Електростанція
Електроста́нція (електрична станція) — промислове підприємство або комплект обладнання для виробництва електроенергії з різних форм первісної енергії.
Електростанції, що виробляють у великій кількості тепло для потреб споживачів, називаються теплоелектроцентралями (ТЕЦ).
Залежно від виду первісної енергії, електростанції поділяються на:
- класичні теплові,
- атомні теплові,
- гідроелектростанції, а також такі, що використовують:
- як первісну енергію тепло надр Землі — геотермальні електростанції,
- сонячну енергію (сонячні електростанції),
- кінетичну енергію вітру (вітрові електростанції).
- енергію хвиль.
Поки що широкого розповсюдження не набули електростанції, які використовують різницю температури різних шарів морської води, енергію морських хвиль і припливів.
Понад 60 % світової електроенергії виробляють класичні теплові електростанції, близько 17 % — атомні і близько 20 % — гідроелектростанції.
На початку 1871 року бельгійський винахідник Зеноб Грамма винайшов достатньо потужний генератор, щоб виробляти електроенергію в промислових масштабах[1].
У 1878 році лорд Армстронг Вільям спроєктував і побудував гідроелектростанцію в Крагсайді, Англія. Він використовував воду з озер у його маєтку для приводу динамо-машин Siemens. Електрика забезпечувала світло, опалення, гарячу воду, від неї працювали ліфти, а також трудозберігаючі пристрої та господарські будівлі[2].
У січні 1882 року в Лондоні за проєктом Томаса Едісона, організованого Едвардом Джонсоном, побудували першу в світі громадську електростанцію, яка працювала на вугіллі, Edison Electric Light Station. Котел Babcock & Wilcox приводив у дію парову машину потужністю 93 кВт (125 кінських сил), яка обертала 27-тонний генератор. Це забезпечувало електроенергією приміщення в районі, куди можна було потрапити через водопропускні труби віадуку, не розкопуючи дорогу, яка була монополією газових компаній. Серед замовників були City Temple і Old Bailey. Іншим важливим клієнтом була телеграфна контора Головної пошти, але до неї не можна було дістатися через водопропускні труби. Джонсон організував прокладання кабелю над головою через Голборн Таверн і Ньюгейт[3].
На теплових електростанціях механічна енергія виробляється тепловим двигуном, який перетворює теплову енергію, часто від згоряння палива, в енергію обертання турбогенератора. Більшість теплових електростанцій виробляють пару, тому їх іноді називають пароелектростанціями. Не вся теплова енергія може бути перетворена на механічну згідно з другим законом термодинаміки; отже, завжди є втрата тепла в навколишнє середовище. Якщо цю втрату використовують як корисне тепло для промислових процесів або централізованого теплопостачання, електростанція називається когенераційною електростанцією або ТЕЦ (комбінована теплоелектростанція). У країнах, де поширене централізоване опалення, існують спеціалізовані теплові станції, які називаються котельнями, що працюють тільки на тепло. Важливий клас електростанцій на Близькому Сході використовує побічне тепло для опріснення води.
На гідроелектростанції вода тече крізь турбіни, використовуючи гідроенергію для виробництва гідроелектрики. Енергія отримується від сили тяжіння води, що падає крізь напірні труби до водяних турбін, приєднаних до генераторів. Обсяг доступної потужності є комбінацією висоти та потоку води. Для підвищення рівня води та створення озера для зберігання води можна побудувати широкий спектр дамб. Гідроенергію виробляють у 150 країнах, у 2010 році Азійсько-Тихоокеанський регіон виробляв 32 відсотки світової гідроенергії. Китай є найбільшим виробником гідроелектроенергії, виробивши 721 терават-годин 2010 року, що становило близько 17 відсотків внутрішнього споживання електроенергії.
Сонячну енергію можна перетворити на електрику або безпосередньо в фотоелектричних комірках, або на концентруючій сонячній електростанції шляхом спрямування відбитого світла для запуску теплового двигуна[4].
Сонячна фотоелектрична електростанція перетворює сонячне світло в електроенергію постійного струму за допомогою фотоелектричного ефекту. Інвертори перетворюють постійний струм на змінний для приєднання до електричної мережі. Цей тип установки не використовує обертові машини для перетворення енергії[5].
Вітрові турбіни можна використовувати для виробництва електроенергії в районах із дужими постійними вітрами, іноді на березі моря. Багато різних конструкцій використовували в минулому, але майже всі сучасні турбіни, які виробляють сьогодні, використовують трилопатеву конструкцію проти вітру[6]. Вітрові турбіни, увімкнені в електромережу, які зараз будуються, набагато більші, ніж установки, встановлені в 1970-х роках. Таким чином, вони виробляють електроенергію дешевше та надійніше, ніж попередні моделі[7]. У більших турбінах (порядку одного мегавата) лопаті рухаються повільніше, ніж у старих, менших агрегатів, що робить їх менш загрозливими та безпечнішими для птахів[8].
Морська енергія або енергія моря (також іноді її називають енергією океану або енергією океану) відноситься до енергії, що переноситься океанськими хвилями, припливами, солоністю та різницею температур океану. Рух води у світовому океані створює величезний запас кінетичної енергії, або енергії руху. Цю енергію можна використовувати для виробництва електроенергії для будинків, транспорту та промисловості[9].
Енергія градієнта солоності називається осмосом із затримкою тиску. У цьому методі морська вода закачується в барокамеру під тиском, нижчим за різницю між тисками солоної та прісної води. Прісна вода також закачується в барокамеру крізь мембрану, яка збільшує як об'єм, так і тиск у камері. Коли різниця тиску компенсується, турбіна обертається, створюючи енергію. Цей спосіб особливо вивчається норвезькою комунальною компанією Statkraft, яка підрахувала, що в Норвегії завдяки цьому процесу буде доступно до 25 ТВт-год на рік. Компанія Statkraft побудувала перший у світі прототип осмотичної електростанції на фіорді Осло, який було відкрито 24 листопада 2009 року. Однак у січні 2014 року компанія Statkraft оголосила, що не продовжує цей пілот[10].
Енергія біомаси може бути отримана від спалювання відходів зеленого матеріалу для нагрівання води в пару та приводу парової турбіни. Біоенергія також може бути оброблена за допомогою різних температур і тисків у реакціях газифікації, піролізу або торрефікації. Залежно від бажаного кінцевого продукту, ці реакції створюють більш енергетично щільні продукти (синтез-газ, деревні пелети, біовугілля), які потім можна подавати в супровідний двигун для виробництва електроенергії з набагато нижчим рівнем викидів порівняно з відкритим спалюванням.
- ↑ Thompson, Silvanus Phillips (1888). Dynamo-electric Machinery: A Manual for Students of Electrotechnics. London: E. & F. N. Spon. с. 140.
- ↑ Hydro-electricity restored to historic Northumberland home. BBC News. 27 лютого 2013.
- ↑ Jack Harris (14 січня 1982), The electricity of Holborn, New Scientist, архів оригіналу за 4 лютого 2023, процитовано 14 листопада 2022
- ↑ Concentrating Solar Power. Energy.gov.
- ↑ Conversion from sunlight to electricity – Solar photovoltaic. sites.lafayette.edu.
- ↑ The Best Places to Put Wind Turbines to Produce Electricity. Sciencing.
- ↑ WINDExchange: Small Wind Guidebook. windexchange.energy.gov.
- ↑ New "Bird-Friendly" Wind Turbines Come to California. www.aiche.org. 14 серпня 2014.
- ↑ Carbon Trust, Future Marine Energy. Results of the Marine Energy Challenge: Cost competitiveness and growth of wave and tidal stream energy, January 2006
- ↑ Is PRO economically feasible? Not according to Statkraft | ForwardOsmosisTech. 22 січня 2014. Архів оригіналу за 18 січня 2017. Процитовано 18 січня 2017.
- Список електростанцій України
- Вугільна електростанція
- Сонячна енергетика
- Вітрова електростанція
- Ядерна енергетика
- Геотермальна енергетика
- Центр живлення
- Хвильова електростанція
- Електростанція // Універсальний словник-енциклопедія. — 4-те вид. — К. : Тека, 2006.
- Identification System for Power Stations (KKS)
- Power station diagram [Архівовано 23 квітня 2011 у Wayback Machine.]
- Power Plant Reference Books
- Large industrial cooling towers
- Inter-Utility Sub-station Training Assoc.
- APMS: Advanced Plant Management System
- A photo tour of the Zimmer Power Station, Moscow, Ohio [Архівовано 3 лютого 2007 у Wayback Machine.] (1300 MW Coal Fired)
- Mechanicville Hydroelectric Power Station Tour Video [Архівовано 17 березня 2007 у Wayback Machine.]
- Largest Power Plants in the World
- Power Plant Operators, Distributors, and Dispatchers (Occupational Outlook Handbook) [Архівовано 20 вересня 2008 у Wayback Machine.]
- Database of carbon emissions of power plants worldwide (Carbon Monitoring For Action: CARMA)
- Теплофизика безопасности атомных электростанций: монография / А. А. Ключников, И. Г. Шараевский, Н. М. Фиалко и др. ; НАН Украины, Ин-т проблем безопасности атом. электростанций. — Чернобыль: [б. и.], 2010. — 484 с. : ил. — (Серия «Теплофизика атомных электростанций»). — Библиогр.: с. 438—483 (717 назв.). — ISBN 978-966-02-5814-3
Це незавершена стаття про електрику. Ви можете допомогти проєкту, виправивши або дописавши її. |