Электродвижущая сила

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Классическая электродинамика
Электричество · Магнетизм
См. также: Портал:Физика

Электродви́жущая си́ла (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил (то есть любых сил, кроме электростатических и диссипативных) в квазистационарных цепях постоянного или переменного тока. В замкнутом контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура[1][2].

По аналогии с напряжённостью электростатического поля вводится понятие напряжённость электрического поля сторонних сил , под которой понимается векторная физическая величина, равная отношению силы (за вычетом электростатической), действующей на пробный электрический заряд, к величине этого заряда.

ЭДС, так же как и напряжение, в Международной системе единиц (СИ) измеряется в вольтах. Несмотря на присутствие слова «сила» в наименовании термина, электродвижущая сила не является одной из сил в физике и имеет отличную от силы размерность.

В замкнутом контуре ЭДС будет равна:

,

где  — элемент контура.

Можно говорить об электродвижущей силе на любом участке цепи. Тогда это удельная работа сторонних сил не во всём контуре, а только на данном участке. Скажем, ЭДС гальванического элемента есть работа сторонних сил при переносе единичного положительного заряда внутри элемента от одного полюса к другому.

Работа сторонних сил не выражается через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории. Так, например, работа сторонних сил при перемещении заряда между клеммами источника тока вне самого́ источника равна нулю.

ЭДС и закон Ома

[править | править код]

Электродвижущая сила источника связана с электрическим током, протекающим в цепи, соотношениями закона Ома. Закон Ома для неоднородного участка цепи имеет вид[1]

,

где — разность между значениями потенциала в начале и в конце участка цепи, сила тока, текущего по участку, а сопротивление участка.

Если точки 1 и 2 совпадают (цепь замкнута), то и предыдущая формула переходит в формулу закона Ома для замкнутой цепи[1]:

,

где теперь полное сопротивление всей цепи.

В общем случае полное сопротивление цепи складывается из сопротивления внешнего по отношению к источнику тока участка цепи () и внутреннего сопротивления самого́ источника тока (). С учётом этого следует:

.

ЭДС источника тока

[править | править код]

Если на участке цепи не действуют сторонние силы (однородный участок цепи) и, значит, источника тока на нём нет, то, как это следует из закона Ома для неоднородного участка цепи, выполняется:

.

Значит, если в качестве точки 1 выбрать анод источника, а в качестве точки 2 — его катод, то для разности между потенциалами анода и катода можно записать:

,

где, как и ранее, — сопротивление внешнего участка цепи.

При делении данного соотношения на закон Ома для замкнутой цепи, записанный в виде , получится следующий результат:

и затем .

Из последнего соотношения следуют два вывода:

  1. Во всех случаях, когда по цепи течёт ток, разность потенциалов между клеммами источника тока меньше, чем ЭДС источника.
  2. В предельном случае, когда бесконечно (цепь разорвана), выполняется .

Таким образом, ЭДС источника тока равна разности потенциалов между его клеммами в состоянии, когда источник отключён от цепи[1].

ЭДС индукции

[править | править код]

Причиной возникновения электродвижущей силы в замкнутом контуре может стать изменение потока магнитного поля, пронизывающего поверхность, ограниченную данным контуром. Это явление называется электромагнитной индукцией. Величина ЭДС индукции в контуре определяется выражением

,

где — поток магнитного поля через указанную поверхность. Знак «−» перед выражением показывает, что индукционный ток, созданный ЭДС индукции, препятствует изменению магнитного потока в контуре (см. правило Ленца). В свою очередь причиной изменения магнитного потока может быть как изменение магнитного поля, так и движение контура в целом или его отдельных частей.

Неэлектростатический характер ЭДС

[править | править код]
Внутри источника ЭДС ток течёт в направлении, противоположном нормальному. Это невозможно без дополнительной силы неэлектростатической природы, преодолевающей силу электрического отталкивания

Как показано на рисунке, электрический ток, нормальное направление которого — от «плюса» к «минусу», внутри источника ЭДС (например, внутри гальванического элемента) течёт в противоположном направлении. Направление от «плюса» к «минусу» совпадает с направлением электростатической силы, действующей на положительные заряды. Поэтому для того, чтобы заставить ток течь в противоположном направлении, необходима дополнительная сила неэлектростатической природы (центробежная сила, сила Лоренца, силы химической природы, сила со стороны «вихревого» [созданного не зарядами] электрического поля), которая бы преодолевала силу со стороны электростатического поля. Диссипативные силы, хотя и противодействуют электростатическому полю, не могут заставить ток течь в противоположном направлении, поэтому они не входят в состав сторонних сил, работа которых используется в определении ЭДС.

Сторонние силы

[править | править код]

Сторонними силами называются силы, вызывающие перемещение электрических зарядов против направления действия сил электростатического поля. Например, в гальваническом элементе или аккумуляторе сторонние силы возникают в результате электрохимических процессов, происходящих на границе соприкосновения электрода с электролитом; в электрическом генераторе постоянного тока сторонней силой является сила Лоренца[3].

Примечания

[править | править код]
  1. 1 2 3 4 Сивухин Д. В. Общий курс физики. — М.: Физматлит, МФТИ, 2004. — Т. III. Электричество. — С. 193—194. — 656 с. — ISBN 5-9221-0227-3.
  2. Калашников С. Г. Общий курс физики. — М.: Гостехтеориздат, 1956. — Т. II. Электричество. — С. 146, 153. — 664 с.
  3. Кабардин О. Ф. Физика. - М., Просвещение, 1985. - Тираж 754 000 экз. - с. 131