ממוצע גאומטרי
מראה
ממוצע גאומטרי (ממוצע הנדסי) הוא סוג של ממוצע המהווה מדד מרכז לקבוצה סופית של מספרים ממשיים חיוביים. בהינתן סדרת מספרים הממוצע הגאומטרי מוגדר כשורש ה- של מכפלת איברי הסדרה,[1]
לחלופין ניתן להציג את הממוצע הגאומטרי באמצעות הממוצע החשבוני של הלוגריתם של הסדרה
תכונות
[עריכת קוד מקור | עריכה]פרט לתכונות הכלליות שיש לו מעצם היותו סוג של ממוצע, לממוצע גאומטרי מספר תכונות ייחודיות:
- מכפלתה של סדרת מספרים אינה משתנה אם מחליפים כל אחד מהמספרים בסדרה בממוצע הגאומטרי של הסדרה.
- לכל סדרת מספרים מספרים, הממוצע הגאומטרי קטן מהממוצע החשבוני שלה, אלא אם כן כל המספרים בסדרה שווים, ובמקרה זה הממוצע החשבוני והממוצע הגאומטרי שווים.[2]
- המנה של הממוצעים הגאומטריים של שתי סדרות באותו אורך, שווה לממוצע הגאומטרי של סדרת המנות של איברי שתי הסדרות.
- המכפלה של הממוצעים הגאומטריים של שתי סדרות באותו אורך, שווה לממוצע הגאומטרי של סדרת המכפלות של אברי שתי הסדרות.
- הממוצע הגאומטרי הוא מקרה פרטי של ממוצע מוכלל. הממוצע הגאומטרי מתקבל כאשר הפרמטר בהגדרת הממוצע המשוכלל שואף לאפס. לחישוב הגבול ניתן להשתמש בכלל לופיטל
שימוש
[עריכת קוד מקור | עריכה]ממוצע גאומטרי שימושי עבור סדרות של ערכים שבהם יש משמעות למכפלת הערכים ולא לחיבור ביניהם. לדוגמה:
- חישוב תשואה ממוצעת רב שנתית על השקעות: הממוצע הגאומטרי מספק תמונה מדויקת של התשואה הממוצעת, כיוון שהוא לוקח בחשבון את ההיבט הכפלי של התשואות השנתיות.[3] כדוגמה, נניח שלאורך 4 שנים התשואות היו 10%, 150%, 30%- ו 10%. ההחזר על השקעה של 100 ש"ח הוא . התוצאה הזו שקולה לתשואה שנתית ממוצעת של 20.6%, שמתקבלת באמצעות ממוצע גאומטרי. ממוצע זה נמוך בהרבה מהממוצע החשבוני של סדרה זו – 35%.
- קצב גידול אוכלוסייה: לחישוב של קצב הגידול הממוצע באוכלוסייה בתקופה מסוימת משתמשים בממוצע גאומטרי ולא בממוצע חשבוני.[4]
ממוצע גאומטרי של פונקציה רציפה
[עריכת קוד מקור | עריכה]אם היא פונקציה ממשית רציפה, הממוצע הגאומטרי שלה בתחום הוא
כדוגמה, הממוצע הגאומטרי של הפונקציית הזהות בקטע הוא .
ראו גם
[עריכת קוד מקור | עריכה]קישורים חיצוניים
[עריכת קוד מקור | עריכה]- ממוצע גאומטרי, באתר MathWorld (באנגלית)
הערות שוליים
[עריכת קוד מקור | עריכה]- ^ https://encyclopediaofmath.org/wiki/Geometric_mean
- ^ P. S. Bullen, The Arithmetic, Geometric and Harmonic Means, Dordrecht: Springer Netherlands, 2003, עמ' 60–174, ISBN 978-94-017-0399-4. (באנגלית)
- ^ Breaking Down the Geometric Mean in Investing, Investopedia (באנגלית)
- ^ יעקב פייטלסון, התהליכים הדמוגרפיים בארץ ישראל ( 1800-2013), אוגוסט 2013