Catalantal
Catalantalen, vilka utgör en talföljd som börjar
- C0, C1, C2, C3, C4,... = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324 …
Följden är uppkallad efter den belgiska matematikern Eugène Charles Catalan (1814–1894). Catalantalen har visats ange antalen för en mycket stor uppsättning olika kombinatoriskt intressanta familjer av mängder.
Egenskaper
[redigera | redigera wikitext]Algebraiskt kan catalantalen definieras genom
- (där ! står för fakultetsfunktionen och är en binomialkoefficient).
Catalantalen kan också beskrivas rekursivt:
eller:
Tillämpningar
[redigera | redigera wikitext]I. är antalet monotona vägar genom ett n × n-rutnät av kvadrater som inte går ovanför diagonalen i rutnätet. En monoton väg är en väg som börjar i nedre vänstra hörnet och rör sig upp till övre högra hörnet, genom att i varje steg antingen röra sig uppåt eller åt höger.
II. är antalet sätt en konvex polygon med sidor kan delas in i trianglar genom att dra linjer mellan hörn.
III. Det antal permutationer av talen: 1,2.....n, som kan åstadkommas med hjälp av en stack är lika med . Med beteckningarna S, för att stacka ett tal och X, för exit av talet, får man om n = 3 en permutation med exempelvis exekveringssträngen: SXSSXX. Antalet sådana strängar är . Vissa av dessa strängar är otillåtna, exempelvis SXSXXS; Om stacken är tom kan operationen X inte utföras. Om man fram till och med den position i strängen, där antalet X överskrider antalet S, substituerar S och X mot varandra, får man här sekvensen: XSXSSS, som således innehåller 4 stycken S och 2 stycken X. Generellt fås n + 1 stycken S och n - 1 stycken X. Antalet otillåtna strängar blir då . Alltså är antalet tillåtna sekvenser . Generellt får man således att .
Källor
[redigera | redigera wikitext]- Donald Knuth, The Art of Computer Programming, Fundamental Algorithms, volume 1, 1973.
Externa länkar
[redigera | redigera wikitext]- Wikimedia Commons har media som rör Catalantal.
|