Гомоморфизм

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Гомоморфизм (от др.-греч. ὁμός — равный, одинаковый и μορφή — вид, форма) — это морфизм в категории алгебраических систем, то есть отображение алгебраической системы А, сохраняющее основные операции и основные отношения.

Определение

[править | править код]

Отображение называется гомоморфизмом групп , , если оно одну групповую операцию переводит в другую: , то есть образ произведения равен произведению образов.

Понятие гомоморфизма как соотношение между парой алгебраических систем начало использоваться в работах немецкого математика Фробениуса, а обобщённое определение было сформулировано Эмми Нётер в 1929 году. Частными случаями гомоморфизма являются изоморфизм и автоморфизм[1]. Некоторая общая теория, уточняющая понятия гомоморфизма, изоморфизма и морфизма, предложена известной группой французских математиков Николя Бурбаки в их книге «Теория множеств» (Глава IV, § 2).

Связанные определения

[править | править код]
  • Гомоморфный образ — образ математического объекта, имеющего структуру полугруппы, группы, кольца, алгебры при гомоморфном отображении. Иногда говорят и о гомоморфных образах других математических объектов, например, графов.
  • Ядро гомоморфизма

Ядро гомоморфизма является нормальной подгруппой. Гомоморфный образ группы изоморфен факторгруппе по ядру гомоморфизма (теорема о гомоморфизме).

Типы гомоморфизмов

[править | править код]

Примечания

[править | править код]
  1. Гомоморфизм // Системный анализ и принятие решений : Словарь-справочник. — М. : Высшая школа, 2004. — С. 72. — 616 с. — ББК 32.817. — УДК 005(G). — ISBN 5-06-004875-6.

Литература

[править | править код]

Корн Г., Корн Т. Справочник по математике — 1970, с. 332 (1974, с. 373).