出典: フリー百科事典『ウィキペディア(Wikipedia)』
プランク単位系(プランクたんいけい)は、マックス・プランクによって提唱された自然単位系である。
プランク単位系では以下の物理定数の値を 1 として定義している。
定数 |
記号 |
次元
|
真空中の光速度
|
|
L T−1
|
万有引力定数
|
|
M−1L3T−2
|
ディラック定数(換算プランク定数ともいう)
|
(はプランク定数)
|
ML2T−1
|
クーロン力定数
|
(は真空の誘電率)
|
Q−2 M L3 T−2
|
ボルツマン定数
|
|
ML2T−2Θ−1
|
プランク単位系は物理学者によって「神の単位」と半ばユーモラスに言及される。自然単位系は「人間中心的な自由裁量が除かれた単位系」であり、ごく一部の物理学者は「地球外の知的生命体も同じ単位系を使用しているに違いない」と信じている。
プランク単位系は、物理学者が問題を再構成するのに役立つ。一方、日常的なスケールからかけ離れたものが多いうえ、基準となる物理定数のうち万有引力定数の不確かさが大きいため、実用には不向きである。
プランク単位系を使用すると上記の変換定数が不要になるため、下記のように多くの物理学の方程式が単純化されるという利点があり、理論物理学でよく使われている。
ただし、それぞれの項の単位の次元がズレているわけではないという点には注意されたい[注釈 1]。
方程式の名称 |
一般の単位系 |
プランク単位系
|
ニュートンの万有引力の法則
|
|
|
シュレーディンガー方程式
|
|
|
角周波数の 素粒子や光子が持つエネルギー
|
|
|
アインシュタインの 質量とエネルギーの方程式
|
|
|
アインシュタイン方程式
|
|
|
熱の運動エネルギー
|
|
|
クーロンの法則
|
|
|
マクスウェルの方程式
|
|
- クーロン力定数にではなく正規化されたを使うと、
も取り除くことができる。
|
上述の5つの定数の値を 1 とすることで、時間・長さ・質量・電荷・温度の5つの基本単位が定義される。
名称
|
次元
|
式
|
SIでの値[1]
|
プランク時間
|
時間 (T)
|
|
5.391247(60)×10−44 s
|
プランク長
|
長さ (L)
|
|
1.616255(18)×10−35 m
|
プランク質量
|
質量 (M)
|
|
2.176434(24)×10−8 kg
|
プランク電荷
|
電荷 (Q)
|
|
1.875545956(41)×10−18 C
|
プランク温度
|
温度 (Θ)
|
|
1.416784(16)×1032 K
|
従って、5つの物理定数はこれらの基本プランク単位により以下のように書き表すことができる。
また、これらの数値がどの様なスケールなのかに関しては時間の比較や長さの比較及び質量の比較と温度の比較を参照。
他の単位系と同様に、以下の物理量の単位は基本プランク単位に基づいて定義される。
名称 |
次元 |
式 |
SIでのおよその値
|
プランクエネルギー
|
エネルギー (ML2T−2)
|
|
1.9561×109 J
|
プランク力
|
力 (MLT−2)
|
|
1.21027×1044 N
|
プランク仕事率 (?)
|
仕事率 (ML2T−3)
|
|
3.62831×1052 W
|
プランク密度
|
密度 (ML−3)
|
|
5.15500×1096 kg/m3
|
プランク角周波数
|
周波数 (T−1)
|
|
1.85487×1043 rad/s
|
プランク圧力
|
圧力 (ML−1T−2)
|
|
4.63309×10113 Pa
|
プランク電流
|
電流 (QT−1)
|
|
3.4789×1025 A
|
プランク電圧
|
電圧 (ML2T−2Q−1)
|
|
1.04295×1027 V
|
プランクインピーダンス
|
電気抵抗 (ML2T−1Q−2)
|
|
2.99792458×101 Ω
|
各数値のスケールについては以下の各項目を参照。
- ^ たとえば『ニュートンの万有引力の法則』の『プランク単位系』の方程式において、右辺のの次元はM2 L−2ではなくM L T−2である。