Логіцизм

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Логіцизм — один з основних напрямків обґрунтування математики і філософії математики, що ставить за мету зведення вихідних математичних понять до понять логіки. Двома іншими основними напрямками є інтуіціонізм і формалізм[1].

Думка про зведення математики до логіки була висловлена Ляйбніцем наприкінці 17ст. Практичне здійснення логіцестичної тези було зроблено наприкінці 19 — початку 20 ст. у роботах Фреге, і у «Principia mathematica» під авторством Вайтгеда і Расселла[2].

Погляд на математику як на частину логіки зумовлений тим, що будь-яку математичну теорему в аксіоматичній системі можна розглядати як деяке твердження про логічне слідування. Залишається тільки всі константи, що зустрічаються в таких твердженнях визначити через логічні терміни. До кінця XIX століття в математиці різні види чисел, включаючи комплексні, були визначені в термінах натуральних чисел і операцій над ними. Спроба зведення натуральних чисел до логічних понять була зроблена Готлобом Фреге. В інтерпретації Фреге натуральні числа були кардинальними числами деяких понять. Однак система Фреге не позбавлена суперечностей. Це з'ясувалося, коли Расселл виявив протиріччя в Канторовій теорії множин (див. парадокс Расселла), намагаючись звести її до логіки. Виявлене протиріччя спонукало Расселла до перегляду поглядів на логіку, яку він сформулював у вигляді теорії розгалужених типів. Однак побудова математики на основі теорії типів потребувала прийняття аксіом, які неприродно вважати виключно логічними[2]. До них належать, наприклад, аксіома нескінченності, яка стверджує, що існує нескінченно багато індивідів, тобто об'єктів найнижчого типу.

Ряд авторів вважає, що з певними змінами логічного апарату Расселла логіцизм прийнятний[3], інші ж вважають що спроба зведення математики до логіки не вдалася, і ідея логіцізму виявилася утопічною. У 1931 році Гедель довів що жодна формалізована система логіки не може бути адекватною базою математики[2].

Примітки

[ред. | ред. код]
  1. Н.Н. Непейвода. Логицизм // Энциклопедия эпистемологии и философии науки. — М. : «Канон+», РООИ «Реабилитация», 2009.
  2. а б в Логицизм / Под редакцией А.А. Ивина // Философия: Энциклопедический словарь.. — М. : Гардарики, 2004.
  3. Irvine, A. D. Principia Mathematica : [арх. 28 квітня 2019] // The Stanford Encyclopedia of Philosophy. — 2010.}

Література

[ред. | ред. код]
  • Frege G., Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, Bd 1—2, Jena, 1893—1903;
  • Whitehead A. N., Russell В., Principia Mathematica, Gamb., 1910;
  • Godel K., «Monatsh. Math, und Phys.», 1931, Bd 38, S. 173—98;
  • Карри Х., Основания математической логики, пер. с англ., М., 1969;
  • Френкель А.- А., Бар-Хиллел Н., Основания теории множеств, пер. с англ., М., 1966.
  • Суровцев В. А. Ф. П. Рамсей и программа логицизма. — Томск: Изд-во. Том. ун-та, 2012. — 258 с.
  • Непейвода H. H. Логицизм // Новая философская энциклопедия : в 4 т. / пред. науч.-ред. совета В. С. Стёпин. — 2-е изд., испр. и доп. — М. : Мысль, 2010. — 2816 с.