By (or ) is denoted the category of toposes. Usually this means:
morphisms are geometric morphisms of toposes.
This is naturally a 2-category, where
That is, a 2-morphism is a natural transformation (which is, by mate calculus, equivalent to a natural transformation between direct images). Thus, is equivalent to both of
There is also the sub-2-category of sheaf toposes (i.e. Grothendieck toposes).
Note that in some literature this 2-category is denoted merely , but that is also commonly used to denote the category of topological spaces.
We obtain a very different 2-category of toposes if we take the morphisms to be logical functors; this 2-category is sometimes denoted or .
The operation of forming categories of sheaves
embeds topological spaces into toposes. For a continuous map we have that is the geometric morphism
with the direct image and the inverse image.
Strictly speaking, this functor is not an embedding if we consider as a 1-category and as a 2-category, since it is then not fully faithful in the 2-categorical sense—there can be nontrivial 2-cells between geometric morphisms between toposes of sheaves on topological spaces.
However, if we regard as a (1,2)-category where the 2-cells are inequalities in the specialization ordering, then this functor does become a 2-categorically full embedding (i.e. an equivalence on hom-categories) if we restrict to the full subcategory of sober spaces. This embedding can also be extended from to the entire category of locales (which can be viewed as “Grothendieck 0-toposes”).
There are similar full embeddings and of sheaf (1-)toposes into 2-sheaf 2-toposes and sheaf (n,1)-toposes for . Note that these embeddings are not the identity functor on underlying categories: a 1-topos is not itself an -topos, instead we have to take -sheaves on a suitable generating site for it.
There is a canonical forgetful functor Cat that lands, by definition, in the sub-2-category of locally presentable categories and functors which preserve all limits / are right adjoints.
This 2-functor has a right 2-adjoint (Bunge-Carboni).
The 2-category is not all that well-endowed with limits, but its slice categories are finitely complete as 2-categories, and is closed under finite limits in . In particular, the terminal object in is the topos Set .
The supply with colimits is better:
All small (indexed) 2-colimits in exists and are computed as (indexed) 2-limits in Cat of the underlying inverse image functors.
This appears as (Moerdijk, theorem 2.5)
Let
be a 2-pullback in such that
are both pseudomonic morphisms
is an effective epimorphism;
then the diagram of inverse image functors
is a 2-pullback in Cat and so by the above the original square is also a 2-pushout.
This appears as theorem 5.1 in (BungeLack)
The 2-category is an extensive category. Same for toposes bounded over a base.
This is in (BungeLack, proposition 4.3).
Let
be a diagram of toposes. Then its pullback in the (2,1)-category version of is computed, roughly, by the pushout of their sites of definition.
More in detail: there exist sites , , and with finite limits and morphisms of sites
such that
Let then
be the pushout of the underlying categories in the full subcategory Cat of categories with finite limits.
Let moreover
be the reflective subcategory obtained by localization at the class of morphisms generated by the inverse image of the coverings of and the inverse image of the coverings of .
Then
is a pullback square.
This appears for instance as (Lurie, prop. 6.3.4.6).
For localic toposes this reduces to the statement of localic reflection: the pullback of toposes is given by the of the underlying locales which in turn is the pushout of the corresponding frames.
The free loop space object of a topos in Topos is called the isotropy group of a topos.
Topos
The characterization of colimits in is in
The fact that is extensive is in
Limits and colimits of toposes are discussed in 6.3.2-6.3.4 of
There this is discussed for for (∞,1)-toposes, but the statements are verbatim true also for ordinary toposes (in the (2,1)-category version of ).
The adjunction between toposes and locally presentable categories is discussed in
Last revised on June 16, 2017 at 08:41:13. See the history of this page for a list of all contributions to it.