Limita funkcije
To je članek, ki se navezuje na |
Infinitezimalni račun |
---|
Limíta fúnkcije v točki a je število, ki se mu vrednost funkcije f(x) približuje, ko se vrednost spremenljivke x približuje danemu številu a.
Limito funkcije v točki a označimo (beri: "limita f(x), ko gre x proti a).
Limita funkcije v točki a je enaka funkcijski vrednosti f(a), če in samo če je funkcija v točki a zvezna.
Matematična definicija
[uredi | uredi kodo]Limita funkcije je definirana s pomočjo limite zaporedja.
Naj bo f realna funkcija realne spremenljivke. Imejmo zaporedje xn, ki ima limito a. Za to zaporedje tvorimo ustrezno zaporedje vrednosti yn = f(xn). Če ima dobljeno zaporedje yn limito b in je ta limita neodvisna od tega, kako izberemo zaporedje xn, ki gre proti a, potem število b imenujemo limita funkcije f v točki a.
Računanje limite
[uredi | uredi kodo]Krajšanje
[uredi | uredi kodo]V praksi limito funkcije najpogosteje izračunamo tako, da enačbo funkcije okrajšamo in potem vstavimo ustrezni a.
Zgled: funkcija pri x = 3 ni definirana (deljenje z 0) in torej tam ni zvezna. Če ulomek okrajšamo, dobimo limito:
Torej za zgornjo funkcijo velja: če se x približuje vrednosti 3, se f(x) približuje vrednosti 3/2.
L'Hôpitalovo pravilo
[uredi | uredi kodo]Drugi postopek, ki se ga v praksi pogosto uporablja, je l'Hôpitalovo pravilo. Če se števec in imenovalec funkcije oba približujeta vrednosti 0 (ko gre x proti a), potem lahko števec in imenovalec odvajamo in velja:
Zgled za uporabo l'Hôpitalovega pravila: