Jump to content

YJK

From Wikipedia, the free encyclopedia
Cropped and zoomed comparison between the original true color image (left) and the YJK (right) version.

YJK[1][2][3] is a proprietary color space implemented by the Yamaha V9958[4][5][6] graphic chip on MSX2+ computers.[7][8] It has the advantage of encoding images by implementing less resolution for color information than for brightness, taking advantage of the human visual systems' lower acuity for color differences.[9] This saves memory, transmission and computing power.

YJK converted image

YJK is composed of three components: , and . is similar to luminance (but computed differently), and are the chrominance components (representing the red and green color differences). The component is a 5-bit value (0 to 31), specified for each individual pixel.

Original full color image

The and components are stored together in 6 bits (-32 to 31) and shared between 4 nearby pixels (4:2:0 chroma sub-sampling).[10][11][12]

This arrangement allows for the encoding of 19,268 different colors.[10][11][12]

While conceptually similar to YUV, chroma sampling, numerical relationship between the components, and transformation to and from RGB are different in YJK.

Formulas

[edit]

The three component signals are created from an original RGB (red, green and blue) source. The weighted values of , and are added together to produce a single signal, representing the overall brightness of that pixel. The signal is then created by subtracting the from the red signal of the original RGB, and then scaling; and by subtracting the from the green, and then scaling by a different factor.

These formulae approximate the conversion between the RGB color space and YJK:[7]

From RGB to YJK:

From YJK to RGB:

The component of YJK is not true luminance, since the green component has less weight than the blue component.[13] Also, contrary to YUV where chrominance is based on Red-Blue differences, on YJK its calculated based on Red-Green differences.[10]

References

[edit]
  1. ^ MSX Licensing Corporation (2022). "The YJK screen modes". MSX Assembly Page.
  2. ^ Niemietz, Ricardo Cancho (2014). Issues on YJK colour model implemented in Yamaha V9958 VDP chip (PDF).
  3. ^ "VCFe Vortrag vom 2016.04.30 - Homecomputer und Spielkonsolen - Videoarchitekturen als visuelles Medium". neil.franklin.ch. Retrieved 2022-11-13.
  4. ^ IC Master. United Technical Publications. 2001.
  5. ^ Martín Sesma, Sergio (2016-10-03). Arqueología informática: los ordenadores MSX en los inicios de la microinformática doméstica (Proyecto/Trabajo fin de carrera/grado thesis). Universitat Politècnica de València. hdl:10251/70909.
  6. ^ Redazione (2008-10-20). "MSX - Vari Costruttori- 1983". CyberLudus.com (in Italian). Retrieved 2022-11-13.
  7. ^ a b "V9958 MSX-VIDEO TECHNICAL DATA BOOK" (PDF). 1988.
  8. ^ Alex, Wulms (1995). "Schermen op MSX - De 2+ schermen" (PDF). MSX Computer & Club Magazine (72).
  9. ^ S. Winkler, C. J. van den Branden Lambrecht, and M. Kunt (2001). "Vision and Video: Models and Applications". In Christian J. van den Branden Lambrecht (ed.). Vision models and applications to image and video processing. Springer. p. 209. ISBN 978-0-7923-7422-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. ^ a b c "The YJK screen modes". map.grauw.nl.
  11. ^ a b Silveira, Marcelo (2017). MSX 2+ Colors (PDF).
  12. ^ a b Nunes, Giovanni (8 June 2015). "Edição de imagens num MSX2+/MSX turbo R". retropolis.com.br.
  13. ^ Chancho Niemietz, Ricardo (2014). "Issues on YJK colour model implemented in Yamaha V9958 VDP chip" (PDF).

See also

[edit]