Caso I: Integrando conteniendo
a
2
−
x
2
{\displaystyle a^{2}-x^{2}}
editar
Se hace el cambio de variable
x
=
a
sen
θ
{\displaystyle x=a\operatorname {sen} \theta }
y se utiliza la identidad trigonométrica
sen
2
(
θ
)
+
cos
2
(
θ
)
=
1
{\displaystyle \operatorname {sen} ^{2}(\theta )+\cos ^{2}(\theta )=1}
.
Construcción geométrica para Caso
I
{\displaystyle {\text{I}}}
Para calcular la integral
∫
d
x
a
2
−
x
2
{\displaystyle \int {\frac {dx}{\sqrt {a^{2}-x^{2}}}}}
se puede realizar el cambio de variable
x
=
a
sen
θ
d
x
=
a
cos
θ
d
θ
θ
=
arcsen
(
x
a
)
{\displaystyle {\begin{aligned}x&=a\operatorname {sen} \theta \\dx&=a\cos \theta \;d\theta \\\theta &={\text{arcsen}}\left({\frac {x}{a}}\right)\end{aligned}}}
entonces
∫
d
x
a
2
−
x
2
=
∫
a
cos
θ
a
2
−
a
2
sen
2
θ
d
θ
=
∫
a
cos
θ
a
2
(
1
−
sen
2
θ
)
d
θ
=
∫
a
cos
θ
a
2
cos
2
θ
d
θ
=
∫
d
θ
=
θ
+
C
=
arcsen
(
x
a
)
+
C
{\displaystyle {\begin{aligned}\int {\frac {dx}{\sqrt {a^{2}-x^{2}}}}&=\int {\frac {a\cos \theta }{\sqrt {a^{2}-a^{2}\operatorname {sen} ^{2}\theta }}}\;d\theta \\[6pt]&=\int {\frac {a\cos \theta }{\sqrt {a^{2}(1-\operatorname {sen} ^{2}\theta )}}}\;d\theta \\[6pt]&=\int {\frac {a\cos \theta }{\sqrt {a^{2}\cos ^{2}\theta }}}\;d\theta \\[6pt]&=\int d\theta \\[6pt]&=\theta +C\\[6pt]&={\text{arcsen}}\left({\frac {x}{a}}\right)+C\end{aligned}}}
Los pasos anteriores requirieron que
a
>
0
{\displaystyle a>0}
y
cos
θ
>
0
{\displaystyle \cos \theta >0}
.
Es posible escoger
a
{\displaystyle a}
para que sea la raíz principal de
a
2
{\displaystyle a^{2}}
e imponer la restricción
−
π
/
2
<
θ
<
π
/
2
{\displaystyle -\pi /2<\theta <\pi /2}
utilizando la función arco seno .
Para una integral definida, se debe averiguar cómo cambian los límites de la integración. Por ejemplo, cuando
x
{\displaystyle x}
va de
0
{\displaystyle 0}
a
a
/
2
{\displaystyle a/2}
, entonces
sen
θ
{\displaystyle \operatorname {sen} \theta }
va de
0
{\displaystyle 0}
a
1
/
2
{\displaystyle 1/2}
, y
θ
{\displaystyle \theta }
va de
0
{\displaystyle 0}
a
π
/
6
{\displaystyle \pi /6}
. En consecuencia,
∫
0
a
/
2
d
x
a
2
−
x
2
=
∫
0
π
/
6
d
θ
=
π
6
.
{\displaystyle \int _{0}^{a/2}{\frac {dx}{\sqrt {a^{2}-x^{2}}}}=\int _{0}^{\pi /6}d\theta ={\frac {\pi }{6}}.}
Se necesita elegir los límites con cuidado. Debido a que la integración anterior requiere que
−
π
/
2
<
θ
<
π
/
2
{\displaystyle -\pi /2<\theta <\pi /2}
,
θ
{\displaystyle \theta }
solo puede pasar de
0
{\displaystyle 0}
a
π
/
6
{\displaystyle \pi /6}
. Si se ignora esta restricción, se podría haber elegido
θ
{\displaystyle \theta }
para pasar de
π
{\displaystyle \pi }
a
5
π
/
6
{\displaystyle 5\pi /6}
, lo que habría resultado en un valor real negativo.
Alternativamente, se deben evaluar completamente las integrales indefinidas antes de aplicar las condiciones de contorno. En ese caso, la antiderivada da
∫
0
a
/
2
d
x
a
2
−
x
2
=
arcsen
(
x
a
)
|
0
a
/
2
=
arcsen
(
1
2
)
−
arcsen
(
0
)
=
π
6
{\displaystyle {\begin{aligned}\int _{0}^{a/2}{\frac {dx}{\sqrt {a^{2}-x^{2}}}}&=\operatorname {arcsen} \left({\frac {x}{a}}\right){\Biggl |}_{0}^{a/2}\\&=\operatorname {arcsen} \left({\frac {1}{2}}\right)-\operatorname {arcsen} (0)\\&={\frac {\pi }{6}}\end{aligned}}}
como antes.
La integral
∫
a
2
−
x
2
d
x
{\displaystyle \int {\sqrt {a^{2}-x^{2}}}\,dx}
puede ser evaluada haciendo el cambio de variable
x
=
a
sen
θ
d
x
=
a
cos
θ
d
θ
θ
=
arcsen
(
x
a
)
{\displaystyle {\begin{aligned}x&=a\operatorname {sen} \theta \\dx&=a\cos \theta \;d\theta \\\theta &={\text{arcsen}}\left({\frac {x}{a}}\right)\end{aligned}}}
donde
a
>
0
{\displaystyle a>0}
de modo que
a
2
=
a
{\displaystyle {\sqrt {a^{2}}}=a}
y
−
π
2
≤
θ
≤
π
2
{\displaystyle -{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}}}
porque
cos
θ
≥
0
{\displaystyle \cos \theta \geq 0}
y
cos
2
θ
=
cos
θ
{\displaystyle {\sqrt {\cos ^{2}\theta }}=\cos \theta }
Luego
∫
a
2
−
x
2
d
x
=
∫
a
2
−
a
2
sen
2
θ
(
a
cos
θ
)
d
θ
=
∫
a
2
(
1
−
sen
2
θ
)
(
a
cos
θ
)
d
θ
=
∫
a
2
(
cos
2
θ
)
(
a
cos
θ
)
d
θ
=
∫
(
a
cos
θ
)
(
a
cos
θ
)
d
θ
=
a
2
∫
cos
2
θ
d
θ
=
a
2
∫
(
1
+
cos
2
θ
2
)
d
θ
=
a
2
2
(
θ
+
1
2
sen
2
θ
)
+
C
=
a
2
2
(
θ
+
sen
θ
cos
θ
)
+
C
=
a
2
2
(
arcsen
(
x
a
)
+
x
a
1
−
x
2
a
2
)
+
C
=
a
2
2
arcsen
(
x
a
)
+
x
2
a
2
−
x
2
+
C
{\displaystyle {\begin{aligned}\int {\sqrt {a^{2}-x^{2}}}\,dx&=\int {\sqrt {a^{2}-a^{2}\operatorname {sen} ^{2}\theta }}\,(a\cos \theta )\,d\theta \\[6pt]&=\int {\sqrt {a^{2}(1-\operatorname {sen} ^{2}\theta )}}\,(a\cos \theta )\,d\theta \\[6pt]&=\int {\sqrt {a^{2}(\cos ^{2}\theta )}}\,(a\cos \theta )\,d\theta \\[6pt]&=\int (a\cos \theta )(a\cos \theta )\,d\theta \\[6pt]&=a^{2}\int \cos ^{2}\theta \,d\theta \\[6pt]&=a^{2}\int \left({\frac {1+\cos 2\theta }{2}}\right)\,d\theta \\[6pt]&={\frac {a^{2}}{2}}\left(\theta +{\frac {1}{2}}\operatorname {sen} 2\theta \right)+C\\[6pt]&={\frac {a^{2}}{2}}(\theta +\operatorname {sen} \theta \cos \theta )+C\\[6pt]&={\frac {a^{2}}{2}}\left({\text{arcsen}}\left({\frac {x}{a}}\right)+{\frac {x}{a}}{\sqrt {1-{\frac {x^{2}}{a^{2}}}}}\right)+C\\[6pt]&={\frac {a^{2}}{2}}\;{\text{arcsen}}\left({\frac {x}{a}}\right)+{\frac {x}{2}}{\sqrt {a^{2}-x^{2}}}+C\end{aligned}}}
Para una integral definida, los límites de integración cambian una vez que se realiza la sustitución y estos están determinados por
θ
=
arcsen
(
x
a
)
{\displaystyle \theta ={\text{arcsen}}\left({\frac {x}{a}}\right)}
con valores para
θ
{\displaystyle \theta }
en el rango
−
π
2
≤
θ
≤
π
2
{\displaystyle -{\frac {\pi }{2}}\leq \theta \leq {\frac {\pi }{2}}}
Considérese la integral definida
∫
−
1
1
4
−
x
2
d
x
{\displaystyle \int _{-1}^{1}{\sqrt {4-x^{2}}}\,dx}
que puede ser evaluada haciendo el cambio de variable
x
=
2
sen
θ
d
x
=
2
cos
θ
d
θ
{\displaystyle {\begin{aligned}x&=2\operatorname {sen} \theta \\dx&=2\cos \theta \,d\theta \end{aligned}}}
y en este caso, los límites de integración estarán determinados por
θ
=
arcsen
(
x
2
)
{\displaystyle \theta ={\text{arcsen}}\left({\frac {x}{2}}\right)}
Tenemos que
si
x
=
−
1
{\displaystyle x=-1}
entonces
θ
=
arcsen
(
−
1
2
)
=
−
π
6
{\displaystyle \theta ={\text{arcsen}}\left(-{\frac {1}{2}}\right)=-{\frac {\pi }{6}}}
y si
x
=
1
{\displaystyle x=1}
entonces
θ
=
arcsen
(
1
2
)
=
π
6
{\displaystyle \theta ={\text{arcsen}}\left({\frac {1}{2}}\right)={\frac {\pi }{6}}}
entonces
∫
−
1
1
4
−
x
2
d
x
=
∫
−
π
/
6
π
/
6
4
−
4
sen
2
θ
(
2
cos
θ
)
d
θ
=
∫
−
π
/
6
π
/
6
4
(
1
−
sen
2
θ
)
(
2
cos
θ
)
d
θ
=
∫
−
π
/
6
π
/
6
4
(
cos
2
θ
)
(
2
cos
θ
)
d
θ
=
∫
−
π
/
6
π
/
6
(
2
cos
θ
)
(
2
cos
θ
)
d
θ
=
4
∫
−
π
/
6
π
/
6
cos
2
θ
d
θ
=
4
∫
−
π
/
6
π
/
6
(
1
+
cos
2
θ
2
)
d
θ
=
2
[
θ
+
1
2
sen
2
θ
]
−
π
/
6
π
/
6
=
[
2
θ
+
sen
2
θ
]
|
−
π
/
6
π
/
6
=
(
π
3
+
sen
π
3
)
−
(
−
π
3
+
sen
(
−
π
3
)
)
=
2
π
3
+
3
{\displaystyle {\begin{aligned}\int _{-1}^{1}{\sqrt {4-x^{2}}}\,dx&=\int _{-\pi /6}^{\pi /6}{\sqrt {4-4\operatorname {sen} ^{2}\theta }}\,(2\cos \theta )\,d\theta \\[6pt]&=\int _{-\pi /6}^{\pi /6}{\sqrt {4(1-\operatorname {sen} ^{2}\theta )}}\,(2\cos \theta )\,d\theta \\[6pt]&=\int _{-\pi /6}^{\pi /6}{\sqrt {4(\cos ^{2}\theta )}}\,(2\cos \theta )\,d\theta \\[6pt]&=\int _{-\pi /6}^{\pi /6}(2\cos \theta )(2\cos \theta )\,d\theta \\[6pt]&=4\int _{-\pi /6}^{\pi /6}\cos ^{2}\theta \,d\theta \\[6pt]&=4\int _{-\pi /6}^{\pi /6}\left({\frac {1+\cos 2\theta }{2}}\right)\,d\theta \\[6pt]&=2\left[\theta +{\frac {1}{2}}\operatorname {sen} 2\theta \right]_{-\pi /6}^{\pi /6}\\[6pt]&=[2\theta +\operatorname {sen} 2\theta ]{\Biggl |}_{-\pi /6}^{\pi /6}\\[6pt]&=\left({\frac {\pi }{3}}+\operatorname {sen} {\frac {\pi }{3}}\right)-\left(-{\frac {\pi }{3}}+\operatorname {sen} \left(-{\frac {\pi }{3}}\right)\right)\\[6pt]&={\frac {2\pi }{3}}+{\sqrt {3}}\end{aligned}}}
Por otro lado, si aplicamos directamente los límites de integración para la fórmula de la antiderivada obtenemos
∫
−
1
1
4
−
x
2
d
x
=
[
2
arcsen
(
x
2
)
+
x
2
4
−
x
2
]
−
1
1
=
(
2
arcsen
(
1
2
)
+
1
2
3
)
−
(
2
arcsen
(
−
1
2
)
−
1
2
3
)
=
(
2
⋅
π
6
+
3
2
)
−
(
2
⋅
(
−
π
6
)
−
3
2
)
=
2
π
3
+
3
{\displaystyle {\begin{aligned}\int _{-1}^{1}{\sqrt {4-x^{2}}}\,dx&=\left[2\;{\text{arcsen}}\left({\frac {x}{2}}\right)+{\frac {x}{2}}{\sqrt {4-x^{2}}}\right]_{-1}^{1}\\[6pt]&=\left(2\;{\text{arcsen}}\left({\frac {1}{2}}\right)+{\frac {1}{2}}{\sqrt {3}}\right)-\left(2\;{\text{arcsen}}\left(-{\frac {1}{2}}\right)-{\frac {1}{2}}{\sqrt {3}}\right)\\[6pt]&=\left(2\cdot {\frac {\pi }{6}}+{\frac {\sqrt {3}}{2}}\right)-\left(2\cdot \left(-{\frac {\pi }{6}}\right)-{\frac {\sqrt {3}}{2}}\right)\\[6pt]&={\frac {2\pi }{3}}+{\sqrt {3}}\end{aligned}}}
Caso II: Integrando conteniendo
a
2
+
x
2
{\displaystyle a^{2}+x^{2}}
editar
Se hace el cambio de variable
x
=
a
tan
θ
{\displaystyle x=a\tan \theta }
y se utiliza la identidad trigonométrica
sec
2
(
θ
)
−
tan
2
(
θ
)
=
1
{\displaystyle \sec ^{2}(\theta )-\tan ^{2}(\theta )=1}
.
Construcción geométrica para Caso
II
{\displaystyle {\text{II}}}
En la integral
∫
d
x
a
2
+
x
2
{\displaystyle \int {\frac {dx}{a^{2}+x^{2}}}}
hacemos el cambio de variable
x
=
a
tan
θ
d
x
=
a
sec
2
θ
d
θ
θ
=
arctan
(
x
a
)
{\displaystyle {\begin{aligned}x&=a\tan \theta \\dx&=a\sec ^{2}\theta \;d\theta \\\theta &=\arctan \left({\frac {x}{a}}\right)\end{aligned}}}
de modo que la integral se convierte en
∫
d
x
a
2
+
x
2
=
∫
a
sec
2
θ
a
2
+
a
2
tan
2
θ
d
θ
=
∫
a
sec
2
θ
a
2
(
1
+
tan
2
θ
)
d
θ
=
∫
a
sec
2
θ
a
2
sec
2
θ
d
θ
=
1
a
∫
d
θ
=
θ
a
+
C
=
1
a
arctan
(
x
a
)
+
C
{\displaystyle {\begin{aligned}\int {\frac {dx}{a^{2}+x^{2}}}&=\int {\frac {a\sec ^{2}\theta }{a^{2}+a^{2}\tan ^{2}\theta }}\,d\theta \\[6pt]&=\int {\frac {a\sec ^{2}\theta }{a^{2}(1+\tan ^{2}\theta )}}\;d\theta \\[6pt]&=\int {\frac {a\sec ^{2}\theta }{a^{2}\sec ^{2}\theta }}\,d\theta \\[6pt]&={\frac {1}{a}}\int d\theta \\[6pt]&={\frac {\theta }{a}}+C\\[6pt]&={\frac {1}{a}}\arctan \left({\frac {x}{a}}\right)+C\end{aligned}}}
para
a
≠
0
{\displaystyle a\neq 0}
.
La integral
∫
a
2
+
x
2
d
x
{\displaystyle \int {\sqrt {a^{2}+x^{2}}}\,{dx}}
puede ser evaluada haciendo el cambio de variable
x
=
a
tan
θ
d
x
=
a
sec
2
θ
d
θ
θ
=
arctan
(
x
a
)
{\displaystyle {\begin{aligned}x&=a\tan \theta \\dx&=a\sec ^{2}\theta \,d\theta \\\theta &=\arctan \left({\frac {x}{a}}\right)\end{aligned}}}
donde
a
>
0
{\displaystyle a>0}
de modo que
a
2
=
a
{\displaystyle {\sqrt {a^{2}}}=a}
y
−
π
2
<
θ
<
π
2
{\displaystyle -{\frac {\pi }{2}}<\theta <{\frac {\pi }{2}}}
por lo que
sec
θ
>
0
{\displaystyle \sec \theta >0}
y
sec
2
θ
=
sec
θ
{\displaystyle {\sqrt {\sec ^{2}\theta }}=\sec \theta }
.
Entonces
∫
a
2
+
x
2
d
x
=
∫
a
2
+
a
2
tan
2
θ
(
a
sec
2
θ
)
d
θ
=
∫
a
2
(
1
+
tan
2
θ
)
(
a
sec
2
θ
)
d
θ
=
∫
a
2
sec
2
θ
(
a
sec
2
θ
)
d
θ
=
∫
(
a
sec
θ
)
(
a
sec
2
θ
)
d
θ
=
a
2
∫
sec
3
θ
d
θ
.
{\displaystyle {\begin{aligned}\int {\sqrt {a^{2}+x^{2}}}\,dx&=\int {\sqrt {a^{2}+a^{2}\tan ^{2}\theta }}\,(a\sec ^{2}\theta )\,d\theta \\[6pt]&=\int {\sqrt {a^{2}(1+\tan ^{2}\theta )}}\,(a\sec ^{2}\theta )\,d\theta \\[6pt]&=\int {\sqrt {a^{2}\sec ^{2}\theta }}\,(a\sec ^{2}\theta )\,d\theta \\[6pt]&=\int (a\sec \theta )(a\sec ^{2}\theta )\,d\theta \\[6pt]&=a^{2}\int \sec ^{3}\theta \,d\theta .\\[6pt]\end{aligned}}}
La integral de la secante cúbica puede ser evaluada utilizando integración por partes , dando como resultado
∫
a
2
+
x
2
d
x
=
a
2
2
(
sec
θ
tan
θ
+
ln
|
sec
θ
+
tan
θ
|
)
+
C
=
a
2
2
(
1
+
x
2
a
2
⋅
x
a
+
ln
|
1
+
x
2
a
2
+
x
a
|
)
+
C
=
1
2
(
x
a
2
+
x
2
+
a
2
ln
|
x
+
a
2
+
x
2
|
)
+
C
.
{\displaystyle {\begin{aligned}\int {\sqrt {a^{2}+x^{2}}}\,dx&={\frac {a^{2}}{2}}(\sec \theta \tan \theta +\ln |\sec \theta +\tan \theta |)+C\\[6pt]&={\frac {a^{2}}{2}}\left({\sqrt {1+{\frac {x^{2}}{a^{2}}}}}\cdot {\frac {x}{a}}+\ln \left|{\sqrt {1+{\frac {x^{2}}{a^{2}}}}}+{\frac {x}{a}}\right|\right)+C\\[6pt]&={\frac {1}{2}}\left(x{\sqrt {a^{2}+x^{2}}}+a^{2}\ln \left|x+{\sqrt {a^{2}+x^{2}}}\right|\right)+C.\end{aligned}}}
Para una integral definida, los límites de integración cambian una vez que se hace la sustitución y estos están determinados por
θ
=
arctan
(
x
a
)
{\displaystyle \theta =\arctan \left({\frac {x}{a}}\right)}
con valores para
θ
{\displaystyle \theta }
en el rango
−
π
2
<
θ
<
π
2
{\displaystyle -{\frac {\pi }{2}}<\theta <{\frac {\pi }{2}}}
Considérese la integral definida
∫
0
1
4
1
+
x
2
d
x
{\displaystyle \int _{0}^{1}{\frac {4}{1+x^{2}}}\,dx}
esta puede ser evaluada haciendo el cambio de variable
x
=
tan
θ
d
x
=
sec
2
θ
d
θ
{\displaystyle {\begin{aligned}x&=\tan \theta \\dx&=\sec ^{2}\theta \,d\theta \end{aligned}}}
con los límites de integración determinados por
θ
=
arctan
x
{\displaystyle \theta =\arctan x}
.
Tenemos que
si
x
=
0
{\displaystyle x=0}
entonces
θ
=
arctan
(
0
)
=
0
{\displaystyle \theta =\arctan(0)=0}
y si
x
=
1
{\displaystyle x=1}
entonces
θ
=
arctan
(
1
)
=
π
4
{\displaystyle \theta =\arctan(1)={\frac {\pi }{4}}}
de modo que
∫
0
1
4
1
+
x
2
d
x
=
4
∫
0
π
/
4
sec
2
θ
1
+
tan
2
θ
d
θ
=
4
∫
0
π
/
4
sec
2
θ
sec
2
θ
d
θ
=
4
∫
0
π
/
4
d
θ
=
4
θ
|
0
π
/
4
=
4
(
π
4
)
=
π
{\displaystyle {\begin{aligned}\int _{0}^{1}{\frac {4}{1+x^{2}}}\;dx&=4\int _{0}^{\pi /4}{\frac {\sec ^{2}\theta }{1+\tan ^{2}\theta }}\;d\theta \\[6pt]&=4\int _{0}^{\pi /4}{\frac {\sec ^{2}\theta }{\sec ^{2}\theta }}\;d\theta \\[6pt]&=4\int _{0}^{\pi /4}d\theta \\[6pt]&=4\theta {\Bigg |}_{0}^{\pi /4}\\&=4\left({\frac {\pi }{4}}\right)\\&=\pi \end{aligned}}}
Caso III: Integrando conteniendo
x
2
−
a
2
{\displaystyle x^{2}-a^{2}}
editar
Se hace el cambio de variable
x
=
a
sec
θ
{\displaystyle x=a\sec \theta }
y se utiliza la identidad trigonométrica
sec
2
(
θ
)
−
tan
2
(
θ
)
=
1
{\displaystyle \sec ^{2}(\theta )-\tan ^{2}(\theta )=1}
.
Construcción geométrica para Caso
III
{\displaystyle {\text{III}}}
La integral
∫
d
x
x
2
−
a
2
{\displaystyle \int {\frac {dx}{x^{2}-a^{2}}}}
también puede ser evaluada utilizando fracciones parciales en lugar de utilizar sustitución trigonométrica. Sin embargo, la integral
∫
x
2
−
a
2
d
x
{\displaystyle \int {\sqrt {x^{2}-a^{2}}}\,dx}
no. En este caso, una sustitución apropiada es
x
=
a
sec
θ
d
x
=
a
sec
θ
tan
θ
d
θ
θ
=
arcsec
(
x
a
)
{\displaystyle {\begin{aligned}x&=a\sec \theta \\dx&=a\sec \theta \tan \theta \,d\theta \\\theta &=\operatorname {arcsec} \left({\frac {x}{a}}\right)\end{aligned}}}
donde
a
>
0
{\displaystyle a>0}
de modo que
a
2
=
a
{\displaystyle {\sqrt {a^{2}}}=a}
y
0
≤
θ
<
π
2
{\displaystyle 0\leq \theta <{\frac {\pi }{2}}}
suponiendo que
x
>
0
{\displaystyle x>0}
, de modo que
tan
θ
≥
0
{\displaystyle \tan \theta \geq 0}
y
tan
2
θ
=
tan
θ
{\displaystyle {\sqrt {\tan ^{2}\theta }}=\tan \theta }
.
Entonces,
∫
x
2
−
a
2
d
x
=
∫
a
2
sec
2
θ
−
a
2
⋅
a
sec
θ
tan
θ
d
θ
=
∫
a
2
(
sec
2
θ
−
1
)
⋅
a
sec
θ
tan
θ
d
θ
=
∫
a
2
tan
2
θ
⋅
a
sec
θ
tan
θ
d
θ
=
∫
a
2
sec
θ
tan
2
θ
d
θ
=
a
2
∫
(
sec
θ
)
(
sec
2
θ
−
1
)
d
θ
=
a
2
∫
(
sec
3
θ
−
sec
θ
)
d
θ
{\displaystyle {\begin{aligned}\int {\sqrt {x^{2}-a^{2}}}\,dx&=\int {\sqrt {a^{2}\sec ^{2}\theta -a^{2}}}\cdot a\sec \theta \tan \theta \,d\theta \\&=\int {\sqrt {a^{2}(\sec ^{2}\theta -1)}}\cdot a\sec \theta \tan \theta \,d\theta \\&=\int {\sqrt {a^{2}\tan ^{2}\theta }}\cdot a\sec \theta \tan \theta \,d\theta \\&=\int a^{2}\sec \theta \tan ^{2}\theta \,d\theta \\&=a^{2}\int (\sec \theta )(\sec ^{2}\theta -1)\,d\theta \\&=a^{2}\int (\sec ^{3}\theta -\sec \theta )\,d\theta \end{aligned}}}
Uno puede evaluar la integral de la función secante multiplicando tanto el numerador como el denominador por
(
sec
θ
+
tan
θ
)
{\displaystyle (\sec \theta +\tan \theta )}
y evaluar la integral de la secante cúbica integrando por partes.[ 3] Como resultado,
∫
x
2
−
a
2
d
x
=
a
2
2
(
sec
θ
tan
θ
+
ln
|
sec
θ
+
tan
θ
|
)
−
a
2
ln
|
sec
θ
+
tan
θ
|
+
C
=
a
2
2
(
sec
θ
tan
θ
−
ln
|
sec
θ
+
tan
θ
|
)
+
C
=
a
2
2
(
x
a
⋅
x
2
a
2
−
1
−
ln
|
x
a
+
x
2
a
2
−
1
|
)
+
C
=
1
2
(
x
x
2
−
a
2
−
a
2
ln
|
x
+
x
2
−
a
2
a
|
)
+
C
.
{\displaystyle {\begin{aligned}\int {\sqrt {x^{2}-a^{2}}}\,dx&={\frac {a^{2}}{2}}(\sec \theta \tan \theta +\ln |\sec \theta +\tan \theta |)-a^{2}\ln |\sec \theta +\tan \theta |+C\\[6pt]&={\frac {a^{2}}{2}}(\sec \theta \tan \theta -\ln |\sec \theta +\tan \theta |)+C\\[6pt]&={\frac {a^{2}}{2}}\left({\frac {x}{a}}\cdot {\sqrt {{\frac {x^{2}}{a^{2}}}-1}}-\ln \left|{\frac {x}{a}}+{\sqrt {{\frac {x^{2}}{a^{2}}}-1}}\right|\right)+C\\[6pt]&={\frac {1}{2}}\left(x{\sqrt {x^{2}-a^{2}}}-a^{2}\ln \left|{\frac {x+{\sqrt {x^{2}-a^{2}}}}{a}}\right|\right)+C.\end{aligned}}}
Sustituciones que eliminan funciones trigonométricas
editar
La sustitución de una nueva variable por una función trigonométrica en ocasiones puede ser usada para facilitar el cálculo de la integral, dejando el integrando sin funciones trigonométricas.
∫
f
(
sen
(
x
)
,
cos
(
x
)
)
d
x
=
∫
1
±
1
−
u
2
f
(
u
,
±
1
−
u
2
)
d
u
u
=
sen
(
x
)
∫
f
(
sen
(
x
)
,
cos
(
x
)
)
d
x
=
∫
1
∓
1
−
u
2
f
(
±
1
−
u
2
,
u
)
d
u
u
=
cos
(
x
)
∫
f
(
sen
(
x
)
,
cos
(
x
)
)
d
x
=
∫
2
1
+
u
2
f
(
2
u
1
+
u
2
,
1
−
u
2
1
+
u
2
)
d
u
u
=
tan
(
x
2
)
{\displaystyle {\begin{aligned}\int f(\operatorname {sen}(x),\cos(x))\,dx&=\int {\frac {1}{\pm {\sqrt {1-u^{2}}}}}\;f\left(u,\pm {\sqrt {1-u^{2}}}\right)\,du&&u=\operatorname {sen}(x)\\[6pt]\int f(\operatorname {sen}(x),\cos(x))\,dx&=\int {\frac {1}{\mp {\sqrt {1-u^{2}}}}}\;f\left(\pm {\sqrt {1-u^{2}}},u\right)\,du&&u=\cos(x)\\[6pt]\int f(\operatorname {sen}(x),\cos(x))\,dx&=\int {\frac {2}{1+u^{2}}}\;f\left({\frac {2u}{1+u^{2}}},{\frac {1-u^{2}}{1+u^{2}}}\right)\,du&&u=\tan \left({\tfrac {x}{2}}\right)\\[6pt]\end{aligned}}}
La última sustitución es conocida como la Sustitución de Weierstrass , que hace uso de las fórmulas de la tangente del ángulo mitad .
Considérese la integral
∫
4
cos
x
(
1
+
cos
x
)
3
d
x
{\displaystyle \int {\frac {4\cos x}{(1+\cos x)^{3}}}\;dx}
Si utilizamos la sustitución de Weierstrass entonces
∫
4
cos
x
(
1
+
cos
x
)
3
d
x
=
∫
2
1
+
u
2
4
(
1
−
u
2
1
+
u
2
)
(
1
+
1
−
u
2
1
+
u
2
)
3
d
u
=
∫
(
1
−
u
2
)
(
1
+
u
2
)
d
u
=
∫
(
1
−
u
4
)
d
u
=
u
−
u
5
5
+
C
=
tan
(
x
2
)
−
1
5
tan
5
(
x
2
)
+
C
{\displaystyle {\begin{aligned}\int {\frac {4\cos x}{(1+\cos x)^{3}}}\,dx&=\int {\frac {2}{1+u^{2}}}{\frac {4\left({\frac {1-u^{2}}{1+u^{2}}}\right)}{\left(1+{\frac {1-u^{2}}{1+u^{2}}}\right)^{3}}}\,du\\&=\int (1-u^{2})(1+u^{2})\,du\\&=\int (1-u^{4})\,du\\&=u-{\frac {u^{5}}{5}}+C\\&=\tan \left({\frac {x}{2}}\right)-{\frac {1}{5}}\tan ^{5}\left({\frac {x}{2}}\right)+C\end{aligned}}}
Sustitución hiperbólica
editar
También se pueden utilizar sustituciones mediante funciones hiperbólicas para simplificar determinadas integrales.[ 4]
Por ejemplo, en la integral
∫
1
a
2
+
x
2
d
x
{\displaystyle \int {\frac {1}{\sqrt {a^{2}+x^{2}}}}\,dx}
se realiza la sustitución
x
=
a
sinh
u
{\displaystyle x=a\sinh {u}}
,
d
x
=
a
cosh
u
d
u
.
{\displaystyle dx=a\cosh u\,du.}
Entonces, usando las identidades
cosh
2
(
x
)
−
sinh
2
(
x
)
=
1
{\displaystyle \cosh ^{2}(x)-\sinh ^{2}(x)=1}
y
sinh
−
1
x
=
ln
(
x
+
x
2
+
1
)
,
{\displaystyle \sinh ^{-1}{x}=\ln(x+{\sqrt {x^{2}+1}}),}
∫
1
a
2
+
x
2
d
x
=
∫
a
cosh
u
a
2
+
a
2
sinh
2
u
d
u
=
∫
a
cosh
u
a
1
+
sinh
2
u
d
u
=
∫
a
cosh
u
a
cosh
u
d
u
=
u
+
C
=
sinh
−
1
x
a
+
C
=
ln
(
x
2
a
2
+
1
+
x
a
)
+
C
=
ln
(
x
2
+
a
2
+
x
a
)
+
C
{\displaystyle {\begin{aligned}\int {\frac {1}{\sqrt {a^{2}+x^{2}}}}\,dx&=\int {\frac {a\cosh u}{\sqrt {a^{2}+a^{2}\sinh ^{2}u}}}\,du\\[6pt]&=\int {\frac {a\cosh {u}}{a{\sqrt {1+\sinh ^{2}{u}}}}}\,du\\[6pt]&=\int {\frac {a\cosh {u}}{a\cosh u}}\,du\\[6pt]&=u+C\\[6pt]&=\sinh ^{-1}{\frac {x}{a}}+C\\[6pt]&=\ln \left({\sqrt {{\frac {x^{2}}{a^{2}}}+1}}+{\frac {x}{a}}\right)+C\\[6pt]&=\ln \left({\frac {{\sqrt {x^{2}+a^{2}}}+x}{a}}\right)+C\end{aligned}}}