Astronomical Union held in Búzios, Rio de Janeiro, Brasil August 7-12, 2005, Edited by Daniela, L.; Sylvio Ferraz, M.; Angel, F. Julio Cambridge: Cambridge University Press, 2006., pp.319-334
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=414776
http://arxiv.org/pdf/astro-ph/0605041v1.pdf
Neptune's capture of its moon Triton in a binary-planet gravitational encounter
Agnor, Craig B.; Hamilton, Douglas P. (2006)
Nature, Volume 441, Issue 7090, pp. 192-194.
http://www.nature.com/nature/journal/v441/n7090/full/nature04792.html
Effect of Jupiter's mass growth on satellite capture. The prograde case
Vieira Neto, E.; Winter, O. C.; Yokoyama, T. (2006)
Astronomy and Astrophysics, Volume 452, Issue 3, pp.1091-1097
http://www.aanda.org/articles/aa/abs/2004/05/aah4593/aah4593.html
Irregular satellite capture during planetary resonance passage
Ćuk, Matija; Gladman, Brett J. (2006)
Icarus, Volume 183, Issue 2, p. 362-372.
http://www.sciencedirect.com/science/article/pii/S0019103506001011
Irregular Satellites of the Planets. Products of Capture in the Early Solar System
Jewitt, David; Haghighipour, Nader (2007)
Annual Review of Astronomy & Astrophysics, vol. 45, Issue 1, pp.261-295
http://www.annualreviews.org/doi/abs/10.1146/annurev.astro.44.051905.092459?journalCode=astro
http://arxiv.org/pdf/astro-ph/0703059v1.pdf
Irregular Satellites of Jupiter. a study of the capture direction
de Oliveira, Douglas Soldan; Winter, Othon Cabo; Neto, Ernesto Vieira; de Felipe, Gislaine (2007)
Earth, Moon, and Planets, Volume 100, Issue 3-4, pp. 233-239
http://link.springer.com/article/10.1007%2Fs11038-007-9141-y
Capture of Irregular Satellites during Planetary Encounters
Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2007)
The Astronomical Journal, Volume 133, Issue 5, pp. 1962-1976.
http://iopscience.iop.org/1538-3881/133/5/1962/
Irregular Satellite Capture by Exchange Reactions
Vokrouhlický, David; Nesvorný, David; Levison, Harold F. (2008)
The Astronomical Journal, Volume 136, Issue 4, pp. 1463-1476.
http://iopscience.iop.org/1538-3881/136/4/1463/
Irregular Satellites of the Giant Planets
Nicholson, P. D.; Cuk, M.; Sheppard, S. S.; Nesvorny, D.; Johnson, T. V. (2008)
The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.411-424
A new perspective on the irregular satellites of Saturn - I. Dynamical and collisional history
Turrini, D.; Marzari, F.; Beust, H. (2008)
Monthly Notices of the Royal Astronomical Society, Volume 391, Issue 3, pp. 1029-1051.
http://mnras.oxfordjournals.org/content/391/3/1029
http://arxiv.org/pdf/1011.5655v1.pdf
A new perspective on the irregular satellites of Saturn - II. Dynamical and physical origin
Turrini, D.; Marzari, F.; Tosi, F. (2009)
Monthly Notices of the Royal Astronomical Society, Volume 392, Issue 1, pp. 455-474.
http://mnras.oxfordjournals.org/content/392/1/455
http://arxiv.org/pdf/1011.5662v1.pdf
Three-body capture of irregular satellites. Application to Jupiter
Philpott, Catherine M.; Hamilton, Douglas P.; Agnor, Craig B. (2010)
Icarus, Volume 208, Issue 2, p. 824-836.
http://www.sciencedirect.com/science/article/pii/S0019103510001351
http://arxiv.org/pdf/0911.1369v1.pdf
The Irregular Satellites. The Most Collisionally Evolved Populations in the Solar System
Bottke, William F.; Nesvorný, David; Vokrouhlický, David; Morbidelli, Alessandro (2010)
The Astronomical Journal, Volume 139, Issue 3, pp. 994-1014.
http://iopscience.iop.org/1538-3881/139/3/994/
Finding the trigger to Iapetus' odd global albedo pattern. Dynamics of dust from Saturn's irregular satellites
Tamayo, Daniel; Burns, Joseph A.; Hamilton, Douglas P.; Hedman, Matthew M. (2011)
Icarus, Volume 215, Issue 1, p. 260-278.
http://www.sciencedirect.com/science/article/pii/S0019103511002442
http://arxiv.org/pdf/1106.1893v1.pdf
Irregular satellites of Jupiter. capture configurations of binary-asteroids
Gaspar, H. S.; Winter, O. C.; Vieira Neto, E. (2011)
Monthly Notices of the Royal Astronomical Society, Volume 415, Issue 3, pp. 1999-2008.
http://mnras.oxfordjournals.org/content/415/3/1999
http://arxiv.org/pdf/1002.2392v1.pdf
On collisional capture rates of irregular satellites around the gas-giant planets and the minimum mass of the solar nebula
Koch, F. Elliott; Hansen, Bradley M. S. (2011)
Monthly Notices of the Royal Astronomical Society, Volume 416, Issue 2, pp. 1274-1283.
http://mnras.oxfordjournals.org/content/416/2/1274
http://arxiv.org/pdf/1104.2663v2.pdf
Reassessing the origin of Triton
Nogueira, E.; Brasser, R.; Gomes, R. (2011)
Icarus, Volume 214, Issue 1, p. 113-130.
http://www.sciencedirect.com/science/article/pii/S0019103511001679
http://arxiv.org/pdf/1105.1179v1.pdf
Capture of irregular satellites via binary planetesimal exchange reactions in migrating planetary systems
Quillen, Alice C.; Hasan, Imran; Moore, Alex (2012)
Monthly Notices of the Royal Astronomical Society, Volume 425, Issue 4, pp. 2507-2518.
http://mnras.oxfordjournals.org/content/425/4/2507
http://arxiv.org/pdf/1112.0577.pdf
Temporary capture of planetesimals by a giant planet and implication for the origin of irregular satellites
Suetsugu, Ryo; Ohtsuki, Keiji (2013)
Monthly Notices of the Royal Astronomical Society, Volume 431, Issue 2, p.1709-1718
http://mnras.oxfordjournals.org/content/431/2/1709
Capture of Planetesimals by Gas Drag from Circumplanetary Disks
Fujita, Tetsuya; Ohtsuki, Keiji; Tanigawa, Takayuki; Suetsugu, Ryo (2013)
The Astronomical Journal, Volume 146, Issue 6, article id. 140, 13 pp.
iopscience.iop.org/article/10.1088/0004-6256/146/6/140
Black rain. The burial of the Galilean satellites in irregular satellite debris
Bottke, William F.; Vokrouhlický, David; Nesvorný, David; Moore, Jeffrey M. (2013)
Icarus, Volume 223, Issue 2, p. 775-795.
http://www.sciencedirect.com/science/article/pii/S0019103513000158
Chaotic dust dynamics and implications for the hemispherical color asymmetries of the Uranian satellites
Tamayo, Daniel; Burns, Joseph A.; Hamilton, Douglas P. (2013)
Icarus, Volume 226, Issue 1, p. 655-662.
http://www.sciencedirect.com/science/article/pii/S0019103513002741
http://arxiv.org/pdf/1306.3973v1.pdf
Irregular satellites of Jupiter. three-dimensional study of binary-asteroid captures
Gaspar, H. S.; Winter, O. C.; Vieira Neto, E. (2013)
Monthly Notices of the Royal Astronomical Society, Volume 433, Issue 1, p.36-46
http://mnras.oxfordjournals.org/content/433/1/36
Capture of Irregular Satellites at Jupiter
Nesvorny, D.; Vokrouhlicky, D.; Deienno, R. (2014)
The Astrophysical Journal, Volume 784, Number 1, article id. 22
http://iopscience.iop.org/0004-637X/784/1/22
http://arxiv.org/pdf/1401.0253v1.pdf
The 3 μm Spectrum of Jupiter's Irregular Satellite Himalia
Brown, M. E.; Rhoden, A. R. (2014)
The Astrophysical Journal Letters, Volume 793, Issue 2, article id. L44, 3 pp
http://iopscience.iop.org/article/10.1088/2041-8205/793/2/L44/meta
https://arxiv.org/pdf/1409.1261
Orbital Characteristics of Planetesimals Captured by Circumplanetary Gas Disks
Suetsugu, Ryo; Ohtsuki, Keiji; Fujita, Tetsuya (2016)
The Astronomical Journal, Volume 151, Issue 6, article id. 140, 13 pp.
http://iopscience.iop.org/article/10.3847/0004-6256/151/6/140
http://arxiv.org/pdf/1604.08371v1.pdf
Capture of Planetesimals by Waning Circumplanetary Gas Disks
Suetsugu, Ryo; Ohtsuki, Keiji (2016)
The Astrophysical Journal, Volume 820, Issue 2, article id. 128, 18 pp.
http://iopscience.iop.org/article/10.3847/0004-637X/820/2/128
http://arxiv.org/pdf/1604.08373v1.pdf

Kuiper Belt

[edit]

Review Articles

[edit]
Origin and Evolution of the Kuiper Belt
Dones, Luke (1997)
From Stardust to Planetesimals. Symposium held as part of the 108th Annual meeting of the ASP held at Santa Clara, California 24-26 June 1996. ASP Conference Series, Vol. 122, 1997, ed. Yvonne J. Pendleton; A. G. G. M. Tielens (with the editorial assistance of Maureen L. Savage)., p.347
http://articles.adsabs.harvard.edu/full/1997ASPC..122..347D
Dynamics of the Kuiper Belt
Malhotra, R.; Duncan, M. J.; Levison, H. F. (2000)
Protostars and Planets IV (Book - Tucson: University of Arizona Press; eds Mannings, V., Boss, A.P., Russell, S. S.), p. 1231
http://arxiv.org/pdf/astro-ph/9901155v2.pdf
Kuiper Belt Objects. Relics from the Accretion Disk of the Sun
Luu, Jane X.; Jewitt, David C. (2002)
Annual Review of Astronomy and Astrophysics, Vol. 40, p. 63-101.
http://www.annualreviews.org/doi/abs/10.1146/annurev.astro.40.060401.093818?journalCode=astro
The kuiper belt and the primordial evolution of the solar system
Morbidelli, A.; Brown, M. E. (2004)
Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver (eds.), University of Arizona Press, Tucson, 745 pp., p.175-191
http://www.lpi.usra.edu/books/CometsII/7004.pdf
Interaction of planetesimals with the giant planets and the shaping of the trans-Neptunian belt
Levison, Harold F.; Morbidelli, Alessandro (2005)
Dynamics of Populations of Planetary Systems, Proceedings of IAU Colloquium #197,p.303-316
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?2005dpps.conf..303L
Origin and Dynamical Evolution of Comets and their Reservoirs
Morbidelli, Alessandro (2005)
http://arxiv.org/pdf/astro-ph/0512256v1.pdf
A Brief History of Transneptunian Space
Chiang, E.; Lithwick, Y.; Murray-Clay, R.; Buie, M.; Grundy, W.; Holman, M. (2007)
Protostars and Planets V, B. Reipurth, D. Jewitt, and K. Keil (eds.), University of Arizona Press, Tucson, 951 pp., 2007., p.895-911
http://arxiv.org/abs/astro-ph/0601654
The Dynamical Structure of the Kuiper Belt and Its Primordial Origin
Morbidelli, A.; Levison, H. F.; Gomes, R. (2008)
The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.275-292.
http://arxiv.org/pdf/astro-ph/0703558v1.pdf

Pre-Discovery

[edit]
The New Planet Pluto
Leonard, F. C. (1930)
Astronomical Society of the Pacific Leaflets, Vol. 1, No. 30, p.121
http://articles.adsabs.harvard.edu/full/seri/ASPL./0001//0000124.000.html
The origin and evolution of the Solar System
Edgeworth, K. E. (1949)
Monthly Notices of the Royal Astronomical Society, Vol. vol. 109, p. 600-609.
http://adsabs.harvard.edu/full/1949MNRAS.109..600E
The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin
Oort, J. H. (1950)
Bulletin of the Astronomical Institutes of the Netherlands, vol. 11, p. 91-110.
http://articles.adsabs.harvard.edu/full/1950BAN....11...91O
On the Origin of the Solar System
Kuiper, Gerard P. (1951)
Astrophysics: Proceedings of a topical symposium, commemorating the 50th anniversary of the Yerkes Observatory and half a century of progress in astrophysics, New York: McGraw-Hill, 1951, edited by Hynek, J.A., p.357
http://books.google.com/books/about/Astrophysics.html?id=C-NMXwAACAAJ
Proceedings of the National Academy of Sciences of the United States of America, Volume 37, Issue 1, pp. 1-14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063291/pdf/pnas01562-0011.pdf
Evidence for a Comet Belt beyond Neptune
Whipple, Fred L. (1964)
Proceedings of the National Academy of Sciences of the United States of America, Volume 51, Issue 5, pp. 711-718.
http://www.pnas.org/content/51/5/711
On the existence of a comet belt beyond Neptune
Fernandez, J. A. (1980)
Monthly Notices of the Royal Astronomical Society, vol. 192, Aug. 1980, p. 481-491.
http://articles.adsabs.harvard.edu/full/1980MNRAS.192..481F
The origin of short-period comets
Duncan, M.; Quinn, T.; Tremaine, S. (1988)
Astrophysical Journal, Part 2 - Letters, vol. 328, May 15, 1988, p. L69-L73.
http://articles.adsabs.harvard.edu/full/1988ApJ...328L..69D
The Early Development of Ideas Concerning the Transneptunian Region
Davies, J. K.; McFarland, J.; Bailey, M. E.; Marsden, B. G.; Ip, W.-H. (2008)
The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.11-23
Discovery of the candidate Kuiper belt object 1992 QB1
Jewitt, D.; Luu, J. (1993)
Nature (ISSN 0028-0836), vol. 362, no. 6422, p. 730-732.
http://www.nature.com/nature/journal/v362/n6422/abs/362730a0.html

Resonant Objects

[edit]
Capture into resonance - an extension of the use of adiabatic invariants
Henrard, J. (1982)
Celestial Mechanics, vol. 27, May 1982, p. 3-22.
http://link.springer.com/article/10.1007%2FBF01228946
http://articles.adsabs.harvard.edu/full/1982CeMec..27....3H
A second fundamental model for resonance
Henrard, J.; Lamaitre, A. (1983)
Celestial Mechanics, vol. 30, p. 197-218.
http://link.springer.com/article/10.1007%2FBF01234306
http://articles.adsabs.harvard.edu/full/1983CeMec..30..197H
The Resonant Structure of the Kuiper Belt and the Dynamics of the First Five Trans-Neptunian Objects
Morbidelli, A.; Thomas, F.; Moons, M. (1995)
Icarus, Volume 118, Issue 2, p. 322-340.
http://www.sciencedirect.com/science/article/pii/S0019103585711943
The Phase Space Structure Near Neptune Resonances in the Kuiper Belt
Malhotra, Renu (1996)
Astronomical Journal v.111, p.504
http://articles.adsabs.harvard.edu//full/1996AJ....111..504M
The Origin of Pluto's Orbit. Implications for the Solar System Beyond Neptune
Malhotra, Renu (1995)
Astronomical Journal v.110, p.420
http://articles.adsabs.harvard.edu/full/1995AJ....110..420M
The Plutinos
Jewitt, D.; Luu, J. (1996)
Completing the Inventory of the Solar System, Astronomical Society of the Pacific Conference Proceedings, volume 107, T.W. Rettig and J.M. Hahn, Eds., pp. 255-258.
http://articles.adsabs.harvard.edu/full/1996ASPC..107..255J
Mean Motion Resonances in the Trans-neptunian Region. I. The 2/3 Resonance with Neptune
Nesvorný, D.; Roig, F. (2000)
Icarus, Volume 148, Issue 1, pp. 282-300.
http://www.sciencedirect.com/science/article/pii/S0019103500964807
Mean Motion Resonances in the Transneptunian Region. Part II. The 1/2, 3/4, and Weaker Resonances
Nesvorný, D.; Roig, F. (2001)
Icarus, Volume 150, Issue 1, pp. 104-123.
http://www.sciencedirect.com/science/article/pii/S0019103500965680
On the Plutinos and Twotinos of the Kuiper Belt
Chiang, E. I.; Jordan, A. B. (2002)
The Astronomical Journal, Volume 124, Issue 6, pp. 3430-3444.
http://iopscience.iop.org/1538-3881/124/6/3430
http://arxiv.org/pdf/astro-ph/0210440v1.pdf
Resonant and Secular Families of the Kuiper Belt
Chiang, E. I.; Lovering, J. R.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Meech, K. J. (2003)
Earth, Moon, and Planets, v. 92, Issue 1, p. 49-62.
http://link.springer.com/article/10.1023%2FB%3AMOON.0000031924.20073.d0
http://arxiv.org/pdf/astro-ph/0309250v1.pdf
A Possible Correlation between the Gaseous Drag Strength and Resonant Planetesimals in Planetary Systems
Jiang, Ing-Guey; Yeh, Li-Chin (2007)
The Astrophysical Journal, Volume 656, Issue 1, pp. 534-544.
http://iopscience.iop.org/0004-637X/656/1/534/
http://arxiv.org/pdf/astro-ph/0610668v1.pdf
Exploring the 7/4 mean motion resonance—I. Dynamical evolution of classical transneptunian objects
Lykawka, Patryk Sofia; Mukai, Tadashi (2005)
Planetary and Space Science, Volume 53, Issue 11, p. 1175-1187.
http://www.sciencedirect.com/science/article/pii/S0032063305001169
Exploring the 7/4 mean motion resonance—II. Scattering evolutionary paths and resonance sticking====
Lykawka, Patryk Sofia; Mukai, Tadashi (2006)
Planetary and Space Science, Volume 54, Issue 1, p. 87-100.
http://www.sciencedirect.com/science/article/pii/S0032063305001984
A Signature of Planetary Migration. The Origin of Asymmetric Capture in the 2/1 Resonance
Murray-Clay, Ruth A.; Chiang, Eugene I. (2005)
The Astrophysical Journal, Volume 619, Issue 1, pp. 623-638.
http://iopscience.iop.org/0004-637X/619/1/623/
http://arxiv.org/pdf/astro-ph/0410086v1.pdf
Reducing the probability of capture into resonance
Quillen, Alice C. (2006)
Monthly Notices of the Royal Astronomical Society, Volume 365, Issue 4, pp. 1367-1382.
http://mnras.oxfordjournals.org/content/365/4/1367
http://arxiv.org/pdf/astro-ph/0507477v2.pdf
Resonance Dynamics in the Kuiper Belt
Gladman, Brett; Kavelaars, J.J. (2008)
La Physique au Canada, Vol. 64, No. 4 p. 207-214.
Chaotic Diffusion of Resonant Kuiper Belt Objects
Tiscareno, Matthew S.; Malhotra, Renu (2009)
The Astronomical Journal, Volume 138, Issue 3, pp. 827-837.
http://iopscience.iop.org/1538-3881/138/3/827/
http://arxiv.org/pdf/0807.2835v3.pdf
The Resonant Trans-Neptunian Populations
Gladman, B.; Lawler, S. M.; Petit, J.-M.; Kavelaars, J.; Jones, R. L.; Parker, J. Wm.; Van Laerhoven, C.; Nicholson, P.; Rousselot, P.; Bieryla, A.; Ashby, M. L. N. (2012)
The Astronomical Journal, Volume 144, Issue 1, article id. 23, 24 pp.
http://iopscience.iop.org/article/10.1088/0004-6256/144/1/23
http://arxiv.org/pdf/1205.7065v1
Effect of a gaseous transition disc on planetesimal driven migration
Reyes-Ruiz, Mauricio; Aceves, H.; Chavez, C. E.; Torres, S. (2013)
American Astronomical Society, DPS meeting #45, #415.05
http://adsabs.harvard.edu/abs/2013DPS....4541505R
Modeling the Migration of Neptune and the Corresponding Resonant Captures
Yeh, Li-Chin; Jiang, Ing-Guey; Zhou, Li-Yong (2013)
Proceedings of the 11th Asian-Pacific Regional IAU Meeting (APRIM2011), NARIT Conference Series Volume I
http://arxiv.org/pdf/1308.1156v1.pdf
The 5/1 Neptune Resonance as Probed by CFEPS. Dynamics and Population
Pike, R. E.; Kavelaars, J. J.; Petit, J. M.; Gladman, B. J.; Alexandersen, M.; Volk, K.; Shankman, C. J. (2015)
The Astronomical Journal, Volume 149, Issue 6, article id. 202, 11 pp.
http://iopscience.iop.org/article/10.1088/0004-6256/149/6/202
http://arxiv.org/pdf/1504.08041v1.pdf

Scattered Objects

[edit]
A new dynamical class of object in the outer Solar System
Luu, Jane; Marsden, Brian G.; Jewitt, David; Trujillo, Chadwick A.; Hergenrother, Carl W.; Chen, Jun; Offutt, Warren B. (1997)
Nature, Volume 387, Issue 6633, pp. 573-575.
http://www.nature.com/nature/journal/v387/n6633/full/387573a0.html
Origin and orbital distribution of the trans-Neptunian scattered disc
Morbidelli, A.; Emel'yanenko, V. V.; Levison, H. F. (2004)
Monthly Notices of the Royal Astronomical Society, Volume 355, Issue 3, pp. 935-940.
http://mnras.oxfordjournals.org/content/355/3/935
http://articles.adsabs.harvard.edu/full/2004MNRAS.355..935M
Neptune's Migration into a Stirred-Up Kuiper Belt. A Detailed Comparison of Simulations to Observations
Hahn, Joseph M.; Malhotra, Renu (2005)
The Astronomical Journal, Volume 130, Issue 5, pp. 2392-2414.
http://iopscience.iop.org/1538-3881/130/5/2392/
http://arxiv.org/pdf/astro-ph/0507319v1.pdf
The Scattered Disk. Origins, Dynamics, and End States
Gomes, R. S.; Fernandez, J. A.; Gallardo, T.; Brunini, A. (2008)
The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.259-273
Resonance sticking in the scattered disk
Lykawka, Patryk Sofia; Mukai, Tadashi (2007)
Icarus, Volume 192, Issue 1, p. 238-247.
http://www.sciencedirect.com/science/article/pii/S0019103507002746
http://arxiv.org/ftp/arxiv/papers/0707/0707.4301.pdf
Origin of scattered disk resonant TNOs. Evidence for an ancient excited Kuiper belt of 50 AU radius
Lykawka, Patryk Sofia; Mukai, Tadashi (2007)
Icarus, Volume 186, Issue 2, p. 331-341.
http://www.sciencedirect.com/science/article/pii/S0019103506003502
The scattered disk and hot belt, two sides of the same coin?
Kavelaars, J. J.; Petit, J.-M.; Gladman, B.; Jone, R. L.; Parker, J.; Taylor, M. (2011)
EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France. p.1318
http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-1318.pdf
Tracking Neptune’s Migration History through High-perihelion Resonant Trans-Neptunian Objects
Kaib, Nathan A.; Sheppard, Scott S. (2016)
The Astronomical Journal, Volume 152, Issue 5, article id. 133, 15 pp.
http://iopscience.iop.org/article/10.3847/0004-6256/152/5/133/meta
https://arxiv.org/pdf/1607.01777
The Orbital Distribution of Trans-Neptunian Objects Beyond 50 au
Nesvorný, David; Vokrouhlický, David; Roig, Fernando (2016)
The Astrophysical Journal Letters, Volume 827, Issue 2, article id. L35, 5 pp.
http://iopscience.iop.org/article/10.3847/2041-8205/827/2/L35/meta
https://arxiv.org/pdf/1607.08279
The Structure of the Distant Kuiper Belt in a Nice Model Scenario
Pike, R. E.; Lawler, S.; Brasser, R.; Shankman, C. J.; Alexandersen, M.; Kavelaars, J. J. (2017)
The Astronomical Journal, Volume 153, Issue 3, article id. 127, 10 pp.
http://iopscience.iop.org/article/10.3847/1538-3881/aa5be9/meta
https://arxiv.org/pdf/1701.07041
Details of Resonant Structures Within a Nice Model Kuiper Belt Predictions for High-Perihelion TNO Detections
Pike, R. E.; Lawler, S. M. (2017)
eprint arXiv:1709.03699
https://arxiv.org/pdf/1709.03699
Origin and Evolution of Short-period Comets
Nesvorný, David; Vokrouhlický, David; Dones, Luke; Levison, Harold F.; Kaib, Nathan; Morbidelli, Alessandro (2017)
The Astrophysical Journal, Volume 845, Issue 1, article id. 27, 25 pp.
http://iopscience.iop.org/article/10.3847/1538-4357/aa7cf6/meta
https://arxiv.org/pdf/1706.07447

Extended Scattered Disk

[edit]
Evidence for an Extended Scattered Disk
Gladman, B.; Holman, M.; Grav, T.; Kavelaars, J.; Nicholson, P.; Aksnes, K.; Petit, J-M. (2002)
Icarus, Volume 157, Issue 2, p. 269-279
http://www.sciencedirect.com/science/article/pii/S0019103502968600
http://arxiv.org/pdf/astro-ph/0103435v1.pdf
A new class of trans-Neptunian objects in high-eccentricity orbits
Emel'yanenko, V. V.; Asher, D. J.; Bailey, M. E. (2002)
Monthly Notice of the Royal Astronomical Society, Volume 338, Issue 2, pp. 443-451.
http://mnras.oxfordjournals.org/content/338/2/443
Scenarios for the Origin of the Orbits of the Trans-Neptunian Objects 2000 CR105 and 2003 VB12 (Sedna)
Morbidelli, Alessandro; Levison, Harold F. (2004)
The Astronomical Journal, Volume 128, Issue 5, pp. 2564-2576.
http://iopscience.iop.org/1538-3881/128/5/2564/
http://arxiv.org/pdf/astro-ph/0403358v1.pdf
On The Origin of The High-Perihelion Scattered Disk. The Role of The Kozai Mechanism And Mean Motion Resonances
Gomes, Rodney S.; Gallardo, Tabaré; Fernández, Julio A.; Brunini, Adrián (2005)
Celestial Mechanics and Dynamical Astronomy, Volume 91, Issue 1-2, pp. 109-129
http://link.springer.com/article/10.1007%2Fs10569-004-4623-y
Production of the Extended Scattered Disk by Rogue Planets
Gladman, Brett; Chan, Collin (2006)
The Astrophysical Journal, Volume 643, Issue 2, pp. L135-L138.
http://iopscience.iop.org/1538-4357/643/2/L135/
A distant planetary-mass solar companion may have produced distant detached objects
Gomes, Rodney S.; Matese, John J.; Lissauer, Jack J. (2006)
Icarus, Volume 184, Issue 2, p. 589-601.
http://www.sciencedirect.com/science/article/pii/S001910350600193X
The origin of TNO 2004 XR 190 as a primordial scattered object
Gomes, Rodney S. (2011)
Icarus, Volume 215, Issue 2, p. 661-668.
http://www.sciencedirect.com/science/article/pii/S0019103511003113
Sedna and the Oort Cloud around a migrating Sun
Kaib, Nathan A.; Roškar, Rok; Quinn, Thomas (2011)
Icarus, Volume 215, Issue 2, p. 491-507
http://www.sciencedirect.com/science/article/pii/S0019103511003101
http://arxiv.org/pdf/1108.1570v1.pdf
Dynamical formation of detached trans-Neptunian objects close to the 2/5 and 1/3 mean motion resonances with Neptune
Brasil, P. I. O.; Gomes, R. S.; Soares, J. S.
Astronomy & Astrophysics, Volume 564, id.A44, 12 pp.
http://www.aanda.org/articles/aa/abs/2014/04/aa22041-13/aa22041-13.html
http://arxiv.org/pdf/1405.3249v1.pdf
Survey of Kozai dynamics beyond Neptune
Gallardo, Tabaré; Hugo, Gastón; Pais, Pablo (2012)
Icarus, Volume 220, Issue 2, p. 392-403. (Icarus Homepage)
http://www.sciencedirect.com/science/article/pii/S0019103512002072
http://arxiv.org/pdf/1205.4935v1.pdf
Comparison of forming mechanisms for Sedna-type objects through an observational simulator
Soares, J. S.; Gomes, R. S. (2013)
Astronomy & Astrophysics, Volume 553, id.A110, 10 pp.
http://www.aanda.org/articles/aa/abs/2013/05/aa19840-12/aa19840-12.html
A Sedna-like body with a perihelion of 80 astronomical units
Trujillo, Chadwick A.; Sheppard, Scott S. (2014)
Nature, Volume 507, Issue 7493, pp. 471-474.
http://www.nature.com/nature/journal/v507/n7493/full/nature13156.html
Reassessing the formation of the Inner Oort cloud in an embedded star cluster II. Probing the inner edge
Brasser, R.; Schwamb, M. E. (2015)
Monthly Notices of the Royal Astronomical Society, Volume 446, Issue 4, p.3788-3796
http://mnras.oxfordjournals.org/content/446/4/3788
http://arxiv.org/pdf/1411.1844v1.pdf
How Sedna and family were captured in a close encounter with a solar sibling
Jilkova, Lucie; Portegies Zwart, Simon; Pijloo, Tjibaria; Hammer, Michael (2015)
Monthly Notices of the Royal Astronomical Society, Volume 453, Issue 3, p.3157-3162
http://mnras.oxfordjournals.org/content/453/3/3157
http://arxiv.org/pdf/1506.03105v1.pdf
Study and application of the resonant secular dynamics beyond Neptune
Saillenfest, Melaine; Fouchard, Marc; Tommei, Giacomo; Valsecchi, Giovanni B. (2017)
Celestial Mechanics and Dynamical Astronomy, Volume 127, Issue 4, pp.477-504
https://link.springer.com/article/10.1007%2Fs10569-016-9735-7
https://arxiv.org/pdf/1611.04480

Oort Cloud

[edit]
The Formation of the Oort Cloud and the Primitive Galactic Environment
Fernández, Julio A. (1997)
Icarus, Volume 129, Issue 1, pp. 106-119.
http://www.sciencedirect.com/science/article/pii/S0019103597957547
The scattered disk population as a source of Oort cloud comets. evaluation of its current and past role in populating the Oort cloud
Fernández, Julio A.; Gallardo, Tabaré; Brunini, Adrián (2004)
Icarus, Volume 172, Issue 2, p. 372-381.
http://www.sciencedirect.com/science/article/pii/S0019103504002210
Oort cloud formation and dynamics
Dones, L.; Weissman, P. R.; Levison, H. F.; Duncan, M. J. (2004)
Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver (eds.), University of Arizona Press, Tucson, 745 pp., p.153-174
http://www.lpi.usra.edu/books/CometsII/7031.pdf
Discovery of a Candidate Inner Oort Cloud Planetoid
Brown, Michael E.; Trujillo, Chadwick; Rabinowitz, David (2004)
The Astrophysical Journal, Volume 617, Issue 1, pp. 645-649.
http://iopscience.iop.org/0004-637X/617/1/645/
http://arxiv.org/pdf/astro-ph/0404456v1.pdf
Stellar encounters as the origin of distant Solar System objects in highly eccentric orbits
Kenyon, Scott J.; Bromley, Benjamin C. (2004)
Nature, Volume 432, Issue 7017, pp. 598-602.
http://www.nature.com/nature/journal/v432/n7017/full/nature03136.html
http://arxiv.org/pdf/astro-ph/0412030v1.pdf
Embedded star clusters and the formation of the Oort Cloud
Brasser, R.; Duncan, M. J.; Levison, H. F. (2006)
Icarus, Volume 184, Issue 1, p. 59-82.
http://www.sciencedirect.com/science/article/pii/S0019103506001230
The occurrence of high-order resonances and Kozai mechanism in the scattered disk
Gallardo, Tabaré (2006)
Icarus, Volume 181, Issue 1, p. 205-217.
http://www.sciencedirect.com/science/article/pii/S0019103505004689
The formation of the Oort cloud in open cluster environments
Kaib, Nathan A.; Quinn, Thomas (2008)
Icarus, Volume 197, Issue 1, p. 221-238.
http://www.sciencedirect.com/science/article/pii/S0019103508001395
http://arxiv.org/pdf/0707.4515v3.pdf
The Role of the Galaxy in the Dynamical Evolution of Transneptunian Objects
Duncan, M. J.; Brasser, R.; Dones, L.; Levison, H. F. (2008)
The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.315-331
Reassessing the formation of the inner Oort cloud in an embedded star cluster
Brasser, R.; Duncan, M. J.; Levison, H. F.; Schwamb, M. E.; Brown, M. E. (2012)
Icarus, Volume 217, Issue 1, p. 1-19.
http://www.sciencedirect.com/science/article/pii/S0019103511004052
http://arxiv.org/pdf/1110.5114v1.pdf
An Oort cloud origin for the high-inclination, high-perihelion Centaurs
Brasser, R.; Schwamb, M. E.; Lykawka, P. S.; Gomes, R. S. (2012)
Monthly Notices of the Royal Astronomical Society, Volume 420, Issue 4, pp. 3396-3402.
http://mnras.oxfordjournals.org/content/420/4/3396
http://arxiv.org/pdf/1111.7037v1.pdf
Oort cloud and Scattered Disc formation during a late dynamical instability in the Solar System
Brasser, R.; Morbidelli, A. (2013)
Icarus, Volume 225, Issue 1, p. 40-49.
http://www.sciencedirect.com/science/article/pii/S001910351300122X
http://arxiv.org/pdf/1303.3098v1.pdf
Re-assessing the formation of the inner Oort cloud in an embedded star cluster - II. Probing the inner edge
Brasser, R.; Schwamb, M. E. (2015)
Monthly Notices of the Royal Astronomical Society, Volume 446, Issue 4, p.3788-3796
https://academic.oup.com/mnras/article-abstract/446/4/3788/2892865/
https://arxiv.org/pdf/1411.1844
Inner solar system material discovered in the Oort cloud
Meech, Karen J.; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Berdyugina, Svetlana; Keane, Jacqueline V.; :Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J. (2016)
Science Advances 2, 4, id. e1600038
http://advances.sciencemag.org/content/2/4/e1600038.full

Cold Classical Objects

[edit]
Two distinct populations of Kuiper-belt objects
Tegler, S. C.; Romanishin, W. (1998)
Nature, vol. 392, p. 49
http://www.nature.com/nature/journal/v392/n6671/full/392049a0.html
Extremely red Kuiper-belt objects in near-circular orbits beyond 40 AU
Tegler, S. C.; Romanishin, W. (2000)
Nature, Volume 407, Issue 6807, pp. 979-981
http://www.nature.com/nature/journal/v407/n6807/full/407979a0.html
On the Size Dependence of the Inclination Distribution of the Main Kuiper Belt
Levison, Harold F.; Stern, S. Alan (2001)
The Astronomical Journal, Volume 121, Issue 3, pp. 1730-1735.
http://iopscience.iop.org/1538-3881/121/3/1730/
http://arxiv.org/pdf/astro-ph/0011325v1.pdf
A Correlation between Inclination and Color in the Classical Kuiper Belt
Trujillo, Chadwick A.; Brown, Michael E. (2002)
The Astrophysical Journal, Volume 566, Issue 2, pp. L125-L128.
http://iopscience.iop.org/1538-4357/566/2/L125/
http://arxiv.org/pdf/astro-ph/0201040v1.pdf
Detection of Six Trans-Neptunian Binaries with NICMOS. A High Fraction of Binaries in the Cold Classical Disk
Stephens, Denise C.; Noll, Keith S. (2006)
The Astronomical Journal, Volume 131, Issue 2, pp. 1142-1148.
http://iopscience.iop.org/1538-3881/131/2/1142/
http://arxiv.org/pdf/astro-ph/0510130v1.pdf
Evidence for two populations of classical transneptunian objects. The strong inclination dependence of classical binaries
Noll, Keith S.; Grundy, William M.; Stephens, Denise C.; Levison, Harold F.; Kern, Susan D. (2007)
Icarus, Volume 194, Issue 2, p. 758-768.
http://www.sciencedirect.com/science/article/pii/S0019103507005854
http://arxiv.org/pdf/0711.1545v2.pdf
Color-Inclination Relation of the Classical Kuiper Belt Objects
Peixinho, Nuno; Lacerda, Pedro; Jewitt, David (2008)
The Astronomical Journal, Volume 136, Issue 5, pp. 1837-1845.
http://iopscience.iop.org/1538-3881/136/5/1837/
http://arxiv.org/pdf/0808.3025v1.pdf
The Color Differences of Kuiper Belt Objects in Resonance with Neptune
Sheppard, Scott S. (2012)
The Astronomical Journal, Volume 144, Issue 6, article id. 169, 14 pp.
http://iopscience.iop.org/1538-3881/144/6/169/
http://arxiv.org/pdf/1210.0537v1.pdf
Destruction of Binary Minor Planets During Neptune Scattering
Parker, Alex H.; Kavelaars, J. J. (2010)
The Astrophysical Journal Letters, Volume 722, Issue 2, pp. L204-L208.
http://iopscience.iop.org/2041-8205/722/2/L204/
http://arxiv.org/pdf/1009.3495v1.pdf
Retention of a Primordial Cold Classical Kuiper Belt in an Instability-Driven Model of Solar System Formation
Batygin, Konstantin; Brown, Michael E.; Fraser, Wesley C. (2011)
The Astrophysical Journal, Volume 738, Issue 1, article id. 13, 8 pp.
http://iopscience.iop.org/0004-637X/738/1/13/
http://arxiv.org/pdf/1106.0937v2.pdf
The Canada-France Ecliptic Plane Survey—Full Data Release. The Orbital Structure of the Kuiper Belt
Petit, J.-M.; Kavelaars, J. J.; Gladman, B. J.; Jones, R. L.; Parker, J. Wm.; Van Laerhoven, C.; Nicholson, P.; Mars, G.; Rousselot, P.; Mousis, O.; Marsden, B.; Bieryla, A.; Taylor, M.; Ashby, M. L. N.; Benavidez, P.; Campo Bagatin, A.; Bernabeu, G. (2011)
The Astronomical Journal, Volume 142, Issue 4, article id. 131, 24 pp.
http://iopscience.iop.org/1538-3881/142/4/131
http://arxiv.org/pdf/1108.4836.pdf
Reality and origin of the Kernel of the classical Kuiper Belt
Petit, J.-M.; Gladman, B.; Kavelaars, J. J. (2012)
EGU General Assembly 2012, held 22-27 April, 2012 in Vienna, Austria., p.9750
http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-722.pdf
http://meetingorganizer.copernicus.org/EGU2012/EGU2012-9750.pdf
Neptune on Tiptoes. Dynamical Histories that Preserve the Cold Classical Kuiper Belt
Wolff, Schuyler; Dawson, Rebekah I.; Murray-Clay, Ruth A. (2012)
The Astrophysical Journal, Volume 746, Issue 2, article id. 171, 16 pp.
http://iopscience.iop.org/0004-637X/746/2/171/
http://arxiv.org/pdf/1112.1954.pdf
Revisited Study On The Survival Regions Of Classical Kbos
Da Silva Gaspar, Helton; Nesvorný, D.; Morbidelli, A. (2012)
American Astronomical Society, DPS meeting #44, #210.11
http://adsabs.harvard.edu/abs/2012DPS....4421011D
The bimodal colors of Centaurs and small Kuiper belt objects
Peixinho, N.; Delsanti, A.; Guilbert-Lepoutre, A.; Gafeira, R.; Lacerda, P. (2012)
Astronomy & Astrophysics, Volume 546, id.A86, 12 pp.
http://www.aanda.org/articles/aa/abs/2012/10/aa19057-12/aa19057-12.html
http://arxiv.org/pdf/1206.3153v1.pdf
Origin of the peculiar eccentricity distribution of the inner cold Kuiper belt
Morbidelli, A.; Gaspar, H. S.; Nesvorny, D. (2014)
Icarus, Volume 232, p. 81-87
http://www.sciencedirect.com/science/article/pii/S0019103514000037
http://arxiv.org/pdf/1312.7536v1.pdf
The Albedo-Color Diversity of Transneptunian Objects
Lacerda, Pedro; Fornasier, Sonia; Lellouch, Emmanuel; Kiss, Csaba; Vilenius, Esa; Santos-Sanz, Pablo; Rengel, Miriam; Müller, Thomas; Stansberry, John; Duffard, René; Delsanti, Audrey; Guilbert-Lepoutre, Aurélie (2014)
The Astrophysical Journal Letters, Volume 793, Issue 1, article id. L2, 6 pp.
http://iopscience.iop.org/2041-8205/793/1/L2/
http://arxiv.org/pdf/1406.1420v2.pdf
Jumping Neptune Can Explain the Kuiper Belt Kernel
Nesvorny, David (2015)
The Astronomical Journal, Volume 150, Issue 3, article id. 68, 14 pp.
http://iopscience.iop.org/1538-3881/150/3/68/
http://arxiv.org/pdf/1506.06019v1.pdf
Forming the Cold Classical Kuiper Belt in a light Disk
Shannon, Andrew; Wu, Yanqin; Lithwick, Yoram (2015)
eprint arXiv:1510.01323
http://arxiv.org/pdf/1510.01323v1

Inclinations

[edit]
Pluto's Inclination Excitation by Resonance Sweeping
Malhotra, R. (1998)
29th Annual Lunar and Planetary Science Conference, March 16-20, 1998, Houston, TX, abstract no. 1476.
http://www.lpi.usra.edu/meetings/LPSC98/pdf/1476.pdf
Planetary Migration and Plutino Orbital Inclinations
Gomes, R. S. (2000)
The Astronomical Journal, Volume 120, Issue 5, pp. 2695-2707.
http://iopscience.iop.org/1538-3881/120/5/2695/
The Inclination Distribution of the Kuiper Belt
Brown, Michael E. (2001)
The Astronomical Journal, Volume 121, Issue 5, pp. 2804-2814.
http://iopscience.iop.org/1538-3881/121/5/2804/
The origin of the Kuiper Belt high-inclination population
Gomes, Rodney S. (2003)
Icarus, Volume 161, Issue 2, p. 404-418.
http://www.sciencedirect.com/science/article/pii/S0019103502000568
Inclination Mixing in the Classical Kuiper Belt
Volk, Kathryn; Malhotra, Renu (2011)
The Astrophysical Journal, Volume 736, Issue 1, article id. 11, 14 pp.
http://iopscience.iop.org/0004-637X/736/1/11/
http://arxiv.org/pdf/1104.4967v2.pdf
Mind the gap. investigating why the physical and orbital properties of 'hot' and 'cold' Classical KBOs mismatch
Peixinho, N.; Miloni, O. (2011)
EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France, p.1011
http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-1011-1.pdf
Dynamical Implantation of Objects in the Kuiper Belt
Brasil, P. I. O.; Nesvorný, D.; Gomes, R. S. (2014)
The Astronomical Journal, Volume 148, Issue 3, article id. 56, 9 pp.
http://iopscience.iop.org/1538-3881/148/3/56/
The Evidence for Slow Migration of Neptune from the Inclination Distribution of Kuiper Belt Objects
Nesvorny, David (2015)
The Astronomical Journal, Volume 150, Issue 3, article id. 73, 18 pp.
http://iopscience.iop.org/1538-3881/150/3/73/
http://arxiv.org/pdf/1504.06021v1.pdf

Secular Resonances

[edit]
Sweeping Secular Resonances in the Kuiper Belt Caused by Depletion of the Solar Nebula
Nagasawa, Makiko; Ida, Shigeru (2000)
The Astronomical Journal, Volume 120, Issue 6, pp. 3311-3322.
http://iopscience.iop.org/1538-3881/120/6/3311/
Secular Resonance Sweeping in a Self-gravitating Planetesimal Disk, with Application to the Kuiper Belt
Hahn, J. M.; Ward, W. R. (2002)
33rd Annual Lunar and Planetary Science Conference, March 11-15, 2002, Houston, Texas, abstract no.1930
http://www.lpi.usra.edu/meetings/lpsc2002/pdf/1930.pdf
The secular evolution of the Kuiper belt after a close stellar encounter
Punzo, D.; Capuzzo-Dolcetta, R.; Portegies Zwart, S. (2014)
Monthly Notices of the Royal Astronomical Society, Volume 444, Issue 3, p.2808-2819
http://mnras.oxfordjournals.org/content/444/3/2808
http://arxiv.org/pdf/1403.6633v3.pdf

Missing Mass

[edit]
On the number of planets in the outer solar system - Evidence of a substantial population of 1000-km bodies
Stern, S. A. (1991)
Icarus, vol. 90, April 1991, p. 271-281.
http://www.sciencedirect.com/science/article/pii/0019103591901064
On the Number of Planetary Bodies Created in the Outer Solar System
Abstracts of the Lunar and Planetary Science Conference, volume 22, page 1331
http://articles.adsabs.harvard.edu/full/1991LPI....22.1331S
Collisional Time Scales in the Kuiper Disk and Their Implications
Stern, S. Alan (1995)
Astronomical Journal v.110, p.856
http://articles.adsabs.harvard.edu/full/1995AJ....110..856S
On the Collisional Environment, Accretion Time Scales, and Architecture of the Massive, Primordial Kuiper Belt
Stern, S. Alan (1996)
Astronomical Journal v.112, p.1203
http://articles.adsabs.harvard.edu/full/1996AJ....112.1203S
Accretion in the Edgeworth-Kuiper Belt. Forming 100-1000 KM Radius Bodies at 30 AU and Beyond
Stern, S. Alan; Colwell, Joshua E. (1997)
The Astronomical Journal, v. 114, p. 841.
http://adsabs.harvard.edu/full/1997AJ....114..841S
Collisional Erosion in the Primordial Edgeworth-Kuiper Belt and the Generation of the 30-50 AU Kuiper Gap
Stern, S. Alan; Colwell, Joshua E. (1997)
Astrophysical Journal v.490, p.879
http://iopscience.iop.org/0004-637X/490/2/879/
Implications Regarding the Energetics Of the Collisional Formation of Kuiper Belt Satellites
Stern, S. Alan (2002)
The Astronomical Journal, Volume 124, Issue 4, pp. 2300-2304.
http://iopscience.iop.org/1538-3881/124/4/2300/
http://arxiv.org/html/astro-ph/0206104v1

Extra Planets

[edit]
An Outer Planet Beyond Pluto and the Origin of the Trans-Neptunian Belt Architecture
Lykawka, Patryk S.; Mukai, Tadashi (2008)
The Astronomical Journal, Volume 135, Issue 4, pp. 1161-1200.
http://iopscience.iop.org/1538-3881/135/4/1161/
http://arxiv.org/ftp/arxiv/papers/0712/0712.2198.pdf
Neptune migration model with one extra planet
Yeh, Lun-Wen; Chang, Hsiang-Kuang (2009)
Icarus, Volume 204, Issue 1, p. 330-345.
http://www.sciencedirect.com/science/article/pii/S0019103509002498
http://arxiv.org/pdf/0908.1729v1.pdf
Trans-Neptunian Objects as Natural Probes to the Unknown Solar System
Lykawka, P. S. (2012)
Monographs on Environment, Earth and Planets, Volume 1, Issue 3, p. 121-186.
http://www.terrapub.co.jp/onlinemonographs/meep/abstract/01/0103.html
http://arxiv.org/ftp/arxiv/papers/1212/1212.6124.pdf
Signatures Of A Putative Planetary Mass Solar Companion On The Orbital Distribution Of Tno's And Centaurs
Gomes, Rodney S.; Soares, J. S. (2012)
American Astronomical Society, DDA meeting #43, #5.01
http://adsabs.harvard.edu/abs/2012DDA....43.0501G
On the Origin of Planets at Very Wide Orbits from the Recapture of Free Floating Planets
Perets, Hagai B.; Kouwenhoven, M. B. N. (2012)
The Astrophysical Journal, Volume 750, Issue 1, article id. 83, 8 pp.
http://iopscience.iop.org/0004-637X/750/1/83/
http://arxiv.org/pdf/1202.2362v2.pdf
Extreme trans-Neptunian objects and the Kozai mechanism. signalling the presence of trans-Plutonian planets
de la Fuente Marcos, C.; de la Fuente Marcos, R. (2014)
Monthly Notices of the Royal Astronomical Society: Letters, Volume 443, Issue 1, p.L59-L63
http://mnrasl.oxfordjournals.org/content/443/1/L59
http://arxiv.org/pdf/1406.0715v2.pdf
Planet X revamped after the discovery of the Sedna-like object 2012 VP113?
Iorio, L. (2014)
Monthly Notices of the Royal Astronomical Society: Letters, Volume 444, Issue 1, p.L78-L79
http://mnrasl.oxfordjournals.org/content/444/1/L78
http://arxiv.org/pdf/1404.0258v2.pdf
The observation of large semi-major axis Centaurs. Testing for the signature of a planetary-mass solar companion
Gomes, Rodney S.; Soares, Jean S.; Brasser, Ramon (2015)
Icarus, Volume 258, p. 37-49.
http://www.sciencedirect.com/science/article/pii/S001910351500264X
The Curiously Warped Mean Plane of the Kuiper Belt
Volk, Kathryn; Malhotra, Renu (2017)
The Astronomical Journal, Volume 154, Issue 2, article id. 62, 16 pp.
http://iopscience.iop.org/article/10.3847/1538-3881/aa79ff/meta
https://arxiv.org/pdf/1704.02444

Scattered Embryos

[edit]
Neptune Scattered Planetesimals Could Have Sculpted the Primordial Edgeworth-Kuiper Belt
Morbidelli, Alessandro; Valsecchi, Giovanni B. (1997)
Icarus, Volume 128, Issue 2, pp. 464-468.
http://www.sciencedirect.com/science/article/pii/S0019103597957456
Large Scattered Planetesimals and the Excitation of the Small Body Belts
Petit, Jean-Marc; Morbidelli, Alessandro; Valsecchi, Giovanni B. (1999)
Icarus, Volume 141, Issue 2, pp. 367-387.
http://www.sciencedirect.com/science/article/pii/S0019103599961663

Neptune Migration

[edit]
Orbital Evolution of Planets Embedded in a Planetesimal Disk
Hahn, Joseph M.; Malhotra, Renu (1999)
The Astronomical Journal, Volume 117, Issue 6, pp. 3041-3053.
http://iopscience.iop.org/1538-3881/117/6/3041/
http://arxiv.org/pdf/astro-ph/9902370v1.pdf
Orbital Migration of Neptune and Orbital Distribution of Trans-Neptunian Objects
Ida, Shigeru; Bryden, Geoffrey; Lin, D. N. C.; Tanaka, Hidekazu (2000)
The Astrophysical Journal, Volume 534, Issue 1, pp. 428-445.
http://iopscience.iop.org/0004-637X/534/1/428/
The formation of the Kuiper belt by the outward transport of bodies during Neptune's migration
Levison, Harold F.; Morbidelli, Alessandro (2003)
Nature, Volume 426, Issue 6965, pp. 419-421.
http://www.nature.com/nature/journal/v426/n6965/full/nature02120.html
Planetary migration in a planetesimal disk. why did Neptune stop at 30 AU?
Gomes, Rodney S.; Morbidelli, Alessandro; Levison, Harold F. (2004)
Icarus, Volume 170, Issue 2, p. 492-507.
http://www.sciencedirect.com/science/article/pii/S0019103504000971
Formation of the Kuiper Belt by Long Time-Scale Migration of Jovian Planets
Li, Jian; Zhou, Li-Yong; Sun, Yi-Sui (2006)
Chinese Journal of Astronomy and Astrophysics, Volume 6, Issue 5, pp. 588-596.
http://iopscience.iop.org/1009-9271/6/5/11/
http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?2006ChJAA...6..588L
Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune
Levison, Harold F.; Morbidelli, Alessandro; Van Laerhoven, Christa; Gomes, Rodney; Tsiganis, Kleomenis (2008)
Icarus, Volume 196, Issue 1, p. 258-273.
http://www.sciencedirect.com/science/article/pii/S0019103507006094
http://arxiv.org/pdf/0712.0553v1.pdf
Evolution of Jovian planets in a self-gravitating planetesimal disk
Li, J.; Zhou, L.-Y.; Sun, Y.-S. (2011)
Astronomy & Astrophysics, Volume 528, id.A86, 7 pp.
http://www.aanda.org/articles/aa/abs/2011/04/aa15601-10/aa15601-10.html
Using Kuiper Belt Binaries to Constrain Neptune's Migration History
Murray-Clay, Ruth A.; Schlichting, Hilke E. (2011)
The Astrophysical Journal, Volume 730, Issue 2, article id. 132, 14 pp.
http://iopscience.iop.org/0004-637X/730/2/132/
http://www.arxiv.org/pdf/1102.1430v1.pdf
Resonant Transneptunian Binaries. Evidence for Slow Migration of Neptune
Noll, Keith S.; Grundy, W. M.; Schlichting, H. E.; Murray-Clay, R. A.; Benecchi, S. D. (2012)
American Astronomical Society, DPS meeting #44, #405.07
http://www.lpi.usra.edu/meetings/acm2012/pdf/6461.pdf
Neptune's Wild Days. Constraints from the Eccentricity Distribution of the Classical Kuiper Belt
Dawson, Rebekah I.; Murray-Clay, Ruth (2012)
The Astrophysical Journal, Volume 750, Issue 1, article id. 43, 29 pp.
http://iopscience.iop.org/0004-637X/750/1/43/
http://arxiv.org/pdf/1202.6060.pdf

Rough Migration

[edit]
Stochastic effects in the planet migration and orbital distribution of the Kuiper Belt
Zhou, Li-Yong; Sun, Yi-Sui; Zhou, Ji-Lin; Zheng, Jia-Qing; Valtonen, Mauri (2002)
Monthly Notice of the Royal Astronomical Society, Volume 336, Issue 2, pp. 520-526.
http://mnras.oxfordjournals.org/content/336/2/520
http://adsabs.harvard.edu/full/2002MNRAS.336..520Z
Brownian Motion in Planetary Migration
Murray-Clay, Ruth A.; Chiang, Eugene I. (2006)
The Astrophysical Journal, Volume 651, Issue 2, pp. 1194-1208.
http://iopscience.iop.org/0004-637X/651/2/1194/
http://arxiv.org/pdf/astro-ph/0607203v1.pdf
Neptune's Orbital Migration Was Grainy, Not Smooth
Nesvorny, David; Vokrouhlicky, David (2016)
The Astrophysical Journal, Volume 825, Issue 2, article id. 94, 18 pp.
http://iopscience.iop.org/article/10.3847/0004-637X/825/2/94/meta
http://arxiv.org/pdf/1602.06988v1.pdf

Dynamics

[edit]
The Dynamical Structure of the Kuiper Belt
Duncan, Martin J.; Levison, Harold F.; Budd, Stuart Mark (1995)
Astronomical Journal v.110, p.3073
http://articles.adsabs.harvard.edu/full/1995AJ....110.3073D
Long-Term Dynamics and the Orbital Inclinations of the Classical Kuiper Belt Objects
Kuchner, Marc J.; Brown, Michael E.; Holman, Matthew (2002)
The Astronomical Journal, Volume 124, Issue 2, pp. 1221-1230.
http://iopscience.iop.org/1538-3881/124/2/1221/
http://arxiv.org/pdf/astro-ph/0206260v1.pdf
The Plane of the Kuiper Belt
Brown, Michael E.; Pan, Margaret (2004)
The Astronomical Journal, Volume 127, Issue 4, pp. 2418-2423.
http://iopscience.iop.org/1538-3881/127/4/2418/
Long term dynamical evolution and classification of classical TNOs
Lykawka, Patryk Sofia; Mukai, Tadashi (2005)
Earth, Moon, and Planets, Volume 97, Issue 1-2, pp. 107-126.
http://link.springer.com/article/10.1007%2Fs11038-005-9056-4
The Deep Ecliptic Survey. A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population
Elliot, J. L.; Kern, S. D.; Clancy, K. B.; Gulbis, A. A. S.; Millis, R. L.; Buie, M. W.; Wasserman, L. H.; Chiang, E. I.; Jordan, A. B.; Trilling, D. E.; Meech, K. J. (2005)
The Astronomical Journal, Volume 129, Issue 2, pp. 1117-1162.
http://iopscience.iop.org/1538-3881/129/2/1117/
Dynamical classification of trans-neptunian objects. Probing their origin, evolution, and interrelation
Lykawka, Patryk Sofia; Mukai, Tadashi (2007)
Icarus, Volume 189, Issue 1, p. 213-232.
http://www.sciencedirect.com/science/article/pii/S001910350700036X

Collisions

[edit]
Collisional Evolution of Edgeworth-Kuiper Belt Objects
Davis, D. R.; Farinella, P. (1997)
Icarus, Volume 125, Issue 1, pp. 50-60.
http://www.sciencedirect.com/science/article/pii/S0019103596955955
Accretion in the Early Kuiper Belt. I. Coagulation and Velocity Evolution
Kenyon, Scott J.; Luu, Jane X. (1998)
The Astronomical Journal, Volume 115, Issue 5, pp. 2136-2160.
http://iopscience.iop.org/1538-3881/115/5/2136/
http://arxiv.org/pdf/astro-ph/9804185v1.pdf
Accretion in the Early Kuiper Belt. II. Fragmentation
Kenyon, Scott J.; Luu, Jane X. (1999)
The Astronomical Journal, Volume 118, Issue 2, pp. 1101-1119.
http://iopscience.iop.org/1538-3881/118/2/1101/
http://arxiv.org/pdf/astro-ph/9904115v1.pdf
Accretion in the Early Outer Solar System
Kenyon, Scott J.; Luu, Jane X. (1999)
The Astrophysical Journal, Volume 526, Issue 1, pp. 465-470.
http://iopscience.iop.org/0004-637X/526/1/465/
http://arxiv.org/pdf/astro-ph/9906143v1.pdf
Formation and Collisional Evolution of the Edgeworth-Kuiper Belt
Farinella, P.; Davis, D. R.; Stern, S. A. (2000)
Protostars and Planets IV (Book - Tucson: University of Arizona Press; eds Mannings, V., Boss, A.P., Russell, S. S.), p. 1255
http://www.uapress.arizona.edu/onlinebks/PPIV/chap45.pdf
Planet Formation in the Outer Solar System
Kenyon, Scott J. (2002)
The Publications of the Astronomical Society of the Pacific, Volume 114, Issue 793, pp. 265-283.
http://www.jstor.org/stable/10.1086/339188
http://arxiv.org/pdf/astro-ph/0112120v1.pdf
Evidence for a Collisional Mechanism Affecting Kuiper Belt Object Colors
Stern, S. Alan (2002)
The Astronomical Journal, Volume 124, Issue 4, pp. 2297-2299.
http://iopscience.iop.org/1538-3881/124/4/2297/
http://arxiv.org/html/astro-ph/0206129v1
Coupling dynamical and collisional evolution of small bodies. an application to the early ejection of planetesimals from the Jupiter-Saturn region
Charnoz, Sébastien; Morbidelli, Alessandro (2003)
Icarus, Volume 166, Issue 1, p. 141-156.
http://www.sciencedirect.com/science/article/pii/S0019103503002136
Shaping the Kuiper belt size distribution by shattering large but strengthless bodies
Pan, Margaret; Sari, Re'em (2005)
Icarus, Volume 173, Issue 2, p. 342-348.
http://www.sciencedirect.com/science/article/pii/S0019103504002994
http://arxiv.org/pdf/astro-ph/0402138v1.pdf
Collisional Evolution of the Primordial Trans-Neptunian Disk. Implications for Planetary Migration and the Current Size Distribution of TNOs
O'Brien, D. P.; Morbidelli, A.; Bottke, W. F. (2005)
American Astronomical Society, DPS meeting #37, #29.14; Bulletin of the American Astronomical Society, Vol. 37, p.676
http://adsabs.harvard.edu/abs/2005DPS....37.2914O
Collisional Evolution of a Massive Planetesimal Disk During Slow Migration of the Outer Planets
Weidenschilling, S. J. (2007)
38th Lunar and Planetary Science Conference, (Lunar and Planetary Science XXXVIII), held March 12-16, 2007 in League City, Texas. LPI Contribution No. 1338, p.2107
http://www.lpi.usra.edu/meetings/lpsc2007/pdf/2107.pdf
Coupling dynamical and collisional evolution of small bodies. II. Forming the Kuiper belt, the Scattered Disk and the Oort Cloud
Charnoz, Sébastien; Morbidelli, Alessandro (2007)
Icarus, Volume 188, Issue 2, p. 468-480.
http://www.sciencedirect.com/science/article/pii/S001910350600443X
http://arxiv.org/ftp/astro-ph/papers/0609/0609807.pdf
Formation and Collisional Evolution of Kuiper Belt Objects
Kenyon, S. J.; Bromley, B. C.; O'Brien, D. P.; Davis, D. R. (2008)
The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.293-313
http://arxiv.org/pdf/0704.0259v1.pdf
Physical Effects of Collisions in the Kuiper Belt
Leinhardt, Z. M.; Stewart, S. T.; Schultz, P. H. (2008)
The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.195-211
http://arxiv.org/pdf/0705.3943v1.pdf
Variations on Debris Disks. Icy Planet Formation at 30-150 AU for 1-3 Msolar Main-Sequence Stars
Kenyon, Scott J.; Bromley, Benjamin C. (2008)
The Astrophysical Journal Supplement Series, Volume 179, Issue 2, pp. 451-483.
http://iopscience.iop.org/0067-0049/179/2/451/
http://arxiv.org/pdf/0807.1134v1.pdf
Neptune Trojans and Plutinos, colors, sizes, dynamics, and their possible collisions
Almeida, A. J. C.; Peixinho, N.; Correia, A. C. M. (2009)
Astronomy and Astrophysics, Volume 508, Issue 2, 2009, pp.1021-1030
http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...508.1021AFUL
http://arxiv.org/pdf/0910.0865v3.pdf
Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans
Morbidelli, Alessandro; Levison, Harold F.; Bottke, William; Dones, Luke; Nesvorny, David (2009)
Icarus, Volume 202, Issue 1, p. 310–315.
http://www.sciencedirect.com/science/article/pii/S0019103509001134
http://arxiv.org/pdf/0903.0923v1.pdf
The history of the Solar system's debris disc. observable properties of the Kuiper belt
Booth, Mark; Wyatt, Mark C.; Morbidelli, Alessandro; Moro-Martín, Amaya; Levison, Harold F. (2009)
Monthly Notices of the Royal Astronomical Society, Volume 399, Issue 1, pp. 385-398.
http://mnras.oxfordjournals.org/content/399/1/385
http://arxiv.org/pdf/0906.3755v1.pdf
Variations on Debris Disks. II. Icy Planet Formation as a Function of the Bulk Properties and Initial Sizes of Planetesimals
Kenyon, Scott J.; Bromley, Benjamin C. (2010)
The Astrophysical Journal Supplement, Volume 188, Issue 1, pp. 242-279.
http://iopscience.iop.org/0067-0049/188/1/242/
http://arxiv.org/pdf/0911.4129v2.pdf
Planetesimals in Debris Disks of Sun-like Stars
Shannon, Andrew; Wu, Yanqin (2011)
The Astrophysical Journal, Volume 739, Issue 1, article id. 36, 10 pp.
http://iopscience.iop.org/0004-637X/739/1/36/
http://arxiv.org/pdf/1103.3209v1.pdf
Runaway Growth During Planet Formation. Explaining the Size Distribution of Large Kuiper Belt Objects
Schlichting, Hilke E.; Sari, Re'em (2011)
The Astrophysical Journal, Volume 728, Issue 1, article id. 68, 12 pp.
http://iopscience.iop.org/0004-637X/728/1/68/
http://arxiv.org/pdf/1011.0201v1.pdf
Coagulation Calculations of Icy Planet Formation at 15-150 AU. A Correlation between the Maximum Radius and the Slope of the Size Distribution for Trans-Neptunian Objects
Kenyon, Scott J.; Bromley, Benjamin C. (2012)
The Astronomical Journal, Volume 143, Issue 3, article id. 63, 21 pp.
http://iopscience.iop.org/1538-3881/143/3/63/
http://arxiv.org/pdf/1201.4395v1.pdf
Collisional evolution of trans-Neptunian object populations in a Nice model environment
Campo Bagatin, Adriano; Benavidez, Paula G. (2012)
Monthly Notices of the Royal Astronomical Society, Volume 423, Issue 2, pp. 1254-1266.
http://mnras.oxfordjournals.org/content/423/2/1254
Statistics of encounters in the trans-Neptunian region
Dell'Oro, A.; Campo Bagatin, A.; Benavidez, P. G.; Alemañ, R. A. (2013)
Astronomy & Astrophysics, Volume 558, id.A95, 8 pp.
http://www.aanda.org/articles/aa/abs/2013/10/aa21461-13/aa21461-13.html

Haumea

[edit]
A collisional family of icy objects in the Kuiper belt
Brown, Michael E.; Barkume, Kristina M.; Ragozzine, Darin; Schaller, Emily L. (2007)
Nature, Volume 446, Issue 7133, pp. 294-296.
http://www.nature.com/nature/journal/v446/n7133/full/nature05619.html
Candidate Members and Age Estimate of the Family of Kuiper Belt Object 2003 EL61
Ragozzine, D.; Brown, M. E. (2007)
The Astronomical Journal, Volume 134, Issue 6, pp. 2160-2167.
http://iopscience.iop.org/1538-3881/134/6/2160/
http://arxiv.org/pdf/0709.0328v1.pdf
On a Scattered-Disk Origin for the 2003 EL61 Collisional FAMILY—AN Example of the Importance of Collisions on the Dynamics of Small Bodies
Levison, Harold F.; Morbidelli, Alessandro; Vokrouhlický, David; Bottke, William F. (2008)
The Astronomical Journal, Volume 136, Issue 3, pp. 1079-1088.
http://iopscience.iop.org/1538-3881/136/3/1079/
http://arxiv.org/pdf/0809.0553v1.pdf
The Youthful Appearance of the 2003 EL61 Collisional Family
Rabinowitz, David L.; Schaefer, Bradley E.; Schaefer, Martha; Tourtellotte, Suzanne W. (2008)
The Astronomical Journal, Volume 136, Issue 4, pp. 1502-1509.
http://iopscience.iop.org/1538-3881/136/4/1502/
http://arxiv.org/ftp/arxiv/papers/0804/0804.2864.pdf
Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt
Rabinowitz, David L.; Barkume, Kristina; Brown, Michael E.; Roe, Henry; Schwartz, Michael; Tourtellotte, Suzanne; Trujillo, Chad (2006)
The Astrophysical Journal, Volume 639, Issue 2, pp. 1238-1251.
http://iopscience.iop.org/0004-637X/639/2/1238/
http://arxiv.org/ftp/astro-ph/papers/0509/0509401.pdf
The Creation of Haumea's Collisional Family
Schlichting, Hilke E.; Sari, Re'em (2009)
The Astrophysical Journal, Volume 700, Issue 2, pp. 1242-1246.
http://iopscience.iop.org/0004-637X/700/2/1242/
http://arxiv.org/pdf/0906.3893v1.pdf
The surface of (136108) Haumea (2003 EL{61}), the largest carbon-depleted object in the trans-Neptunian belt
Pinilla-Alonso, N.; Brunetto, R.; Licandro, J.; Gil-Hutton, R.; Roush, T. L.; Strazzulla, G. (2009)
Astronomy and Astrophysics, Volume 496, Issue 2, pp.547-556
http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...496..547PFUL
http://arxiv.org/pdf/0803.1080v1.pdf
The Formation of the Collisional Family Around the Dwarf Planet Haumea
Leinhardt, Zoë M.; Marcus, Robert A.; Stewart, Sarah T. (2010)
The Astrophysical Journal, Volume 714, Issue 2, pp. 1789-1799.
http://iopscience.iop.org/0004-637X/714/2/1789/
http://arxiv.org/pdf/1003.5822v1.pdf
Characterisation of candidate members of (136108) Haumea's family
Snodgrass, C.; Carry, B.; Dumas, C.; Hainaut, O. (2010)
Astronomy and Astrophysics, Volume 511, id.A72, 9 pp.
http://www.aanda.org/articles/aa/abs/2010/03/aa13031-09/aa13031-09.html
http://arxiv.org/pdf/0912.3171v1.pdf
Characterisation of candidate members of (136108) Haumea's family. II. Follow-up observations
Carry, B.; Snodgrass, C.; Lacerda, P.; Hainaut, O.; Dumas, C. (20120
Astronomy & Astrophysics, Volume 544, id.A137, 7 pp.
http://www.aanda.org/articles/aa/abs/2012/08/aa19044-12/aa19044-12.html
http://arxiv.org/pdf/1206.7069v2.pdf
Rotational fission of trans-Neptunian objects, the case of Haumea
Ortiz, J. L.; Thirouin, A.; Campo Bagatin, A.; Duffard, R.; Licandro, J.; Richardson, D. C.; Santos-Sanz, P.; Morales, N.; Benavidez, P. G. (2012)
Monthly Notices of the Royal Astronomical Society, Volume 419, Issue 3, pp. 2315-2324.
http://mnras.oxfordjournals.org/content/419/3/2315
http://arxiv.org/pdf/1110.3637v1.pdf
The effect of orbital evolution on the Haumea (2003 EL61) collisional family
Volk, Kathryn; Malhotra, Renu (2012)
Icarus, Volume 221, Issue 1, p. 106-115.
http://www.sciencedirect.com/science/article/pii/S0019103512002898
http://arxiv.org/pdf/1206.7069v2.pdf
On the Dynamics and Origin of Haumea's Moons
Cuk, Matija; Ragozzine, Darin; Nesvorný, David (2013)
The Astronomical Journal, Volume 146, Issue 4, article id. 89, 13 pp.
http://iopscience.iop.org/1538-3881/146/4/89/
http://arxiv.org/pdf/1308.1990v1.pdf
The Size and Shape of the Oblong Dwarf Planet Haumea
Lockwood, Alexandra C.; Brown, Michael E.; Stansberry, John (2014)
Earth, Moon, and Planets, Volume 111, Issue 3-4, pp. 127-137
http://link.springer.com/article/10.1007%2Fs11038-014-9430-1
http://arxiv.org/pdf/1402.4456v1.pdf

Hit and Run

[edit]
Hit-and-run planetary collisions
Asphaug, Erik; Agnor, Craig B.; Williams, Quentin (2006)
Nature, Volume 439, Issue 7073, pp. 155-160.
http://www.nature.com/nature/journal/v439/n7073/full/nature04311.html
Hit-and-Run as Planets Formed
Taylor, G. J. (2006)
Planetary Science Research Discoveries
http://www.psrd.hawaii.edu/Nov06/hit-and-run.html
Similar-sized collisions and the diversity of planets
Asphaug, Erik (2010)
Chemie der Erde - Geochemistry, vol. 70, issue 3, pp. 199-219
http://www.sciencedirect.com/science/article/pii/S000928191000005X
Collisions between Gravity-dominated Bodies. II. The Diversity of Impact Outcomes during the End Stage of Planet Formation
Stewart, Sarah T.; Leinhardt, Zoë M. (2012)
The Astrophysical Journal, Volume 751, Issue 1, article id. 32, 17 pp.
http://iopscience.iop.org/0004-637X/751/1/32/
http://arxiv.org/pdf/1109.4588v3.pdf
Low-Velocity Collision, Inefficient Accretion, Hit-and-Run Disruption, and the Stripping of Protoplanetary Cores
Reufer, A.; Asphaug, E.; Scott, E. R. D. (2013)
44th Lunar and Planetary Science Conference, held March 18-22, 2013 in The Woodlands, Texas. LPI Contribution No. 1719, p.3094
http://www.lpi.usra.edu/meetings/lpsc2013/pdf/3094.pdf

Size Distribution

[edit]
The Structure of the Kuiper Belt. Size Distribution and Radial Extent
Gladman, Brett; Kavelaars, J. J.; Petit, Jean-Marc; Morbidelli, Alessandro; Holman, Matthew J.; Loredo, T. (2001)
The Astronomical Journal, Volume 122, Issue 2, pp. 1051-1066.
http://iopscience.iop.org/1538-3881/122/2/1051/
The Size Distribution of Kuiper Belt Objects
Kenyon, Scott J.; Bromley, Benjamin C. (2004)
The Astronomical Journal, Volume 128, Issue 4, pp. 1916-1926.
http://iopscience.iop.org/1538-3881/128/4/1916/
http://arxiv.org/pdf/astro-ph/0406556v1.pdf
The Size Distribution of Trans-Neptunian Bodies
Bernstein, G. M.; Trilling, D. E.; Allen, R. L.; Brown, M. E.; Holman, M.; Malhotra, R. (2004)
The Astronomical Journal, Volume 128, Issue 3, pp. 1364-1390.
http://iopscience.iop.org/1538-3881/128/3/1364/
http://arxiv.org/pdf/astro-ph/0308467v3.pdf
The Kuiper Belt luminosity function from mR = 22 to 25
Petit, J.-M.; Holman, M. J.; Gladman, B. J.; Kavelaars, J. J.; Scholl, H.; Loredo, T. J. (2006)
Monthly Notices of the Royal Astronomical Society, Volume 365, Issue 2, pp. 429-438.
http://mnras.oxfordjournals.org/content/365/2/429
http://articles.adsabs.harvard.edu/full/2006MNRAS.365..429P
The Kuiper belt luminosity function from m= 21 to 26
Fraser, Wesley C.; Kavelaars, J. J.; Holman, M. J.; Pritchet, C. J.; Gladman, B. J.; Grav, T.; Jones, R. L.; MacWilliams, J.; Petit, J.-M. (2008)
Icarus, Volume 195, Issue 2, p. 827-843.
http://www.sciencedirect.com/science/article/pii/S0019103508000705
http://arxiv.org/pdf/0802.2285v1.pdf
A SUBARU Archival Search for Faint Trans-Neptunian Objects
Fuentes, Cesar I.; Holman, Matthew J. (2008)
The Astronomical Journal, Volume 136, Issue 1, pp. 83-97.
http://iopscience.iop.org/article/10.1088/0004-6256/136/1/83
A derivation of the luminosity function of the Kuiper belt from a broken power-law size distribution
Fraser, Wesley C.; Kavelaars, J. J. (2008)
Icarus, Volume 198, Issue 2, p. 452-458.
http://www.sciencedirect.com/science/article/pii/S0019103508003138
http://arxiv.org/pdf/0809.0313v1.pdf
Size Distribution of Multikilometer Transneptunian Objects
Petit, J.-M.; Kavelaars, J. J.; Gladman, B.; Loredo, T. (2008)
The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.71-87
The Size Distribution of Kuiper Belt Objects for D gsim 10 km
Fraser, Wesley C.; Kavelaars, J. J. (2009)
The Astronomical Journal, Volume 137, Issue 1, pp. 72-82.
http://iopscience.iop.org/1538-3881/137/1/72/
http://arxiv.org/pdf/0810.2296v1.pdf
The Collisional Divot in the Kuiper Belt Size Distribution
Fraser, Wesley C. (2009)
The Astrophysical Journal, Volume 706, Issue 1, pp. 119-129.
http://iopscience.iop.org/0004-637X/706/1/119/
http://arxiv.org/pdf/0910.0246v1.pdf
The trans-Neptunian object size distribution at small sizes
Gil-Hutton, R.; Licandro, J.; Pinilla-Alonso, N.; Brunetto, R. (2009)
Astronomy and Astrophysics, Volume 500, Issue 2, pp.909-916
http://www.aanda.org/index.php?option=com_article&access=bibcode&Itemid=129&bibcode=2009A%2526A...500..909GFUL
The Size Distribution of the Neptune Trojans and the Missing Intermediate-sized Planetesimals
Sheppard, Scott S.; Trujillo, Chadwick A. (2010)
The Astrophysical Journal Letters, Volume 723, Issue 2, pp. L233-L237.
http://iopscience.iop.org/2041-8205/723/2/L233/
http://arxiv.org/pdf/1009.5990v1.pdf
The luminosity function of the hot and cold Kuiper belt populations
Fraser, Wesley C.; Brown, Michael E.; Schwamb, Megan E. (2010)
Icarus, Volume 210, Issue 2, p. 944-955.
http://www.sciencedirect.com/science/article/pii/S0019103510003027
http://arxiv.org/pdf/1008.1058v1.pdf
A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects
Shankman, C.; Gladman, B. J.; Kaib, N.; Kavelaars, J. J.; Petit, J. M. (2013)
The Astrophysical Journal Letters, Volume 764, Issue 1, article id. L2, 6 pp.
http://iopscience.iop.org/2041-8205/764/1/L2/
http://arxiv.org/pdf/1210.4827v2.pdf
Initial Planetesimal Sizes and the Size Distribution of Small Kuiper Belt Objects
Schlichting, Hilke E.; Fuentes, Cesar I.; Trilling, David E. (2013)
The Astronomical Journal, Volume 146, Issue 2, article id. 36, 7 pp.
http://iopscience.iop.org/1538-3881/146/2/36/
http://arxiv.org/pdf/1301.7433v2.pdf
De-biased Populations of Kuiper Belt Objects from the Deep Ecliptic Survey
Adams, E. R.; Gulbis, A. A. S.; Elliot, J. L.; Benecchi, S. D.; Buie, M. W.; Trilling, D. E.; Wasserman, L. H. (2014)
The Astronomical Journal, Volume 148, Issue 3, article id. 55, 17 pp.
http://iopscience.iop.org/article/10.1088/0004-6256/148/3/55
http://arxiv.org/pdf/1311.3250v1.pdf
The Absolute Magnitude Distribution of Kuiper Belt Objects
Fraser, Wesley C.; Brown, Michael E.; Morbidelli, Alessandro; Parker, Alex; Batygin, Konstantin (2014)
The Astrophysical Journal, Volume 782, Issue 2, article id. 100
http://iopscience.iop.org/0004-637X/782/2/100/
http://arxiv.org/pdf/1401.2157v1.pdf
The Differing Magnitude Distributions of the Two Jupiter Trojan Color Populations
Wong, Ian; Brown, Michael E.; Emery, Joshua P. (2014)
The Astronomical Journal, Volume 148, Issue 6, article id. 112, 11 pp.
http://iopscience.iop.org/article/10.1088/0004-6256/148/6/112
http://arxiv.org/pdf/1408.2485v2.pdf
A carefully characterised and tracked Trans-Neptunian survey, the size-distribution of the Plutinos and the number of Neptunian Trojans
Alexandersen, Mike; Gladman, Brett; Kavelaars, J. J.; Petit, Jean-Marc; Gwyn, Stephen; Shankman, Cory (2014)
eprint arXiv:1411.7953
http://arxiv.org/pdf/1411.7953v1
OSSOS. II. A Sharp Transition in the Absolute Magnitude Distribution of the Kuiper Belt’s Scattering Population
Shankman, C.; Kavelaars, JJ.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Bannister, M. T.; Chen, Y.-T.; Gwyn, S.; Jakubik, M.; Volk, K. (2016)
The Astronomical Journal, Volume 151, Issue 2, article id. 31, 11 pp. (2016)
http://iopscience.iop.org/article/10.3847/0004-6256/151/2/31
http://arxiv.org/pdf/1511.02896v2.pdf

Outer Edge

[edit]
Evidence for Early Stellar Encounters in the Orbital Distribution of Edgeworth-Kuiper Belt Objects
Ida, Shigeru; Larwood, John; Burkert, Andreas (2000)
The Astrophysical Journal, Volume 528, Issue 1, pp. 351-356.
http://iopscience.iop.org/0004-637X/528/1/351
The Edge of the Solar System
Allen, R. L.; Bernstein, G. M.; Malhotra, R. (2001)
The Astrophysical Journal, Volume 549, Issue 2, pp. L241-L244.
http://iopscience.iop.org/1538-4357/549/2/L241/
http://arxiv.org/pdf/astro-ph/0011037v1.pdf
The Radial Distribution of the Kuiper Belt
Trujillo, Chadwick A.; Brown, Michael E. (2001)
The Astrophysical Journal, Volume 554, Issue 1, pp. L95-L98.
http://iopscience.iop.org/1538-4357/554/1/L95/
Observational Limits on a Distant Cold Kuiper Belt
Allen, R. L.; Bernstein, G. M.; Malhotra, R. (2002)
The Astronomical Journal, Volume 124, Issue 5, pp. 2949-2954.
http://iopscience.iop.org/1538-3881/124/5/2949/
http://arxiv.org/pdf/astro-ph/0209421v1.pdf
The Effects of a Stellar Encounter on a Planetesimal Disk
Kobayashi, Hiroshi; Ida, Shigeru (2001)
Icarus, Volume 153, Issue 2, pp. 416-429.
http://www.sciencedirect.com/science/article/pii/S0019103501967004
http://arxiv.org/pdf/astro-ph/0107086v1.pdf
The edge of the edgeworth-Kuiper Belt. stellar encounter, trans-Plutonian planet or outer limit of the primordial solar nebula?
Melita, M. D.; Larwood, J.; Collander-Brown, S.; Fitzsimmons, A.; Williams, I. P.; Brunini, A. (2002)
Proceedings of Asteroids, Comets, Meteors - ACM 2002. International Conference, 29 July - 2 August 2002, Berlin, Germany. Ed. Barbara Warmbein. ESA SP-500. Noordwijk, Netherlands: ESA Publications Division, 2002, p. 305 - 308
http://articles.adsabs.harvard.edu/full/2002ESASP.500..305M
Planetesimal Formation in Two Dimensions. Putting an Edge on the Solar System
Weidenschilling, S. J. (2002)
34th Annual Lunar and Planetary Science Conference, March 17-21, 2003, League City, Texas, abstract no.1707
http://www.lpi.usra.edu/meetings/lpsc2003/pdf/1707.pdf
Sculpting the Kuiper Belt by a Stellar Encounter. Constraints from the Oort Cloud and Scattered Disk
Levison, Harold F.; Morbidelli, Alessandro; Dones, Luke (2004)
The Astronomical Journal, Volume 128, Issue 5, pp. 2553-2563.
http://iopscience.iop.org/1538-3881/128/5/2553
Dispersal of Disks Around Young Stars. Constraints on Kuiper Belt Formation
Hollenbach, D.; Adams, F. C. (2004)
Debris Disks and the Formation of Planets: A Symposium in Memory of Fred Gillett, ASP Conference Series, Vol. 324, Proceedings of the conference held 11-13 April, 2002 in Tucson Arizona. Edited by L. Caroff, L. J. Moon, D. Backman, and E. Praton. San Francisco: Astronomical Society of the Pacific, 2004., p.168
http://articles.adsabs.harvard.edu/full/2004ASPC..324..168H
A Method to Constrain the Size of the Protosolar Nebula
Kretke, K. A.; Levison, H. F.; Buie, M. W.; Morbidelli, A. (2012)
The Astronomical Journal, Volume 143, Issue 4, article id. 91, 10 pp.
http://iopscience.iop.org/1538-3881/143/4/91/
http://arxiv.org/pdf/1202.2343v1.pdf

Binaries

[edit]
Formation of Kuiper-belt binaries by dynamical friction and three-body encounters
Goldreich, Peter; Lithwick, Yoram; Sari, Re'em (2002)
Nature, Volume 420, Issue 6916, pp. 643-646.
http://www.nature.com/nature/journal/v420/n6916/full/nature01227.html
http://arxiv.org/pdf/astro-ph/0208490v1.pdf
KBO binaries, how numerous were they?
Petit, J.-M.; Mousis, O. (2004)
Icarus, Volume 168, Issue 2, p. 409-419.
http://www.sciencedirect.com/science/article/pii/S0019103503004330
The formation of Kuiper-belt binaries through exchange reactions
Funato, Yoko; Makino, Junichiro; Hut, Piet; Kokubo, Eiichiro; Kinoshita, Daisuke (2004)
Nature, Volume 427, Issue 6974, pp. 518-520.
http://www.nature.com/nature/journal/v427/n6974/full/nature02323.html
http://arxiv.org/pdf/astro-ph/0402328v1.pdf
Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intruders
Astakhov, Sergey A.; Lee, Ernestine A.; Farrelly, David (2005)
Monthly Notices of the Royal Astronomical Society, Volume 360, Issue 2, pp. 401-415.
http://mnras.oxfordjournals.org/content/360/2/401
http://arxiv.org/pdf/astro-ph/0504060v1.pdf
The Frequency of Binary Kuiper Belt Objects
Kern, S. D.; Elliot, J. L. (2006)
The Astrophysical Journal, Volume 643, Issue 1, pp. L57-L60.
http://iopscience.iop.org/1538-4357/643/1/L57
The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36
Stansberry, J. A.; Grundy, W. M.; Margot, J. L.; Cruikshank, D. P.; Emery, J. P.; Rieke, G. H.; Trilling, D. E. (2006)
The Astrophysical Journal, Volume 643, Issue 1, pp. 556-566.
http://iopscience.iop.org/0004-637X/643/1/556/
http://arxiv.org/pdf/astro-ph/0602316v1.pdf
Satellites of the Largest Kuiper Belt Objects
Brown, M. E.; van Dam, M. A.; Bouchez, A. H.; Le Mignant, D.; Campbell, R. D.; Chin, J. C. Y.; Conrad, A.; Hartman, S. K.; Johansson, E. M.; Lafon, R. E.; Rabinowitz, D. L.; Stomski, P. J., Jr.; Summers, D. M.; Trujillo, C. A.; Wizinowich, P. L. (2006)
The Astrophysical Journal, Volume 639, Issue 1, pp. L43-L46.
http://iopscience.iop.org/1538-4357/639/1/L43/
http://arxiv.org/pdf/astro-ph/0510029v1.pdf
Production of trans-Neptunian binaries through chaos-assisted capture
Lee, Ernestine A.; Astakhov, Sergey A.; Farrelly, David (2007)
Monthly Notices of the Royal Astronomical Society, Volume 379, Issue 1, pp. 229-246.
http://mnras.oxfordjournals.org/content/379/1/229
http://arxiv.org/pdf/0705.0475v1.pdf
Binaries in the Kuiper Belt
Noll, K. S.; Grundy, W. M.; Chiang, E. I.; Margot, J.-L.; Kern, S. D. (2008)
The Solar System Beyond Neptune, M. A. Barucci, H. Boehnhardt, D. P. Cruikshank, and A. Morbidelli (eds.), University of Arizona Press, Tucson, 592 pp., p.345-363
http://arxiv.org/pdf/astro-ph/0703134v2.pdf
Formation of Kuiper Belt Binaries
Schlichting, Hilke E.; Sari, Re'em (2008)
The Astrophysical Journal, Volume 673, Issue 2, pp. 1218-1224.
http://iopscience.iop.org/0004-637X/673/2/1218/
http://arxiv.org/pdf/0709.3107v2.pdf
The Ratio of Retrograde to Prograde Orbits. A Test for Kuiper Belt Binary Formation Theories
Schlichting, Hilke E.; Sari, Re'em (2008)
The Astrophysical Journal, Volume 686, Issue 1, pp. 741-747.
http://iopscience.iop.org/0004-637X/686/1/741
http://arxiv.org/pdf/0803.0329v2.pdf
Kuiper binary formation
Nazzario, R. C.; Orr, K.; Covington, C.; Kagan, D.; Hyde, T. W. (2008)
Advances in Space Research, Volume 40, Issue 2, p. 280-283.
http://www.sciencedirect.com/science/article/pii/S0273117707003328
http://arxiv.org/ftp/astro-ph/papers/0507/0507149.pdf
The correlated colors of transneptunian binaries
Benecchi, S. D.; Noll, K. S.; Grundy, W. M.; Buie, M. W.; Stephens, D. C.; Levison, H. F. (2009)
Icarus, Volume 200, Issue 1, p. 292-303.
http://www.sciencedirect.com/science/article/pii/S0019103508003904
http://arxiv.org/ftp/arxiv/papers/0811/0811.2104.pdf
Formation of Kuiper Belt Binaries by Gravitational Collapse
Nesvorný, David; Youdin, Andrew N.; Richardson, Derek C. (2010)
The Astronomical Journal, Volume 140, Issue 3, pp. 785-793.
http://iopscience.iop.org/1538-3881/140/3/785
http://arxiv.org/pdf/1007.1465v1.pdf
(47171) 1999 TC 36, A transneptunian triple
Benecchi, S. D.; Noll, K. S.; Grundy, W. M.; Levison, H. F. (2010)
Icarus, Volume 207, Issue 2, p. 978-991.
http://www.sciencedirect.com/science/article/pii/S0019103509005065
http://arxiv.org/ftp/arxiv/papers/0912/0912.2074.pdf
A Change in the Light Curve of Kuiper Belt Contact Binary (139775) 2001 QG298
Lacerda, Pedro (2011)
The Astronomical Journal, Volume 142, Issue 3, article id. 90, 8 pp.
http://iopscience.iop.org/1538-3881/142/3/90/
http://arxiv.org/pdf/1107.3507v1.pdf
The Relative Sizes of Transneptunian Binaries. Evidence for Different Populations from a Homogeneous Data Set
Noll, K.; Grundy, W.; Benecchi, S.; Levison, H. (2011)
EPSC-DPS Joint Meeting 2011, held 2-7 October 2011 in Nantes, France p.1029
http://meetingorganizer.copernicus.org/EPSC-DPS2011/EPSC-DPS2011-1029.pdf
Characterization of Seven Ultra-wide Trans-Neptunian Binaries
Parker, Alex H.; Kavelaars, J. J.; Petit, Jean-Marc; Jones, Lynne; Gladman, Brett; Parker, Joel (2011)
The Astrophysical Journal, Volume 743, Issue 1, article id. 1.
http://iopscience.iop.org/0004-637X/743/1/1/
http://arxiv.org/pdf/1108.2505v2.pdf
Observed Binary Fraction Sets Limits on the Extent of Collisional Grinding in the Kuiper Belt
Nesvorný, David; Vokrouhlický, David; Bottke, William F.; Noll, Keith; Levison, Harold F.
The Astronomical Journal, Volume 141, Issue 5, article id. 159, 11 pp. (2011)
http://iopscience.iop.org/1538-3881/141/5/159/
http://arxiv.org/pdf/1102.5706v1.pdf
Collisional Evolution of Ultra-wide Trans-Neptunian Binaries
Parker, Alex H.; Kavelaars, J. J. (2012)
The Astrophysical Journal, Volume 744, Issue 2, article id. 139, 14 pp.
http://iopscience.iop.org/0004-637X/744/2/139/
http://arxiv.org/pdf/1111.2046v1.pdf
The unusual Kuiper belt object 2003 SQ317
Lacerda, Pedro; McNeill, Andrew; Peixinho, Nuno (2014)
Monthly Notices of the Royal Astronomical Society, Volume 437, Issue 4, p.3824-3831
http://mnras.oxfordjournals.org/content/437/4/3824
http://arxiv.org/pdf/1309.1671v1.pdf
All planetesimals born near the Kuiper belt formed as binaries
Fraser, Wesley C.; Bannister, Michele T.; Pike, Rosemary E.; Marsset, Michael; Schwamb, Megan E.; Kavelaars, J. J.; Lacerda, Pedro; Nesvorný, David; Volk, Kathryn; Delsanti, Audrey; Benecchi, Susan; Lehner, Matthew J.; Noll, Keith; Gladman, Brett; Petit, Jean-Marc; Gwyn, Stephen; Chen, Ying-Tung; Wang, Shiang-Yu; Alexandersen, Mike; Burdullis, Todd; Sheppard, Scott; Trujillo, Chad (2017)
Nature Astronomy, Volume 1, id. 0088
http://www.nature.com/articles/s41550-017-0088
https://arxiv.org/pdf/1705.00683.pdf

10/27/2013

[edit]

other stuff

[edit]

latitude and longitude

[edit]

http://star-www.st-and.ac.uk/~fv/webnotes/chapt9a.htm

Review

[edit]

Formation, Orbital and Internal Evolutions of Young Planetary Systems http://adsabs.harvard.edu/doi/10.1007/s11214-016-0258-z

Earth and Terrestrial Planet Formation http://adsabs.harvard.edu/abs/2015etpf.book...49J

Terrestrial Planet Formation at Home and Abroad http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1312.1689

Giant Planet and Brown Dwarf Formation http://adsabs.harvard.edu/abs/2014prpl.conf..619C

https://astrobites.org/2015/08/18/giant-planets-from-far-out-there/

http://www.ast.cam.ac.uk/sites/default/files/talk_archive/Walsh_acrossR_talk.pdf

http://astro.physik.uni-due.de/~planets2016/Program_Abstracts.pdf

http://www.rccp.tsukuba.ac.jp/Astro/assets/doc/cab2016/batch2/ida.pdf

https://www.youtube.com/watch?v=JOJahGcNhvI 1:07:00

Close-in planetesimal formation by pile-up of drifting pebbles http://arxiv.org/abs/1607.05734

Making Planet Nine: Pebble Accretion at 250–750 AU in a Gravitationally Unstable Ring http://adsabs.harvard.edu/abs/2016ApJ...825...33K

Formation of giant planets’ cores by classical planetesimal accretion http://adsabs.harvard.edu/abs/2015DPS....4730906M

Giant planet formation via pebble accretion http://adsabs.harvard.edu/abs/2015arXiv151107583G

Rapid planetesimal formation in the inner protoplanetary disk http://journals.cambridge.org/download.php?file=%2FIAU%2FIAU9_S310%2FS1743921314008278a.pdf&code=e98dddfac65a327d5e74d9e8bd98cb77

Close-in planetesimal formation by pile-up of drifting pebbles http://adsabs.harvard.edu/abs/2016arXiv160705734D

Onset of oligarchic growth and implication for accretion histories of dwarf planets http://arxiv.org/abs/1608.00043

The Influence of Magnetic Field Geometry on the Formation of Close-in Exoplanets http://arxiv.org/abs/1608.00573

Evolution of Protoplanetary Discs with Magnetically Driven Disc Winds http://arxiv.org/abs/1609.00437

Prompt planetesimal formation beyond the snow line http://arxiv.org/abs/1608.03592

Dust and gas density evolution at a radial pressure bump in protoplanetary disks http://arxiv.org/abs/1605.02744

Dust Coagulation in the Vicinity of a Gap-Opening Jupiter-Mass Planet http://arxiv.org/abs/1512.03945

Turbulent Thermal Diffusion: A Way to Concentrate Dust in Protoplanetary Discs http://arxiv.org/abs/1512.02538

Fossilized condensation lines in the Solar System protoplanetary disk http://arxiv.org/abs/1511.06556

From Planetesimals to Planets in Turbulent Protoplanetary Disks I. Onset of Runaway Growth http://arxiv.org/abs/1512.06968

Migration of accreting planets in radiative discs from dynamical torques http://arxiv.org/abs/1608.08756

Failed Growth at the Bouncing Barrier in Planetesimal Formation http://arxiv.org/abs/1609.00501

The role of pebble fragmentation in planetesimal formation I. Experimental study http://arxiv.org/abs/1609.06914

The role of pebble fragmentation in planetesimal formation II. Numerical simulations http://arxiv.org/abs/1609.07052

Jumping the gap: the formation conditions and mass function of `pebble-pile' planetesimals http://adsabs.harvard.edu/abs/2016MNRAS.456.2383H

Excess C/O and C/H in outer protoplanetary disk gas https://arxiv.org/abs/1610.07859

Challenges in Planet Formation https://arxiv.org/abs/1610.07202

The Spiral Wave Instability Induced by a Giant Planet: I. Particle Stirring in the Inner Regions of Protoplanetary Disks https://arxiv.org/abs/1610.08502

Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line https://arxiv.org/abs/1610.09643

Planetesimal clearing and size-dependent asteroid retention by secular resonance sweeping during the depletion of the solar nebula https://arxiv.org/abs/1610.09670

The structure of dust aggregates in hierarchical coagulation https://arxiv.org/abs/1611.00167

FU Orionis outbursts, preferential recondensation of water ice, and the formation of giant planets https://arxiv.org/abs/1611.01538

Initial mass function of planetesimals formed by the streaming instability https://arxiv.org/abs/1611.02285

Atmospheric Signatures of Giant Exoplanet Formation by Pebble Accretion https://arxiv.org/abs/1611.03083

Disentangling Hot Jupiters formation location from their chemical composition https://arxiv.org/abs/1611.03128

Study and application of the resonant secular dynamics beyond Neptune https://arxiv.org/abs/1611.04480

Rocky Planetesimal Formation via Fluffy Aggregates of Nanograins https://arxiv.org/abs/1611.03859

Why Is Mercury So Far from the Sun? http://aasnova.org/2016/08/16/why-is-mercury-so-far-from-the-sun/

Dirty Stars Make Good Solar System Hosts https://www.sciencedaily.com/releases/2009/10/091006122336.htm

Hold on to Your Moons! Ice, Atmospheres and the Grand Tack https://astrobites.org/2015/06/09/hold-on-to-your-moons-ice-atmospheres-and-the-grand-tack/

Concentrating small particles in protoplanetary disks through the streaming instability https://arxiv.org/abs/1611.07014

Eccentricity distribution in the main asteroid belt https://arxiv.org/abs/1611.05826

Influence of the Centaurs and TNOs on the main belt and its families https://arxiv.org/abs/1611.05731

Terrestrial Planet Formation from an Annulus https://arxiv.org/abs/1609.06639

Observational Signatures of a Massive Distant Planet on the Scattering Disk https://arxiv.org/abs/1605.06575

The Formation and Evolution of Ordinary Chondrite Parent Bodies https://arxiv.org/abs/1611.08734

Composition of Solar System Small Bodies https://arxiv.org/abs/1611.08731

Comet 67P/Churyumov–Gerasimenko preserved the pebbles that formed planetesimals http://mnras.oxfordjournals.org/content/462/Suppl_1/S132

What is the meter size barrier? https://astrobites.org/2015/04/03/what-is-the-meter-size-barrier/

From dust to planetesimals: an improved model for collisional growth in protoplanetary disks https://arxiv.org/abs/1209.0013

http://archiv.ub.uni-heidelberg.de/volltextserver/9213/1/dissertation_frithjof_brauer.pdf

http://th.nao.ac.jp/MEMBER/hori/pdf/HORI_2012Dec3-5.pdf

https://indico.nbi.ku.dk/getFile.py/access?contribId=2&sessionId=3&resId=0&materialId=slides&confId=764

http://www.castu.tsinghua.edu.cn/publish/cas/945/20140429143211718785639/PlanetFormation_Bai.pdf

Timing of the formation and migration of giant planets as constrained by CB chondrites http://advances.sciencemag.org/content/2/12/e1601658.full

Building Massive Compact Planetesimal Disks from the Accretion of Pebbles http://adsabs.harvard.edu/abs/2015ApJ...809...94M

Overcoming the Meter Barrier and The Formation of Systems with Tightly-packed Inner Planets (STIPs) http://adsabs.harvard.edu/abs/2014ApJ...792L..27B

The Spiral Wave Instability Induced by a Giant Planet. I. Particle Stirring in the Inner Regions of Protoplanetary Disks http://adsabs.harvard.edu/abs/2016ApJ...833..126B

Application of Gas Dynamical Friction for Planetesimals. I. Evolution of Single Planetesimals http://adsabs.harvard.edu/abs/2015ApJ...811...54G

Planetesimal formation near the snowline: in or out? http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1702.02151

Chondrule Accretion with a Growing Protoplanet https://arxiv.org/abs/1702.07989

The cool and distant formation of Mars https://arxiv.org/abs/1704.00184

Terrestrial planet formation: Dynamical shake-up and the low mass of Mars https://arxiv.org/abs/1703.10618

Saving super-Earths: Interplay between pebble accretion and type I migration https://arxiv.org/abs/1704.01962

Long term dynamics beyond Neptune: secular models to study the regular motions https://arxiv.org/abs/1611.04457

Making Terrestrial Planets: High Temperatures, FU Orionis Outbursts, Earth, and Planetary System Architectures https://arxiv.org/abs/1704.05517

DPS asteroid belt and hot Kuiper belt show a turnover to a shallow size distribution at sizes larger than D=300-500km, transition to a steeper slope assuming that the original planetesimals had D<100km and grew further by the process of pebble accretion, size distribution above D=100km is set by a combination of planetesimal collisions and the sweeping up of pebbles, final slopes are diagnostic of the collisionial rate and the initial total mass of the planetesimal population, size distribution for the largest asteroids and hot Kuiper belt objects are consistent with growth dominated by the accretion of pebbles, observed size distributions also places constraints on the dominant particle size, the level of midplane turbulence and nebular conditions at different orbital radii in the Solar nebula, findings hint that the asteroid belt largely formed close to the dissipation of the gas disc and that its final total mass was comparable to that of the Earth

streaming instabilities

[edit]

Protoplanetary Disk Turbulence Driven by the Streaming Instability: Nonlinear Saturation and Particle Concentration https://iopscience.iop.org/article/10.1086/516730/meta

Forming Planetesimals in Solar and Extrasolar Nebulae https://arxiv.org/abs/0909.2652

From Disks to Planets https://arxiv.org/abs/1206.0738

Dynamical evolution of planetary systems https://arxiv.org/abs/1106.4114

Recent Research

[edit]

Prompt Planetesimal Formation beyond the Snow Line

Close-in planetesimal formation by pile-up of drifting pebbles

Dust and gas density evolution at a radial pressure bump in protoplanetary disks


http://www.astro.washington.edu/courses/astro557/

An Overview of Inside-Out Planet Formation

https://en.wikipedia.org/wiki/Accretion_%28astrophysics%29

http://adsabs.harvard.edu/abs/2016arXiv160402952B

http://adsabs.harvard.edu/abs/2014prpl.conf..411T

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1402.1354

Brauer, F.; Henning, Th.; Dullemond, C. P

http://adsabs.harvard.edu/abs/2016ApJ...817..105K

http://arxiv.org/pdf/1603.03168v2.pdf

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1305.1890

http://adsabs.harvard.edu/abs/2010Icar..208..518C

http://adsabs.harvard.edu/abs/2016ApJ...818..200E

http://www.mpia.de/homes/ppvi/posters/2H017.pdf

http://mnras.oxfordjournals.org/content/422/2/1140.full

http://arxiv.org/pdf/1211.2095v3.pdf

http://arxiv.org/abs/1501.03101

http://adsabs.harvard.edu/abs/2008ApJ...679.1588O

http://adsabs.harvard.edu/abs/2011A%26A...529A..62J

http://arxiv.org/pdf/1211.2095v3.pdf

http://adsabs.harvard.edu/abs/2013A%26A...559A..62W

http://adsabs.harvard.edu/abs/2014ApJ...783L..36Y

http://adsabs.harvard.edu/abs/2009ApJ...702.1490W

https://dda.aas.org/meetings/2016/program.html

http://adsabs.harvard.edu/abs/2016DDA....4730301D

http://adsabs.harvard.edu/abs/2016DDA....4710204C

http://adsabs.harvard.edu/abs/2016DDA....4730003I

http://adsabs.harvard.edu/abs/2016DDA....4710104A

https://arxiv.org/abs/1203.2940

https://arxiv.org/abs/1410.3832

https://arxiv.org/abs/1511.07762

https://arxiv.org/abs/1501.03101

https://arxiv.org/abs/1604.02952

https://arxiv.org/abs/1402.1344

https://arxiv.org/abs/1505.02941

http://arxiv.org/abs/1311.5222

http://arxiv.org/abs/1402.1354

http://arxiv.org/abs/1112.2349

http://arxiv.org/abs/0907.0985

https://www.youtube.com/watch?v=UVlv0boyuYc

http://adsabs.harvard.edu/abs/2015Natur.522...45S

http://phys.org/news/2016-05-footprints-baby-planets-gas-disk.html

http://spaceref.com/asteroids/vesta-is-not-an-intact-protoplanet.html

http://www.mpia.de/homes/ppvi/posters/2H034.pdf

http://arxiv.org/pdf/1602.00622v2.pdf

http://arxiv.org/abs/1401.7490

http://arxiv.org/abs/1401.7490

http://arxiv.org/abs/1202.4887

http://arxiv.org/abs/1106.0152

http://arxiv.org/abs/0902.3579

http://www.hou.usra.edu/meetings/lpsc2016/pdf/2024.pdf

http://www.issibern.ch/teams/originsolsys/Vesta/Pdf/Consolmagno_et_al-2015-Icarus.pdf

http://arxiv.org/abs/1508.06990

http://arxiv.org/abs/1602.04303

http://arxiv.org/pdf/1407.3303v1.pdf

http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?return_req=no_params&author=Winter,%20Othon%20Cabo&db_key=AST

http://adsabs.harvard.edu/abs/2004A%26A...414..727V

http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?return_req=no_params&author=Vieira%20Neto,%20E.&db_key=AST

http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?return_req=no_params&author=Winter,%20O.%20C.&db_key=AST

http://online.kitp.ucsb.edu/online/evoplanets_c15/raymond/options.html

http://arxiv.org/abs/1603.07674

http://www.raa-journal.org/raa/index.php/raa/article/viewFile/1573/1835

http://arxiv.org/abs/1510.06848

http://arxiv.org/abs/1603.07674

http://arxiv.org/pdf/1205.4935v1.pdf

Simulations of Small Solid Accretion onto Planetesimals in the Presence of Gas https://arxiv.org/abs/1708.00450

planetary formation

[edit]

http://adsabs.harvard.edu/abs/2016arXiv160309506M

http://adsabs.harvard.edu/abs/2015ApJ...808...14M

http://adsabs.harvard.edu/abs/2014A%26A...567A.121D

http://adsabs.harvard.edu/abs/2010arXiv1012.5281M

http://adsabs.harvard.edu/abs/2014ApJ...795...65J

http://adsabs.harvard.edu/abs/2013A%26A...558A.109A

http://adsabs.harvard.edu/abs/2012A%26A...541A..97M

http://adsabs.harvard.edu/abs/2011A%26A...526A..63A

http://adsabs.harvard.edu/abs/2015MNRAS.448.1751I

http://adsabs.harvard.edu/abs/2015ApJ...811...41L

http://adsabs.harvard.edu/abs/2016ApJ...822...54D

http://adsabs.harvard.edu/abs/2015MNRAS.453.1471D

http://adsabs.harvard.edu/abs/2013MNRAS.431.3444C

http://adsabs.harvard.edu/abs/2013ApJ...775...53H

http://adsabs.harvard.edu/abs/2015MNRAS.448.1044H

http://adsabs.harvard.edu/abs/2012ApJ...751..158H

http://adsabs.harvard.edu/abs/2014MNRAS.440.3545H

http://adsabs.harvard.edu/abs/2014ApJ...797...95L

http://adsabs.harvard.edu/abs/2016ApJ...817...90L

http://arxiv.org/pdf/1602.07843v2.pdf

http://arxiv.org/abs/1606.02299

http://arxiv.org/pdf/1604.07558v1.pdf

https://www.youtube.com/watch?v=pi65Dkg7mXQ

https://www.youtube.com/watch?v=7dRLvSzDHo8

https://www.youtube.com/watch?v=6H04KIafek8

https://www.youtube.com/watch?v=Hj03S0SUfa4

https://www.youtube.com/watch?v=LmnDAQPHemc&feature=player_embedded

https://www.youtube.com/channel/UCU9iq3MZ5pjLR6OcKSMb0dw

https://www.youtube.com/channel/UCt7jPAnjUd118EmUAA-oI7g

https://www.youtube.com/watch?v=3XaZpnFJf0E&list=RDEVbu8bh7SWk&index=4

http://arxiv.org/pdf/1603.02630v1.pdf

http://www.tat.physik.uni-tuebingen.de/~kley/exo16/program.txt

https://www.lorentzcenter.nl/lc/web/2016/799/participants.php3?wsid=799&venue=Oort

Testing in Situ Assembly with the Kepler Planet Candidate Sample http://adsabs.harvard.edu/abs/2013ApJ...775...53H

Migration Then Assembly: Formation of Neptune-mass Planets inside 1 AU http://adsabs.harvard.edu/abs/2012ApJ...751..158H

Perturbation of Compact Planetary Systems by Distant Giant Planets http://adsabs.harvard.edu/abs/2017MNRAS.467.1531H

The circulation of dust in protoplanetary discs and the initial conditions of planet formation http://adsabs.harvard.edu/abs/2014MNRAS.440.3545H

Overcoming the Meter Barrier and the Formation of Systems with Tightly Packed Inner Planets (STIPs) http://adsabs.harvard.edu/abs/2014ApJ...792L..27B

The Formation of Systems with Tightly-packed Inner Planets (STIPs) via Aerodynamic Drift http://adsabs.harvard.edu/abs/2013arXiv1306.0566B

The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths http://adsabs.harvard.edu/abs/2013MNRAS.431.3444C

Giant planet formation in radially structured protoplanetary discs http://adsabs.harvard.edu/abs/2016MNRAS.460.2779C

On the formation of compact planetary systems via concurrent core accretion and migration http://adsabs.harvard.edu/abs/2016MNRAS.457.2480C

On the formation of planetary systems via oligarchic growth in thermally evolving viscous discs http://adsabs.harvard.edu/abs/2014MNRAS.445..479C

Global Models of Planetary System Formation http://adsabs.harvard.edu/abs/2013prpl.conf2H014C

The In Situ Formation of Giant Planets at Short Orbital Periods http://adsabs.harvard.edu/abs/2016ApJ...817L..17B

The Influence of Magnetic Field Geometry on the Formation of Close-in Exoplanets http://adsabs.harvard.edu/abs/2016ApJ...827L..37S

A metallicity recipe for rocky planets http://adsabs.harvard.edu/abs/2015MNRAS.453.1471D

A class of warm Jupiters with mutually inclined, apsidally misaligned close friends http://adsabs.harvard.edu/abs/2014Sci...346..212D

On the Tidal Origin of Hot Jupiter Stellar Obliquity Trends http://adsabs.harvard.edu/abs/2014ApJ...790L..31D

Giant Planets Orbiting Metal-rich Stars Show Signatures of Planet-Planet Interactions http://adsabs.harvard.edu/abs/2013ApJ...767L..24D

Correlations between Compositions and Orbits Established by the Giant Impact Era of Planet Formation http://adsabs.harvard.edu/abs/2016ApJ...822...54D

Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short and Ultra-Short Period Planets http://adsabs.harvard.edu/abs/2017arXiv170208461L

Breeding Super-Earths and Birthing Super-puffs in Transitional Disks http://adsabs.harvard.edu/abs/2016ApJ...817...90L

Make Super-Earths, Not Jupiters: Accreting Nebular Gas onto Solid Cores at 0.1 AU and Beyond http://adsabs.harvard.edu/abs/2014ApJ...797...95L

Save the Planet, Feed the Star: How Super-Earths Survive Migration and Drive Disk Accretion http://adsabs.harvard.edu/abs/2017ApJ...839..100F

Warm Jupiters as failed hot Jupiters http://adsabs.harvard.edu/abs/2015AAS...22540806D

http://adsabs.harvard.edu/abs/2014IAUS..299..136C Problems and Prospects in Planetesimal Formation

The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths http://adsabs.harvard.edu/abs/2013MNRAS.431.3444C

Evolution of protoplanetary discs with magnetically driven disc winds http://adsabs.harvard.edu/abs/2016A%26A...596A..74S

Suppression of type I migration by disk winds http://adsabs.harvard.edu/abs/2015A%26A...584L...1O

A reassessment of the in situ formation of close-in super-Earths http://adsabs.harvard.edu/abs/2015A%26A...578A..36O

Planetesimal Interactions Can Explain the Mysterious Period Ratios of Small Near-Resonant Planets http://adsabs.harvard.edu/abs/2015ApJ...803...33C

Planet-Disk Interactions and Early Evolution of Planetary Systems http://adsabs.harvard.edu/abs/2014prpl.conf..667B

Disk-Planets Interactions and the Diversity of Period Ratios in Kepler's Multi-planetary Systems http://adsabs.harvard.edu/abs/2013ApJ...778....7B

Type I planet migration in weakly magnetized laminar discs http://adsabs.harvard.edu/abs/2013MNRAS.430.1764G

Formation of Close in Super-Earths and Mini-Neptunes: Required Disk Masses and their Implications http://adsabs.harvard.edu/abs/2014ApJ...795L..15S

Avoiding resonance capture in multi-planet extrasolar systems http://adsabs.harvard.edu/abs/2017arXiv170407836P

http://online.kitp.ucsb.edu/online/evoplanets_c15/schlichting/

The formation of super-Earths and mini-Neptunes with giant impacts http://adsabs.harvard.edu/abs/2015MNRAS.448.1751I

Overstable Librations can Account for the Paucity of Mean Motion Resonances among Exoplanet Pairs http://adsabs.harvard.edu/abs/2014AJ....147...32G

Formation of Close-in Super-Earths by Giant Impacts: Effects of Initial Eccentricities and Inclinations of Protoplanets https://arxiv.org/abs/1705.07810

The maximum mass of planetary embryos formed in core-accretion models https://arxiv.org/abs/1705.06008

Observational evidence for two distinct giant planet populations https://arxiv.org/abs/1705.06090

The structure of terrestrial bodies: Impact heating, corotation limits and synestias https://arxiv.org/abs/1705.07858

In situ accretion of gaseous envelopes on to planetary cores embedded in evolving protoplanetary discs https://arxiv.org/abs/1705.08147

https://arxiv.org/pdf/1609.00960.pdf

https://arxiv.org/pdf/1606.01558.pdf

https://arxiv.org/pdf/1502.03270.pdf

https://arxiv.org/pdf/1701.01719.pdf

http://iopscience.iop.org/article/10.3847/2041-8213/aa6d08/meta

https://arxiv.org/pdf/1705.09320.pdf

https://arxiv.org/pdf/1705.09685.pdf

Self-induced dust traps: overcoming planet formation barriers http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1701.01115

Planet formation and disk-planet interactions

https://arxiv.org/abs/1707.07148

X-ray photoevaporation's limited success in the formation of planetesimals by the streaming instability https://arxiv.org/abs/1709.00361

A thermodynamic view of dusty protoplanetary disks https://arxiv.org/abs/1708.02945

Satellitesimal Formation via Collisional Dust Growth in Steady Circumplanetary Disks https://arxiv.org/abs/1708.01080

Resonant drag instability of grains streaming in fluids https://arxiv.org/abs/1706.05020

Evidence for universality in the initial planetesimal mass function https://arxiv.org/abs/1705.03889

How cores grow by pebble accretion https://arxiv.org/abs/1708.05392

The Formation of Uranus and Neptune: Fine Tuning in Core Accretion https://arxiv.org/abs/1708.00862

Simulations of Small Solid Accretion onto Planetesimals in the Presence of Gas https://arxiv.org/abs/1708.00450

Pebble accretion at the origin of water in Europa https://arxiv.org/abs/1707.05496

Eccentricity excitation and merging of planetary embryos heated by pebble accretion https://arxiv.org/abs/1706.06329

Possible formation pathways for the low density Neptune-mass planet HAT-P-26b https://arxiv.org/abs/1705.07794

The maximum mass of planetary embryos formed in core-accretion models https://arxiv.org/abs/1705.06008

N-body simulations of planet formation via pebble accretion I: First Results https://arxiv.org/abs/1705.04264

Chemical enrichment of giant planets and discs due to pebble drift https://arxiv.org/abs/1705.03305

The origin of the occurrence rate profile of gas giants inside 100 days https://arxiv.org/abs/1704.06383

Saving super-Earths: Interplay between pebble accretion and type I migration https://arxiv.org/abs/1704.01962

Formation of TRAPPIST-1 and other compact systems https://arxiv.org/abs/1703.06924

Planetesimal formation near the snowline: in or out? https://arxiv.org/abs/1702.02151

Disentangling Hot Jupiters formation location from their chemical composition https://arxiv.org/abs/1611.03128

Atmospheric Signatures of Giant Exoplanet Formation by Pebble Accretion https://arxiv.org/abs/1611.03083

FU Orionis outbursts, preferential recondensation of water ice, and the formation of giant planets https://arxiv.org/abs/1611.01538

The Spiral Wave Instability Induced by a Giant Planet: I. Particle Stirring in the Inner Regions of Protoplanetary Disks https://arxiv.org/abs/1610.08502

Excess C/O and C/H in outer protoplanetary disk gas https://arxiv.org/abs/1610.07859

Giant planet formation at the pressure maxima of protoplanetary disks https://arxiv.org/abs/1610.01232

A pebbles accretion model with chemistry and implications for the solar system https://arxiv.org/abs/1609.03227

Late veneer and late accretion to the terrestrial planets https://arxiv.org/abs/1609.01785

Evolution of Protoplanetary Discs with Magnetically Driven Disc Winds https://arxiv.org/abs/1609.00437

Exploring plausible formation scenarios for the planet candidate orbiting Proxima Centauri https://arxiv.org/abs/1608.06908

Dust traps as planetary birthsites: basics and vortex formation https://arxiv.org/abs/1607.08250

Turbulence, Transport and Waves in Ohmic Dead Zones https://arxiv.org/abs/1606.03093

Formation, Orbital and Internal Evolutions of Young Planetary Systems https://arxiv.org/abs/1604.07558

Pebble Accretion and the Diversity of Planetary Systems https://arxiv.org/abs/1604.06362

Radiation hydrodynamical models of the inner rim in protoplanetary disks https://arxiv.org/abs/1604.04601

The radial dependence of pebble accretion rates: A source of diversity in planetary systems I. Analytical formulation https://arxiv.org/abs/1604.01291

Pebble Accretion in Turbulent Protoplanetary Disks https://arxiv.org/abs/1709.03530

Electron Heating and Saturation of Self-regulating Magnetorotational Instability in Protoplanetary Disks https://arxiv.org/abs/1709.07026

Linear growth of streaming instability in pressure bumps https://arxiv.org/abs/1709.08660

Planet formation and disk-planet interactions https://arxiv.org/abs/1707.07148

Is There a Temperature Limit in Planet Formation at 1000 K? https://arxiv.org/abs/1710.00606

Planetesimal formation starts at the snow line https://arxiv.org/abs/1710.00009

Inside-Out Planet Formation. IV. Pebble Evolution and Planet Formation Timescales https://arxiv.org/abs/1709.10130

Effects of global gas flows on type I migration https://arxiv.org/abs/1710.01240

Formation, stratification, and mixing of the cores of Earth and Venus https://arxiv.org/abs/1710.01770

Exterior Companions to Hot Jupiters Orbiting Cool Stars are Coplanar https://arxiv.org/abs/1710.01737

Steamworlds: atmospheric structure and critical mass of planets accreting icy pebbles https://arxiv.org/abs/1710.03134

Optically Thin Core Accretion: How Planets Get Their Gas in Nearly Gas-Free Disks https://arxiv.org/abs/1710.02604

The dispersal of planet-forming discs: theory confronts observations https://arxiv.org/abs/1704.00214

Planet population synthesis driven by pebble accretion in cluster environments https://arxiv.org/abs/1710.10863

Neptune trojan formation during planetary instability and migration http://adsabs.harvard.edu/abs/2016A%26A...592A.146G

Checking the Compatibility of the Cold Kuiper Belt with a Planetary Instability Migration Model https://arxiv.org/abs/1710.05178

Searching for Planet Nine with Coadded WISE and NEOWISE-Reactivation Images https://arxiv.org/abs/1611.00015

Ninth Planet or Wandering Star ? https://arxiv.org/abs/1710.09455

Debris Disc Constraints on Planetesimal Formation https://arxiv.org/abs/1711.03490

Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities https://arxiv.org/abs/1711.03975

https://sci - hub.cc/

Secular Dynamics of an Exterior Test Particle: The Inverse Kozai and Other Eccentricity-Inclination Resonances https://arxiv.org/abs/1711.10495

Simulations of the Solar System's Early Dynamical Evolution with a Self-Gravitating Planetesimal Disk https://arxiv.org/abs/1712.07193

A New Model for Weak Turbulence in Protoplanetary Disks https://arxiv.org/abs/1711.04770

The pebble isolation mass --- scaling law and implications for the formation of super-Earths and gas giants https://arxiv.org/abs/1801.02341

The formation of mini-Neptunes https://arxiv.org/abs/1709.04736

Spontaneous concentrations of solids through two-way drag forces between gas and sedimenting particles https://arxiv.org/abs/1604.00791

Pebble dynamics and accretion onto rocky planets. I. Adiabatic and convective models https://arxiv.org/abs/1801.07707

Dust-vortex instability in the regime of well-coupled grains https://arxiv.org/abs/1801.07509

A dynamical context for the origin of Phobos and Deimos https://arxiv.org/abs/1801.07775

Dust Coagulation Regulated by Turbulent Clustering in Protoplanetary Disks https://arxiv.org/abs/1801.08805

Where can a Trappist-1 planetary system be produced? https://arxiv.org/abs/1801.05822

Dust evolution in protoplanetary discs and the formation of planetesimals. What have we learned from laboratory experiments? https://arxiv.org/abs/1802.00221

Dynamics of Porous Dust Aggregates and Gravitational Instability of Their Disk https://arxiv.org/abs/1705.04520

Gravitational instability of a dust layer composed of porous silicate dust aggregates in a protoplanetary disk https://arxiv.org/abs/1802.03121

Formation of Super-Earths https://arxiv.org/abs/1802.03090

Origins of Hot Jupiters https://arxiv.org/abs/1801.06117

Planetesimal formation during protoplanetary disk buildup https://arxiv.org/abs/1803.00575

On the Numerical Robustness of the Streaming Instability: Particle Concentration and Gas Dynamics in Protoplanetary Disks https://arxiv.org/abs/1803.03638

Catching drifting pebbles I. Enhanced pebble accretion efficiencies for eccentric planets https://arxiv.org/abs/1803.06149

Catching drifting pebbles II. A stochastic equation of motions for pebbles https://arxiv.org/abs/1803.06150

Resonances in the asteroid and trans-Neptunian belts: a brief review https://arxiv.org/abs/1803.06245

Dynamical Evolution of Planetary Systems https://arxiv.org/abs/1803.06704

Accretion Processes https://arxiv.org/abs/1803.06708

Particle accretion onto planets in discs with hydrodynamic turbulence https://arxiv.org/abs/1803.08730

Formation of Terrestrial Planets https://arxiv.org/abs/1803.08830

A brief overview of planet formation https://arxiv.org/abs/1803.10526

Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters https://arxiv.org/abs/1804.00013

How much does turbulence change the pebble isolation mass for planet formation? https://arxiv.org/abs/1804.00924

Formation of close-in super-Earths in evolving protoplanetary disks due to disk winds https://arxiv.org/abs/1804.01070

Planetary population synthesis https://arxiv.org/abs/1804.01532

Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals https://arxiv.org/abs/1804.02361

Architectures of planetary systems formed by pebble accretion https://arxiv.org/abs/1804.05510

Dust settling and rings in the outer regions of protoplanetary discs subject to ambipolar diffusion https://arxiv.org/abs/1805.00458

Local growth of dust- and ice-mixed aggregates as cometary building blocks in the solar nebula http://adsabs.harvard.edu/abs/2018A%26A...611A..18L

On the Dynamics of the Inclination Instability https://arxiv.org/abs/1805.03651

Azimuthal and Vertical Streaming Instability at High Dust-to-gas Ratios and on the Scales of Planetesimal Formation https://arxiv.org/abs/1805.04326

Gas-Assisted Growth of Protoplanets in a Turbulent Medium https://arxiv.org/abs/1805.06898

Populations of Extrasolar Giant Planets from Transit and Radial Velocity Surveys https://arxiv.org/abs/1805.08391

The Emerging Paradigm of Pebble Accretion https://link.springer.com/chapter/10.1007%2F978-3-319-60609-5_7

Instabilities and Flow Structures in Protoplanetary Disks: Setting the Stage for Planetesimal Formation https://arxiv.org/abs/1806.03896

Formation of Giant Planets https://arxiv.org/abs/1806.05649

Self-Stirring of Debris Discs by Planetesimals Formed by Pebble Concentration https://arxiv.org/abs/1806.05431

Gas and multi-species dust dynamics in viscous protoplanetary discs: the importance of the dust back-reaction https://arxiv.org/abs/1806.10148

On the dynamics of pebbles in protoplanetary disks with magnetically-driven winds https://arxiv.org/abs/1806.10572

Dust evolution and satellitesimal formation in circumplanetary disks https://arxiv.org/abs/1807.02638

Formation of Solar system analogues II: post-gas phase growth and water accretion in extended discs via N-body simulations https://arxiv.org/abs/1807.01429

Giant planet effects on terrestrial planet formation and system architecture https://arxiv.org/abs/1807.02463

Streaming Instability of Multiple Particle Species in Protoplanetary Disks https://arxiv.org/abs/1808.01142

Transport of CO in Protoplanetary Disks: Consequences of Pebble Formation, Settling, and Radial Drift https://arxiv.org/abs/1808.01840

Planet Formation: An Optimized Population-Synthesis Approach https://arxiv.org/abs/1808.03293

Restrictions on the Growth of Gas Giant Cores via Pebble Accretion https://arxiv.org/abs/1808.05947

The initial conditions for planet formation: Turbulence driven by hydrodynamical instabilities in disks around young stars https://arxiv.org/abs/1808.08681

Collisional Growth of Icy Dust Aggregates in Disk Formation Stage: Difficulties for Planetesimal Formation via Direct Collisional Growth outside the Snowline https://arxiv.org/abs/1809.06733

A Lagrangian Model for Dust Evolution in Protoplanetary Disks: Formation of Wet and Dry Planetesimals at Different Stellar Masses https://arxiv.org/abs/1810.02370

Dynamics of multiple protoplanets embedded in gas/pebble disks and its dependence on Σ and ν parameters https://arxiv.org/abs/1810.03385

Impacts of dust feedback on a dust ring induced by a planet in a protoplanetary disk https://arxiv.org/abs/1810.05635

Diffusion and Concentration of Solids in the Dead Zone of a Protoplanetary Disk https://arxiv.org/abs/1810.05166

Pebble trapping backreaction does not destroy vortices https://arxiv.org/abs/1810.07941

N-body simulations of terrestrial planet growth with resonant dynamical friction https://arxiv.org/abs/1810.07201

The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. II. The Effect of the Radial Gas Pressure Gradient https://arxiv.org/abs/1810.10018

How planetary growth outperforms migration https://arxiv.org/abs/1811.00523

Impact bombardment on the regular satellites of Jupiter and Uranus during an episode of giant planet migration https://arxiv.org/abs/1811.04870

Excitation and depletion of the asteroid belt in the early instability scenario https://arxiv.org/abs/1811.07916

The Primordial Solar wind as a Sculptor of Terrestrial Planet Formation https://arxiv.org/abs/1811.11697

Solar System Formation in the Context of Extra-Solar Planets https://arxiv.org/abs/1812.01033

Observation of aerodynamic instability in the flow of a particle stream in a dilute gas https://arxiv.org/abs/1812.01072

Preliminary Trigonometric Parallaxes of 184 Late-T and Y Dwarfs and an Analysis of the Field Substellar Mass Function into the "Planetary" Mass Regime https://arxiv.org/abs/1812.01208

Seeding the Formation of Mercurys: An Iron-sensitive Bouncing Barrier in Disk Magnetic Fields https://arxiv.org/abs/1812.05338

The early instability scenario: terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation https://arxiv.org/abs/1812.07590

Instabilities in the Early Solar System due to a Self-gravitating Disk https://arxiv.org/abs/1812.08710

Are Pebble Pile Planetesimals Doomed? https://arxiv.org/abs/1901.07919

Gas flow around a planet embedded in a protoplanetary disc: the dependence on the planetary mass https://arxiv.org/abs/1901.08253

Thermal torque effects on the migration of growing low-mass planets https://arxiv.org/abs/1904.11047

The Boundary Between Gas-rich and Gas-poor Planets https://arxiv.org/abs/1904.10470

Rocky Planetesimal Formation Aided by Organics https://arxiv.org/abs/1905.03029

The End of Runaway: How Gap Opening Limits the Final Masses of Gas Giants https://arxiv.org/abs/1905.03887

Constraining the Formation of the Four Terrestrial Planets in the Solar System https://arxiv.org/abs/1908.04934

Pebbles versus Planetesimals: The case of Trappist-1 https://arxiv.org/abs/1908.04166

Exploring the conditions for forming cold gas giants via planetesimal accretion https://arxiv.org/abs/1909.10429

Planet formation: key mechanisms and global models https://arxiv.org/abs/2002.05756

planet nine at dps

[edit]
Orbital Clustering in Trans-Neptunian Objects
We have conducted a clustering analysis of the orbits of extreme trans-Neptunian objects (TNOs). We report the results of this clustering analysis and discuss their implications for the orbital alignment of the putative Planet-9 hypothesized to sculpt the orbits of the extreme TNOs.
Matthew Payne1, Matthew J. Holman1, Sam Hadden1
Dynamics of a Possible Collisional Family of Extreme TNOs
The Dark Energy Survey has been highly successful in discovering outer Solar System objects. In this presentation, we discuss the dynamics of three extreme TNOs, two of which were found by the DES. The similarity of their orbits leads us to consider the possibility that these three objects originated from a collision event. In addition, as these TNOs appear to be clustered in longitude of perihelion, we analyze their dynamics in the context of the Planet Nine hypothesis, particularly since they reside in the 150 AU < a < 250 AU transition region identified by Batygin and Brown (2016). We explore the diffusion and chaotic nature of their behavior both with and without the presence of Planet Nine, and evaluate the likelihood that these objects originated from a collision event.
Tali Khain1, Juliette Becker2, Fred C. Adams1, 2, David W. Gerdes1, 2
Debiasing the Distant Solar System Populations Using Pan-STARRS1
We discuss our on-going effort to identify Trans-Neptunian Objects (TNOs) in the Pan-STARRS1 dataset, and to debias the size-frequency distributions (SFD) of detected TNO sub-populations in order to estimate their true population sizes. To measure our detection efficiency we used the model of Grav et al. (2011)[1], which includes Kuiper belt Objects (KBOs), Scattered Disc Objects (SDOs), and Centaurs. Our debiasing method accounts for the per-chip CCD sensitivity as well as CCD cell gaps. The search method for finding distant Solar System objects, which was developed for our initial work (Weryk et al., 2016)[2], led to discovery of 29 Centaurs, 243 KBOs and 61 SDOs from Pan-STARRS data spanning years 2010-2015. Our work is extended using more recent PS1 data.
Eva Lilly (Schunova)1, 2, Robert J. Weryk1, Serge Chastel1, Larry Denneau1, Robert Jedicke1, Richard J. Wainscoat1, Kenneth C. Chambers1
Biases in the OSSOS Detection of Large Semimajor Axis Trans-Neptunian Objects
The accumulating but small set of large semimajor axis trans-Neptunian objects (TNOs) shows an apparent clustering in the orientations of their orbits. This clustering must either be representative of the intrinsic distribution of these TNOs, or else have arisen as a result of observation biases and/or statistically expected variations for such a small set of detected objects. The clustered TNOs were detected across different and independent surveys, which has led to claims that the detections are therefore free of observational bias. This apparent clustering has led to the so-called “Planet 9” hypothesis that a super-Earth currently resides in the distant solar system and causes this clustering. The Outer Solar System Origins Survey (OSSOS) is a large program that ran on the Canada–France–Hawaii Telescope from 2013 to 2017, discovering more than 800 new TNOs. One of the primary design goals of OSSOS was the careful determination of observational biases that would manifest within the detected sample. We demonstrate the striking and non-intuitive biases that exist for the detection of TNOs with large semimajor axes. The eight large semimajor axis OSSOS detections are an independent data set, of comparable size to the conglomerate samples used in previous studies. We conclude that the orbital distribution of the OSSOS sample is consistent with being detected from a uniform underlying angular distribution.
Brett Gladman1, Cory Shankman2
Detection Bias for Trans-Neptunian Objects on Highly Elliptical Orbits with the Dark Energy Survey
We report the discovery of several new "extreme" trans-Neptunian objects (ETNOs) with semimajor axis > 150 AU discovered using the Dark Energy Survey (DES). This currently ongoing survey is entering its fifth planned year of operation on the 4m Blanco telescope in Chile and is imaging 5000 deg2 in the grizY passbands to a limiting magnitude of r~23.8. Recent studies of the significance of the observed orbital clustering of the ETNOs have led to directly oppositional conclusions (M. Brown, arXiv:1706:04175; and C. Shankman et. al., arXiv:1706:05348). We present a detailed and independent study of the effects of observational bias on the observed clustering in the argument of perihelion and the longitude of perihelion of the most distant TNOs using the dataset of DES. This study is of particular interest due to DES's location at high ecliptic inclinations in addition to the wide area of sky covered by the survey, mitigating potential bias in measurements of both the argument of perihelion and the longitude of ascending node. The significance of observational bias on the discoveries made using DES has important implications on the hypothesis of a distant ninth planet in the solar system
Stephanie Hamilton1, David W. Gerdes1
A Wide Field Search for Extreme Trans-Neptunian Objects and a Super Earth in the Solar System
We are currently conducting the deepest and widest field survey to date sensitive to Extreme Trans-Neptunian Objects (ETNOs), bodies that have semimajor axes greater than 150 au and perihelia higher than 35 au. Our survey is also sensitive to distant super-Earth mass planets such as that recently hypothesized to explain the orbital characteristics of ETNOs.
Our survey instruments are Subaru Telescope Hyper Suprime-Cam (HSC) and the Cerro Tololo Interamerican Observatory Dark Energy Camera (DECam). HSC has a field of view of 1.75 square degrees on an 8 meter diameter telescope and DECam has a field of view of about 3 square degrees on a 4 meter diameter telescope. HSC and DECam are two of the largest light grasp survey tools in the world capable of detecting the hypothesized planet. We have surveyed a few thousand square degrees with DECam (magnitude 24) and HSC (magnitude 25).
We probe both specific locations in the sky which are likely to contain the hypothesized planet as well as nearly uniform longitude range in both hemispheres of the sky to minimize the impact of observational bias. We will discuss current survey progress, which to date has found several distant objects beyond 50 au with interesting orbital properties.
Chadwick A. Trujillo1, Scott S. Sheppard2, David J. Tholen3
The search for Planet Nine
We provide an update on our theoretical/computational/observational search for a giant planet far beyond Neptune. Using a combination of dynamical modeling of random starting configurations for the solar system and of forward modeling of known distant KBOs we have significantly constrained the orbital elements and mass of the potential planet. We provide an update of the best-fit parameters to aid the ongoing world wide search. Using our increaingly precise knowledge of how such a planet would interact with the solar system, we are engaged in a several large surveys to detect a planet with these parameters. We will discuss results from massive archival surveys and from our large Subaru Observatory program.
Michael E. Brown1
Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence of Planet Nine
We present the results of an N-body analysis of the dynamical stability of a selection of outer solar system objects in the presence of the proposed new Solar System member Planet Nine. Our simulations show that some combinations of orbital elements ($a,e$) result in Planet Nine acting as a stabilizing influence on the TNOs, which can otherwise be destabilized by interactions with Neptune. We also see that some TNOs transition between several different mean-motion resonances during their lifetimes while still retaining approximate apsidal anti-alignment with Planet Nine. This behavior suggests that remaining in one particular orbit is not a requirement for orbital stability. As one product of our simulations, we present an {\it a posteriori} probability distribution for the semi-major axis and eccentricity of the proposed Planet Nine based on TNO stability. We discuss this result in the broader context of the Planet Nine debate and the dynamical stability of the detached Kuiper Belt. We also announce the discovery of a new large semi-major axis, highly-inclined TNO, found in the Dark Energy Survey (DES) data. This new object’s orbit places it in the same population as was used to predict the existence of Planet Nine, and so this new object also helps constrain the orbital elements of the proposed Planet Nine.
Juliette Becker1, Fred C. Adams1, Tali Khain1, Stephanie Hamilton1, David W. Gerdes1
Extreme Resonant Dynamics, the Dynamics of Extreme TNOs in Mean Motion Resonances With Planet 9
Significant clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has (re)kindled interest in the hypothesis of a distant ninth planet of the solar system (Trujillo & Sheppard 2014, Batygin & Brown 2016). Recent works by Malhotra et al. (2016) and Millholland et al. (2017) find that the orbital periods of these distant TNOs could be explained as a series of small integer ratio mean motion resonances (MMRs) with the putative `Planet 9’. The large eccentricities and inclinations of these distant TNOs, along with the proposed orbit of Planet 9, make the proposed resonant motions of these objects a rich dynamical problem. We explore the dynamics of mean motion resonances at large eccentricities and inclination, focussing on implications for observing a distant resonant population of TNOs and constraining the orbital properties of Planet 9.
Sam Hadden1, Matthew J. Payne1, Matthew J. Holman1, Sarah Millholland2
Mean-Motion Resonances and the Search for Planet Nine
A key line of evidence for the existence of Planet Nine in the solar system is the physical clustering of Kuiper belt orbits with semi-major axis greater than ~250 au. It is expected that a fraction of this population is entrained in mean-motion resonances with Planet Nine, and therefore potentially holds key constraints on Planet Nine's present-day mean anomaly. In this talk, we report a suite of numerical simulations that inform the practical implications of employing resonant relationships to deduce Planet Nine's current on-sky location.
Elizabeth Bailey1, Michael Brown1, Konstantin Batygin1
Evidence for self-gravity in a massive Hills Cloud
The Hills Cloud is a hypothesized disk of icy comets, asteroids and minor planets left over from the formation of the Solar System. Spanning ~250 - 104 AU it is relatively isolated from the gravitational effects of the inner Solar System and outer Galaxy. As the least observable component of the Oort Cloud, predictions for its mass span at least two orders of magnitude, typically ranging from 0.1 - 10 Earth masses. Here we show that self-gravity acting between bodies within the Hills Cloud dramatically changes their orbital distribution (the inclination instability; Madigan & McCourt, 2016). Inclinations increase exponentially, eccentricities lower (detaching the bodies from the inner Solar System) and orbits cluster in argument of perihelion. We show how the orbits of Sedna and other high perihelion objects can be used to constrain the mass of the Hills cloud.
Alexander Zderic1, Ann-Marie Madigan1, Jacob Fleisig1

Nesvorný et al.: Dynamics in Mean Motion Resonances https://www.lpi.usra.edu/books/AsteroidsIII/pdf/3026.pdf

Late Heavy Bombardment

[edit]

3.3. The Late Heavy Bombardment as a smoking gun for a late instability of the giant planets In Fig. 8 the dynamical instability occurs early, after only 2 My from the beginning of the simulation. However, there is a strong indication that in our solar system the onset of the dynamical instability happened much later, approximately 600 My after the disappearance of the disk of gas: this piece of evidence comes from the so-called “Late Heavy Bombardment” (LHB). The LHB is a cataclysmic period between ∼ 4.0 and ∼ 3.8 Gy ago, marked by an extraordinarily high rate of collisions on the Moon (Tera et al., 1974; Ryder, 1990, 2002; Cohen et al., 2000; Ryder et al., 2000). Some authors still contend the existence of such a spike in the history of the bombardment rate (see for instance Baldwin, 2006; Hartmann et al., 2007) and interpret the high bombardment rate ∼ 3.9 Gy ago as the tail of a slowly declining, even-more-intense bombardment occurring since the time of formation of the terrestrial planets. However, this seems to be implausible, for several reasons:

i) 600 million years of continual impacts should have left an obvious trace on the Moon. So far, no such trace has been found. The isotopic dating of the samples returned by the various Apollo and Luna missions revealed no impact melt-rock older than 3.92 Gy (Ryder, 1990; Ryder et al. 2002). The lunar meteorites confirm this age limit. The meteorites provide a particularly strong argument because they likely originated from random locations on the Moon (Cohen et al., 2000), unlike the lunar samples collected directly on its surface. A complete resetting of all ages all over the Moon is possible (Hartmann et al., 2000) but highly unlikely, considering the difficulties of completely resetting isotopic ages at the scale of a full planet (Deutsch and Scharer, 1994). The U-PB and Rb-Sr isochrones of lunar highland samples indicate metamorphic events between 3.85 and 4 Gy ago (Tera et al., 1974). There is no evidence for these isotopic systems being reset by intense collisions between 4.4 and 3.9 Gy.

ii) The old upper crustal lithologies of the Moon do not show the expected enrichment in siderophile elements (in particular the Platinum Group Elements) implied by a period of intense collisions (Ryder et al., 2000) lasting 600 My.

iii) If the elevated mass accretion documented in the period around 3.9 Gy is considered to be the tail end of an extended period of even more intense collisions, the Moon should have reached 95% of its total mass about 4.1 Gy ago instead of 4.5 Gy ago (Ryder, 2002; Koeberl, 2004).

iv) Given the fast dynamical and collisional decay of the population of planetesimals that remain in the vicinity of the Earth’s orbit at the end of the accretion process of the terrestrial planets, the formation of two huge impact structures such as the Imbrium and Orientale basins (and probably many more) on the Moon 600 My later implies an implausible initial total mass of solids in the inner solar system (Bottke et al., 2007).

v) The bombardment rate 3.8-3.9 Gy ago (as deduced from the lunar crater record) was probably not intense enough to vaporize the oceans on Earth (Abramov and Mojzsis, 2009). However, if this – 26 – bombardment rate had been the tail of a more intense bombardment, smoothly decaying over time since lunar formation, the ocean evaporation threshold should have been overcome just a few hundreds of millions of years earlier (∼ 4.2 Gy ago). This contrasts with the oxygen isotopic signature of the oldest known zircons (age: 4.4 Gy), which indicates formation temperatures compatible with the existence of liquid water (Valley et al., 2002).

vi) These same zircons retain secondary over-growths developed after primary core crystallization during their 4.4 Gy long crustal residence times. The rim over-growths can record discrete thermal events subsequent to zircon formation and provide a unique window in crustal processes before the beginning of the terrestrial rock record. In (Trail et al., 2007), all these rim over-growths have been dated to be ∼ 3.9 Gy old. No (preserved) older rim over-growths, associated to more primordial events, have been found. This suggests that the thermal events were associated to impacts, and that these impacts were concentrated in time about 3.9 Gy ago. Therefore, it can be concluded that there is strong evidence for a cataclysmic Late Heavy Bombardment event around 3.9 Gy ago. This cataclysm did not just affect the Moon, but has now been clearly established throughout the inner Solar System (Kring and Cohen, 2002). The exact duration of the cataclysm is difficult to estimate, however. Based on the cratering record of the Moon, it lasted between 20 and 200 My, depending on the mass flux estimate used in the calculation.

https://arxiv.org/abs/1106.4114


Constraints suggest that in the real Solar System the instability occurred relatively late, probably around 4.1 Gy ago (namely 450 My after gas removal). These constraints come primarily from the Moon. Dating lunar impact basins is difficult, because it is not clear which samples are related to which basin (e.g., Norman and Nemchin, 2014). Nevertheless, it is clear that several impact basins, probably a dozen, formed in the 4.1-3.8 Gy period (see Fassett and Minton, 2013, for a review). Numerical tests demonstrate that these late basins (even just Imbrium and Orientale, whose young ages are undisputed) are unlikely to have been produced by a declining population of planetesimals, left-over from the terrestrial planet accretion process, because of their short dynamical and collisional lifetimes (Bottke et al. 2007). There is also a surge in lunar rock impact ages ∼4 Gy ago, which contrasts with a paucity of impact ages between 4.4 and 4.2 Gy (Cohen et al., 2005). This is difficult to explain if the bombardment had been caused 11 by a population of left-over planetesimals slowly declining over time. The situation is very similar for the bombardment of asteroids, with meteorites showing a surge in impact ages 4.1 Gy ago and a paucity of ages between 4.2-4.4 Gy (Marchi et al., 2013). Meteorites also show many impact ages near 4.5 Gy ago, demonstrating that the apparent lack of events in the 4.2-4.4 Gy interval is not due to clock resetting processes. All these constraints strongly suggest the appearance of a new generation of projectiles in the inner solar system about 4.1 Gy ago, which argues that either a very big asteroid broke up at that time (Cuk, 2012; but such a break-up is very unlikely from collision probability arguments and we don’t see any remnant asteroid family supporting this hypothesis), or that the dynamical instability of the giant planets occurred at that time, partially destabilizing small body reservoirs that had remained stable until then. Other constraints pointing to the late instability of the giant planets come from the outer Solar System. If the planets had become unstable at the disappearance of the gas in the disk, presumably the Sun would still have been in a stellar cluster and consequently the Oort cloud would have formed more tightly bound to the Sun than it is thought to be from the orbital distribution of long period comets (Brasser et al., 2008, 2012). Also, the impact basins on Iapetus (a satellite of Saturn) have topographies that have relaxed by 25% or less, which argues that they formed in a very viscous lithosphere; according to models of the thermal evolution of the satellite, these basins can not have formed earlier than 200 My after the beginning of the Solar System (Robuchon et al., 2011)

Moreover, the escape to high-eccentricity orbits of bodies from the main belt and E-belt regions produced a spike in the impact velocities on main belt asteroids at the time of the giant planet instability. Thus, although the impact frequency on asteroids decreased with the depletion of 50% of the main belt population and 100% of the E-belt population, the production of impact melt on asteroids increased during this event because melt production is very sensitive to impact velocities (Marchi et al., 2013). For this reason, the impact ages of meteorites show a spike at 4.1 Gy like the lunar rocks, although for the latter this is due to a surge in the impact rate

https://arxiv.org/abs/1501.06204


Comets

[edit]

The Influence of Outer Solar System Architecture on the Structure and Evolution of the Oort Cloud https://arxiv.org/abs/1305.5253

A model for the common origin of Jupiter family and Halley type comets https://arxiv.org/abs/1402.1339

Reassessing the formation of the inner Oort cloud in an embedded star cluster https://arxiv.org/abs/1110.5114

Numerical models of Oort Cloud formation and comet delivery https://search.proquest.com/docview/275546525/fulltextPDF

The discovery rate of new comets in the age of large surveys. Trends, statistics, and an updated evaluation of the comet flux http://articles.adsabs.harvard.edu/full/2010IAUS..263...76F

Reassessing the Source of Long-Period Comets https://arxiv.org/abs/0912.1645

2-Gyr Simulation of the Oort-cloud Formation II. A Close View of the Inner Oort cloud after the First Two Giga-years https://link.springer.com/article/10.1007%2Fs11038-009-9297-8

The destruction of an Oort Cloud in a rich stellar cluster https://arxiv.org/abs/1704.03341

Shaping of the inner Oort cloud by Planet Nine https://arxiv.org/abs/1609.08614

Effect of Stellar Encounters on Comet Cloud Formation https://arxiv.org/abs/1507.00502

Planetary Protectors: Giant Planets and the Oort Cloud http://www.mpia.de/homes/ppvi/posters/2K098.pdf