跳转到内容

閃鋅礦:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
无编辑摘要
 
(未显示4个用户的9个中间版本)
第5行: 第5行:
| imagesize = 275px
| imagesize = 275px
| caption = 黑色闪锌矿晶体,含有少量[[黄铜矿]]和[[方解石]]
| caption = 黑色闪锌矿晶体,含有少量[[黄铜矿]]和[[方解石]]
| formula = {{chem2|(Zn,Fe)S}}
| formula = {{chem2|ZnS}}
| IMAsymbol = Sp<ref>{{Cite journal|last=Warr|first=L.N.|date=2021|title=IMA–CNMNC approved mineral symbols|url=https://www.cambridge.org/core/journals/mineralogical-magazine/article/imacnmnc-approved-mineral-symbols/62311F45ED37831D78603C6E6B25EE0A|journal=Mineralogical Magazine|volume=85|issue=3|pages=291–320|doi=10.1180/mgm.2021.43|bibcode=2021MinM...85..291W|s2cid=235729616}}</ref>
| IMAsymbol = Sp<ref>{{Cite journal|last=Warr|first=L.N.|date=2021|title=IMA–CNMNC approved mineral symbols|url=https://www.cambridge.org/core/journals/mineralogical-magazine/article/imacnmnc-approved-mineral-symbols/62311F45ED37831D78603C6E6B25EE0A|journal=Mineralogical Magazine|volume=85|issue=3|pages=291–320|doi=10.1180/mgm.2021.43|bibcode=2021MinM...85..291W|s2cid=235729616|access-date=2022-08-07|archive-date=2022-07-22|archive-url=https://web.archive.org/web/20220722124145/https://www.cambridge.org/core/journals/mineralogical-magazine/article/imacnmnc-approved-mineral-symbols/62311F45ED37831D78603C6E6B25EE0A|dead-url=no}}</ref>
| molweight =
| molweight =
| strunz = 2.CB.05a
| strunz = 2.CB.05a
第16行: 第16行:
| color = 浅至深棕色、红棕色、黄色、红色、绿色、浅蓝色、黑色和无色。
| color = 浅至深棕色、红棕色、黄色、红色、绿色、浅蓝色、黑色和无色。
| habit = 自面体晶体——形成良好的晶体,表现出良好的外部形状。粒状——通常在基质中以自面体到半面体晶体的形式出现。
| habit = 自面体晶体——形成良好的晶体,表现出良好的外部形状。粒状——通常在基质中以自面体到半面体晶体的形式出现。
| cleavage = [011]完美十二面体
| cleavage = [011]完全解理
| twinning = 简单的接触孪晶或复杂的层状形式,双轴[111]
| twinning = 简单的接触孪晶或复杂的层状形式,双轴[111]
| fracture = 参差状到贝壳状
| fracture = 参差状到贝壳状
第33行: 第33行:
| diaphaneity = 透明到半透明,富含铁时不透明
| diaphaneity = 透明到半透明,富含铁时不透明
| other = 荧光和摩擦发光
| other = 荧光和摩擦发光
| references = <ref>{{WebMineral |url=http://webmineral.com/data/Sphalerite.shtml |name=Sphalerite |access-date=2011-06-20}}</ref><ref name=Mindat>{{Mindat |id=3727 |name=Sphalerite |access-date=2011-06-20}}</ref><ref name=Handbook>{{cite web |last1=Anthony |first1=John W. |last2=Bideaux |first2=Richard A. |last3=Bladh |first3=Kenneth W. |last4=Nichols |first4=Monte C. |title=Sphalerite |url=http://www.handbookofmineralogy.org/pdfs/sphalerite.pdf |website=Handbook of Mineralogy |publisher=Mineral Data Publishing |access-date=14 March 2022 |date=2005}}</ref>
| references = <ref>{{WebMineral |url=http://webmineral.com/data/Sphalerite.shtml |name=Sphalerite |access-date=2011-06-20}}</ref><ref name=Mindat>{{Mindat |id=3727 |name=Sphalerite |access-date=2011-06-20}}</ref><ref name=Handbook>{{cite web |last1=Anthony |first1=John W. |last2=Bideaux |first2=Richard A. |last3=Bladh |first3=Kenneth W. |last4=Nichols |first4=Monte C. |title=Sphalerite |url=http://www.handbookofmineralogy.org/pdfs/sphalerite.pdf |website=Handbook of Mineralogy |publisher=Mineral Data Publishing |access-date=14 March 2022 |date=2005 |archive-date=2022-10-24 |archive-url=https://web.archive.org/web/20221024014904/https://www.handbookofmineralogy.org/pdfs/sphalerite.pdf |dead-url=no }}</ref>
| SMILES = [SH+2]12[ZnH2-2][SH+2]3[ZnH2-2][SH+2]([ZnH-2]14)[ZnH-2]1[S+2]5([ZnH-2]38)[Zn-2]26[SH+2]2[ZnH-2]([S+2]4)[SH+2]1[ZnH2-2][SH+2]3[ZnH-2]2[S+2][ZnH-2]([SH+2]6[ZnH-2]([SH+2])[SH+2]68)[SH+2]([ZnH2-2]6)[ZnH-2]35
| SMILES = [SH+2]12[ZnH2-2][SH+2]3[ZnH2-2][SH+2]([ZnH-2]14)[ZnH-2]1[S+2]5([ZnH-2]38)[Zn-2]26[SH+2]2[ZnH-2]([S+2]4)[SH+2]1[ZnH2-2][SH+2]3[ZnH-2]2[S+2][ZnH-2]([SH+2]6[ZnH-2]([SH+2])[SH+2]68)[SH+2]([ZnH2-2]6)[ZnH-2]35
| Jmol = [SH+2]12[ZnH2-2][SH+2]3[ZnH2-2][SH+2]([ZnH-2]14)[ZnH-2]1[S+2]5([ZnH-2]38)[Zn-2]26[SH+2]2[ZnH-2]([S+2]4)[SH+2]1[ZnH2-2][SH+2]3[ZnH-2]2[S+2][ZnH-2]([SH+2]6[ZnH-2]([SH+2])[SH+2]68)[SH+2]([ZnH2-2]6)[ZnH-2]35
| Jmol = [SH+2]12[ZnH2-2][SH+2]3[ZnH2-2][SH+2]([ZnH-2]14)[ZnH-2]1[S+2]5([ZnH-2]38)[Zn-2]26[SH+2]2[ZnH-2]([S+2]4)[SH+2]1[ZnH2-2][SH+2]3[ZnH-2]2[S+2][ZnH-2]([SH+2]6[ZnH-2]([SH+2])[SH+2]68)[SH+2]([ZnH2-2]6)[ZnH-2]35
}}
}}


'''闪锌矿'''({{lang-en|Sphalerite}})是一种[[硫化物]]矿物,[[化学式]]为(Zn,Fe)S。<ref name=":12">{{Cite journal|last=Muntyan|first=Barbara L.|date=1999|title=Colorado Sphalerite|url=http://www.tandfonline.com/doi/abs/10.1080/00357529909602545|journal=Rocks & Minerals|language=en|volume=74|issue=4|pages=220–235|doi=10.1080/00357529909602545|issn=0035-7529|via=Scholars Portal Journals}}</ref>它是最重要的锌矿石。闪锌矿存在于多种矿床类型中,但主要存在于沉积喷流型、密西西比河谷型和[[块状硫化物矿床]]中。它与[[方铅矿]]、[[黄铜矿]]、[[黄铁矿]](和其他[[硫化物]])、[[方解石]]、[[白云石]]、[[石英]]、[[菱锰矿]]和[[萤石]]有关。<ref name=":35">{{Cite book|last=Nesse|first=William D.|url=https://www.worldcat.org/oclc/817795500|title=Introduction to optical mineralogy|publisher=Oxford University Press|year=2013|isbn=978-0-19-984627-6|edition=4th|location=New York|pages=121|oclc=817795500}}</ref>
'''闪锌矿'''({{lang-en|Sphalerite}})是一种[[硫化物]]矿物,[[化学式]]为ZnS。<ref name=":12">{{Cite journal|last=Muntyan|first=Barbara L.|date=1999|title=Colorado Sphalerite|url=http://www.tandfonline.com/doi/abs/10.1080/00357529909602545|journal=Rocks & Minerals|language=en|volume=74|issue=4|pages=220–235|doi=10.1080/00357529909602545|issn=0035-7529|via=Scholars Portal Journals|access-date=2022-08-07|archive-date=2022-06-17|archive-url=https://web.archive.org/web/20220617164408/http://www.tandfonline.com/doi/abs/10.1080/00357529909602545|dead-url=no}}</ref>它是最重要的锌矿石。闪锌矿存在于多种矿床类型中,但主要存在于沉积喷流型、密西西比河谷型和[[块状硫化物矿床]]中。它与[[方铅矿]]、[[黄铜矿]]、[[黄铁矿]](和其他[[硫化物]])、[[方解石]]、[[白云石]]、[[石英]]、[[菱锰矿]]和[[萤石]]伴生。<ref name=":35">{{Cite book|last=Nesse|first=William D.|url=https://www.worldcat.org/oclc/817795500|title=Introduction to optical mineralogy|publisher=Oxford University Press|year=2013|isbn=978-0-19-984627-6|edition=4th|location=New York|pages=121|oclc=817795500}}</ref>


德国地质学家{{le|欧内斯特·弗里德里希·格洛克|Ernst Friedrich Glocker}}在1847年最早发现了闪锌矿,并根据希腊语''sphaleros''命名,意思是“欺骗”,因为这种矿物难以识别。<ref>{{cite book |last=Glocker |first=Ernst Friedrich |author-link=Ernst Friedrich Glocker |url=http://worldcat.org/oclc/995480390 |title=Generum et specierum mineralium, secundum ordines naturales digestorum synopsis, omnium, quotquot adhuc reperta sunt mineralium nomina complectens. : Adjectis synonymis et veteribus et recentioribus ac novissimarum analysium chemicarum summis. Systematis mineralium naturalis prodromus. |oclc=995480390}}</ref>
德国地质学家{{le|欧内斯特·弗里德里希·格洛克|Ernst Friedrich Glocker}}在1847年最早发现了闪锌矿,并根据希腊语''sphaleros''命名,意思是“欺骗”,因为这种矿物难以识别。<ref>{{cite book |last=Glocker |first=Ernst Friedrich |author-link=Ernst Friedrich Glocker |url=http://worldcat.org/oclc/995480390 |title=Generum et specierum mineralium, secundum ordines naturales digestorum synopsis, omnium, quotquot adhuc reperta sunt mineralium nomina complectens. : Adjectis synonymis et veteribus et recentioribus ac novissimarum analysium chemicarum summis. Systematis mineralium naturalis prodromus. |oclc=995480390}}</ref>


除锌外,闪锌矿是[[镉]]、[[镓]]、[[锗]]和[[铟]]的矿石。'''Marmatite'''<!--({{lang-en|Marmatite}})-->是一种不透明的黑色品种,含铁量高。<ref>{{Cite journal|last1=Zhou|first1=Jiahui|last2=Jiang|first2=Feng|last3=Li|first3=Sijie|last4=Zhao|first4=Wenqing|last5=Sun|first5=Wei|last6=Ji|first6=Xiaobo|last7=Yang|first7=Yue|date=2019|title=Natural marmatite with low discharge platform and excellent cyclicity as potential anode material for lithium-ion batteries|url=https://linkinghub.elsevier.com/retrieve/pii/S0013468619315476|journal=Electrochimica Acta|language=en|volume=321|page=134676|doi=10.1016/j.electacta.2019.134676|s2cid=202080193|via=Elsevier SD Freedom Collection}}</ref>
除锌外,闪锌矿是[[镉]]、[[镓]]、[[锗]]和[[铟]]的矿石。'''铁闪锌矿'''({{lang-en|Marmatite}})是一种不透明的黑色品种,含铁量高。<ref>{{Cite journal|last1=Zhou|first1=Jiahui|last2=Jiang|first2=Feng|last3=Li|first3=Sijie|last4=Zhao|first4=Wenqing|last5=Sun|first5=Wei|last6=Ji|first6=Xiaobo|last7=Yang|first7=Yue|date=2019|title=Natural marmatite with low discharge platform and excellent cyclicity as potential anode material for lithium-ion batteries|url=https://linkinghub.elsevier.com/retrieve/pii/S0013468619315476|journal=ElectrochimicaActa|language=en|volume=321|page=134676|doi=10.1016/j.electacta.2019.134676|s2cid=202080193|via=Elsevier SD Freedom Collection}}</ref>



==晶体习性和结构==
==晶体习性和结构==
[[File:Sphalerite-unit-cell-depth-fade-3D-balls.png|left|thumb|闪锌矿的晶体结构]]
[[File:Sphalerite-unit-cell-depth-fade-3D-balls.png|left|thumb|闪锌矿的晶体结构]]
闪锌矿以[[面心立方]]闪锌矿结构结晶,<ref name=":5">{{Cite book|last=Klein|first=Cornelis|url=https://www.worldcat.org/oclc/962853030|title=Earth materials: introduction to mineralogy and petrology|date=2017|others=Anthony R. Philpotts|isbn=978-1-107-15540-4|edition=2nd|location=Cambridge, United Kingdom|oclc=962853030}}</ref><ref>{{Cite book|edition=Second edition|chapter=Earth materials : introduction to mineralogy and petrology|url=https://www.worldcat.org/oclc/962853030|date=2017|location=Cambridge, United Kingdom|isbn=978-1-107-15540-4|oclc=962853030|first=Anthony R.|last=Philpotts}}</ref>这种结构以此矿物命名。该结构属于六面体晶体种类(空间群''F''{{overline|4}}3m)。在结构中,硫和锌(或铁离子)都占据了面心立方晶胞的点,两个晶格相互位移,而硫原子与它们呈四面体配位。反之亦然。<ref>{{cite book |last1=Klein |first1=Cornelis |last2=Hurlbut |first2=Cornelius S., Jr. |title=Manual of mineralogy : (after James D. Dana) |date=1993 |publisher=Wiley |location=New York |isbn=047157452X |edition=21st |page=211–212}}</ref>与闪锌矿相似的矿物包括闪锌矿族中的矿物,包括闪锌矿、[[碲汞矿]]、[[方硫镉矿]]、[[黑辰砂]]、[[方硒锌矿]]和[[灰硒汞矿]]。<ref name=":6">{{Cite journal|last1=Cook|first1=Robert B.|date=2003|title=Connoisseur's Choice: Sphalerite, Eagle Mine, Gilman, Eagle County, Colorado|url=http://www.tandfonline.com/doi/abs/10.1080/00357529.2003.9926742|journal=Rocks & Minerals|language=en|volume=78|issue=5|pages=330–334|doi=10.1080/00357529.2003.9926742|s2cid=130762310|issn=0035-7529}}</ref>这种结构与[[金刚石]]结构密切相关。<ref name=":5" />闪锌矿的[[六方晶系|六方]]晶型是[[纤锌矿]],[[三方晶系|三方]]晶型是Marmatite。<ref name=":6" />纤锌矿是较高温度的多形体,在高于{{convert|1020|C}}的温度下稳定。<ref name=":7">{{Cite book|last=Deer|first=W. A.|url=https://www.worldcat.org/oclc/858884283|title=An introduction to the rock-forming minerals|date=2013|others=R. A. Howie, J. Zussman|isbn=978-0-903056-27-4|edition=3rd|location=London|oclc=858884283}}</ref>闪锌矿晶体结构中硫化锌的晶格常数为0.541[[纳米|nm]]。<ref name="ICDD">[http://www.icdd.com/ International Centre for Diffraction Data reference 04-004-3804], ICCD reference 04-004-3804.</ref>闪锌矿可被发现为假晶型,其晶体结构为[[方铅矿]]、[[四面体]]、[[重晶石]]和[[方解石]]。<ref name=":7" /><ref>{{Cite book|last=Kloprogge|first=J. Theo|url=https://www.worldcat.org/oclc/999727666|title=Photo atlas of mineral pseudomorphism|date=2017|others=Robert M. Lavinsky|isbn=978-0-12-803703-4|location=Amsterdam, Netherlands|oclc=999727666}}</ref>闪锌矿可以有尖晶石规则孪晶,其中孪晶轴为[111]。<ref name=":6" /><gallery wid
闪锌矿以[[面心立方]]闪锌矿结构结晶,<ref name=":5">{{Cite book|last=Klein|first=Cornelis|url=https://www.worldcat.org/oclc/962853030|title=Earth materials: introduction to mineralogy and petrology|date=2017|others=Anthony R. Philpotts|isbn=978-1-107-15540-4|edition=2nd|location=Cambridge, United Kingdom|oclc=962853030}}</ref><ref>{{Cite book|edition=Second|chapter=Earth materials : introduction to mineralogy and petrology|url=https://www.worldcat.org/oclc/962853030|date=2017|location=Cambridge, United Kingdom|isbn=978-1-107-15540-4|oclc=962853030|first=Anthony R.|last=Philpotts}}</ref>这种结构以此矿物命名。该结构属于六面体晶体种类(空间群''F''{{overline|4}}3m)。在结构中,硫和锌(或铁离子)都占据了面心立方晶胞的点,两个晶格相互位移,而硫原子与它们呈四面体配位。反之亦然。<ref>{{cite book |last1=Klein |first1=Cornelis |last2=Hurlbut |first2=Cornelius S., Jr. |title=Manual of mineralogy : (after James D. Dana) |url=https://archive.org/details/manualofmineraloed21klei |date=1993 |publisher=Wiley |location=New York |isbn=047157452X |edition=21st |page=[https://archive.org/details/manualofmineraloed21klei/page/211 211]–212}}</ref>与闪锌矿相似的矿物包括闪锌矿族中的矿物,包括闪锌矿、[[碲汞矿]]、[[方硫镉矿]]、[[黑辰砂]]、[[方硒锌矿]]和[[灰硒汞矿]]。<ref name=":6">{{Cite journal|last1=Cook|first1=Robert B.|date=2003|title=Connoisseur's Choice: Sphalerite, Eagle Mine, Gilman, Eagle County, Colorado|url=http://www.tandfonline.com/doi/abs/10.1080/00357529.2003.9926742|journal=Rocks & Minerals|language=en|volume=78|issue=5|pages=330–334|doi=10.1080/00357529.2003.9926742|s2cid=130762310|issn=0035-7529|access-date=2022-08-04|archive-date=2022-08-04|archive-url=https://web.archive.org/web/20220804001850/https://www.tandfonline.com/doi/abs/10.1080/00357529.2003.9926742|dead-url=no}}</ref>这种结构与[[金刚石]]结构密切相关。<ref name=":5" />闪锌矿的[[六方晶系|六方]]晶型是[[纤锌矿]]。<ref name=":6" />纤锌矿是较高温度的多形体,在高于{{convert|1020|C}}的温度下稳定。<ref name=":7">{{Cite book|last=Deer|first=W. A.|url=https://www.worldcat.org/oclc/858884283|title=An introduction to the rock-forming minerals|date=2013|others=R. A. Howie, J. Zussman|isbn=978-0-903056-27-4|edition=3rd|location=London|oclc=858884283}}</ref>闪锌矿晶体结构中硫化锌的晶格常数为0.541[[纳米|nm]]。<ref name="ICDD">[http://www.icdd.com/ International Centre for Diffraction Data reference 04-004-3804] {{Wayback|url=http://www.icdd.com/ |date=20190924024926 }}, ICCD reference 04-004-3804.</ref>闪锌矿可被发现为假晶型,其晶体结构为[[方铅矿]]、[[黝铜矿]]、[[重晶石]]和[[方解石]]。<ref name=":7" /><ref>{{Cite book|last=Kloprogge|first=J. Theo|url=https://www.worldcat.org/oclc/999727666|title=Photo atlas of mineral pseudomorphism|date=2017|others=Robert M. Lavinsky|isbn=978-0-12-803703-4|location=Amsterdam, Netherlands|oclc=999727666}}</ref>闪锌矿可以有尖晶石规则孪晶,其中孪晶轴为[111]。<ref name=":6" /><gallery wid


闪锌矿的化学式为{{chem2|(Zn,Fe)S}};铁含量一般随着地层温度的升高而上升,最高可达40%。<ref name=":35"/>该材料可以被认为是二元端点[[硫化锌|ZnS]]和[[硫化亚铁|FeS]]之间的三元化合物,其成分为Zn<sub>x</sub>Fe<sub>(1-x)</sub>S,其中x的范围可以从1(纯ZnS)到0.6。
闪锌矿的化学式为{{chem2|(Zn,Fe)S}};铁含量一般随着地层温度的升高而上升,最高可达40%。<ref name=":35"/>该材料可以被认为是二元端点[[硫化锌|ZnS]]和[[硫化亚铁|FeS]]之间的三元化合物,其成分为Zn<sub>x</sub>Fe<sub>(1-x)</sub>S,其中x的范围可以从1(纯ZnS)到0.6。


所有天然闪锌矿都含有一定浓度的各种杂质,一般在晶格中取代锌的阳离子位置;最常见的阳离子杂质是[[镉]]、[[汞]]和[[锰]],但[[镓]]、[[锗]]和[[铟]]也可能以相对较高的浓度存在(数百至数千ppm)。<ref name=":42">{{Cite journal|last1=Cook|first1=Nigel J.|last2=Ciobanu|first2=Cristiana L.|last3=Pring|first3=Allan|last4=Skinner|first4=William|last5=Shimizu|first5=Masaaki|last6=Danyushevsky|first6=Leonid|last7=Saini-Eidukat|first7=Bernhardt|last8=Melcher|first8=Frank|date=2009|title=Trace and minor elements in sphalerite: A LA-ICPMS study|url=https://linkinghub.elsevier.com/retrieve/pii/S0016703709003263|journal=Geochimica et Cosmochimica Acta|language=en|volume=73|issue=16|pages=4761–4791|doi=10.1016/j.gca.2009.05.045|bibcode=2009GeCoA..73.4761C}}</ref><ref name=":0">{{Cite journal|last1=Frenzel|first1=Max|last2=Hirsch|first2=Tamino|last3=Gutzmer|first3=Jens|date=July 2016|title=Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis|journal=Ore Geology Reviews|volume=76|pages=52–78|doi=10.1016/j.oregeorev.2015.12.017}}</ref>镉可以替代高达1%的锌,而锰通常存在于具有铁丰度高的闪锌矿中。<ref name=":6" />阴离子位置的硫可以被[[硒]]和[[碲]]取代。<ref name=":6" />这些杂质的丰度受闪锌矿形成的条件控制;地层温度、压力、元素可用性和流体成分是重要的控制因素。<ref name=":0" />
所有天然闪锌矿都含有一定浓度的各种杂质,一般在晶格中取代锌的阳离子位置;最常见的阳离子杂质是[[镉]]、[[汞]]和[[锰]],但[[镓]]、[[锗]]和[[铟]]也可能以相对较高的浓度存在(数百至数千ppm)。<ref name=":42">{{Cite journal|last1=Cook|first1=Nigel J.|last2=Ciobanu|first2=Cristiana L.|last3=Pring|first3=Allan|last4=Skinner|first4=William|last5=Shimizu|first5=Masaaki|last6=Danyushevsky|first6=Leonid|last7=Saini-Eidukat|first7=Bernhardt|last8=Melcher|first8=Frank|date=2009|title=Trace and minor elements in sphalerite: A LA-ICPMS study|url=https://linkinghub.elsevier.com/retrieve/pii/S0016703709003263|journal=Geochimica et Cosmochimica Acta|language=en|volume=73|issue=16|pages=4761–4791|doi=10.1016/j.gca.2009.05.045|bibcode=2009GeCoA..73.4761C|access-date=2022-08-07|archive-date=2021-11-08|archive-url=https://web.archive.org/web/20211108122710/https://linkinghub.elsevier.com/retrieve/pii/S0016703709003263|dead-url=no}}</ref><ref name=":0">{{Cite journal|last1=Frenzel|first1=Max|last2=Hirsch|first2=Tamino|last3=Gutzmer|first3=Jens|date=July 2016|title=Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis|journal=Ore Geology Reviews|volume=76|pages=52–78|doi=10.1016/j.oregeorev.2015.12.017}}</ref>镉可以替代高达1%的锌,而锰通常存在于具有铁丰度高的闪锌矿中。<ref name=":6" />阴离子位置的硫可以被[[硒]]和[[碲]]取代。<ref name=":6" />这些杂质的丰度受闪锌矿形成的条件控制;地层温度、压力、元素可用性和流体成分是重要的控制因素。<ref name=":0" />


==特性==
==特性==
第62行: 第61行:
===光学特性===
===光学特性===
[[File:Sphalerite fluorescing.jpg|left|thumb|闪锌矿在紫外光下发出荧光。(森肯伯格自然历史博物馆)]]
[[File:Sphalerite fluorescing.jpg|left|thumb|闪锌矿在紫外光下发出荧光。(森肯伯格自然历史博物馆)]]
纯净的[[硫化锌]]是一种[[宽带隙半导体]],带隙约为3.54电子伏特,这使得纯物质在可见光谱中是透明的。增加铁含量会使材料变得不透明,而各种杂质可以赋予晶体多种颜色。<ref name=King>Hobart M. King, [https://geology.com/minerals/sphalerite.shtml Sphalerite], geology.com. Retrieved 22 Feb. 2022.</ref>在薄片中,闪锌矿呈现出非常高的正[[光学浮凸|浮凸]],呈无色至淡黄色或棕色,无[[多色性]]。<ref name=":35"/>
纯净的[[硫化锌]]是一种[[宽带隙半导体]],带隙约为3.54电子伏特,这使得纯物质在可见光谱中是透明的。增加铁含量会使材料变得不透明,而各种杂质可以赋予晶体多种颜色。<ref name=King>Hobart M. King, [https://geology.com/minerals/sphalerite.shtml Sphalerite] {{Wayback|url=https://geology.com/minerals/sphalerite.shtml |date=20221127120425 }}, geology.com. Retrieved 22 Feb. 2022.</ref>在薄片中,闪锌矿呈现出非常高的正[[光学浮凸|浮凸]],呈无色至淡黄色或棕色,无[[多色性]]。<ref name=":35"/>


根据杂质的不同,它会在紫外线下发出[[荧光]]。
根据杂质的不同,它会在紫外线下发出[[荧光]]。
第71行: 第70行:


===金属矿石===
===金属矿石===
闪锌矿是重要的锌矿石;大约95%的原生锌是从闪锌矿中提取的。<ref name=USGS>{{Cite web|title=Zinc Statistics and Information|url=https://www.usgs.gov/centers/nmic/zinc-statistics-and-information|access-date=2021-02-25|website=www.usgs.gov}}</ref>然而,由于其微量元素含量可变,闪锌矿也是其他几种金属的重要来源,例如替代锌的镉<ref>{{Cite book|url=https://minerals.usgs.gov/minerals/pubs/commodity/cadmium/|title=Cadmium - In: USGS Mineral Commodity Summaries|publisher=United States Geological Survey|year=2017}}</ref>、镓<ref>{{Cite journal|last1=Frenzel|first1=Max|last2=Ketris|first2=Marina P.|last3=Seifert|first3=Thomas|last4=Gutzmer|first4=Jens|date=March 2016|title=On the current and future availability of gallium|journal=Resources Policy|volume=47|pages=38–50|doi=10.1016/j.resourpol.2015.11.005}}</ref>、锗<ref>{{Cite journal|last1=Frenzel|first1=Max|last2=Ketris|first2=Marina P.|last3=Gutzmer|first3=Jens|date=2014-04-01|title=On the geological availability of germanium|journal=Mineralium Deposita|language=en|volume=49|issue=4|pages=471–486|bibcode=2014MinDe..49..471F|doi=10.1007/s00126-013-0506-z|issn=0026-4598|s2cid=129902592}}</ref>、和铟<ref>{{Cite journal|last1=Frenzel|first1=Max|last2=Mikolajczak|first2=Claire|last3=Reuter|first3=Markus A.|last4=Gutzmer|first4=Jens|date=June 2017|title=Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium|journal=Resources Policy|volume=52|pages=327–335|doi=10.1016/j.resourpol.2017.04.008|doi-access=free}}</ref>。这种矿石最初被矿工称为''blende''(来自德语''blind''或''deceiving''),因为它类似于[[方铅矿]],但不产生[[铅]]。{{sfn|Klein|Hurlbut|1993|p=357}}
闪锌矿是重要的锌矿石;大约95%的原生锌是从闪锌矿中提取的。<ref name=USGS>{{Cite web|title=Zinc Statistics and Information|url=https://www.usgs.gov/centers/nmic/zinc-statistics-and-information|access-date=2021-02-25|website=www.usgs.gov|archive-date=2021-11-30|archive-url=https://web.archive.org/web/20211130153001/https://www.usgs.gov/centers/nmic/zinc-statistics-and-information|dead-url=no}}</ref>然而,由于其微量元素含量可变,闪锌矿也是其他几种金属的重要来源,例如替代锌的镉<ref>{{Cite book|url=https://minerals.usgs.gov/minerals/pubs/commodity/cadmium/|title=Cadmium - In: USGS Mineral Commodity Summaries|publisher=United States Geological Survey|year=2017|access-date=2022-08-07|archive-date=2019-01-09|archive-url=https://web.archive.org/web/20190109055157/https://minerals.usgs.gov/minerals/pubs/commodity/cadmium/|dead-url=no}}</ref>、镓<ref>{{Cite journal|last1=Frenzel|first1=Max|last2=Ketris|first2=Marina P.|last3=Seifert|first3=Thomas|last4=Gutzmer|first4=Jens|date=March 2016|title=On the current and future availability of gallium|journal=Resources Policy|volume=47|pages=38–50|doi=10.1016/j.resourpol.2015.11.005}}</ref>、锗<ref>{{Cite journal|last1=Frenzel|first1=Max|last2=Ketris|first2=Marina P.|last3=Gutzmer|first3=Jens|date=2014-04-01|title=On the geological availability of germanium|journal=Mineralium Deposita|language=en|volume=49|issue=4|pages=471–486|bibcode=2014MinDe..49..471F|doi=10.1007/s00126-013-0506-z|issn=0026-4598|s2cid=129902592}}</ref>、和铟<ref>{{Cite journal|last1=Frenzel|first1=Max|last2=Mikolajczak|first2=Claire|last3=Reuter|first3=Markus A.|last4=Gutzmer|first4=Jens|date=June 2017|title=Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium|journal=Resources Policy|volume=52|pages=327–335|doi=10.1016/j.resourpol.2017.04.008|doi-access=free}}</ref>。这种矿石最初被矿工称为''blende''(来自德语''blind''或''deceiving''),因为它类似于[[方铅矿]],但不产生[[铅]]。{{sfn|Klein|Hurlbut|1993|p=357}}


===黄铜和青铜===
===黄铜和青铜===
第79行: 第78行:
* [[镀锌|镀锌铁]] – 闪锌矿中的锌用作保护涂层,以防止腐蚀和生锈;用于输电塔、钉子和汽车。<ref name=":84">{{Cite book|title=Zinc|chapter=Major Commodity Organizations |date=2003-09-02|chapter-url=https://www.taylorfrancis.com/books/9781135356118/chapters/10.4324/9780203403556-47|work=Agricultural and Mineral Commodities Year Book|pages=358–366|edition=0|publisher=Routledge|language=en|doi=10.4324/9780203403556-47|isbn=978-0-203-40355-6|access-date=2021-02-25}}</ref>
* [[镀锌|镀锌铁]] – 闪锌矿中的锌用作保护涂层,以防止腐蚀和生锈;用于输电塔、钉子和汽车。<ref name=":84">{{Cite book|title=Zinc|chapter=Major Commodity Organizations |date=2003-09-02|chapter-url=https://www.taylorfrancis.com/books/9781135356118/chapters/10.4324/9780203403556-47|work=Agricultural and Mineral Commodities Year Book|pages=358–366|edition=0|publisher=Routledge|language=en|doi=10.4324/9780203403556-47|isbn=978-0-203-40355-6|access-date=2021-02-25}}</ref>
* 电池<ref>{{Cite journal|last1=Hai|first1=Yun|last2=Wang|first2=Shuonan|last3=Liu|first3=Hao|last4=Lv|first4=Guocheng|last5=Mei|first5=Lefu|last6=Liao|first6=Libing|date=2020|title=Nanosized Zinc Sulfide/Reduced Graphene Oxide Composite Synthesized from Natural Bulk Sphalerite as Good Performance Anode for Lithium-Ion Batteries|url=http://link.springer.com/10.1007/s11837-020-04372-5|journal=JOM|language=en|volume=72|issue=12|pages=4505–4513|doi=10.1007/s11837-020-04372-5|bibcode=2020JOM....72.4505H|s2cid=224897123|issn=1047-4838}}</ref>
* 电池<ref>{{Cite journal|last1=Hai|first1=Yun|last2=Wang|first2=Shuonan|last3=Liu|first3=Hao|last4=Lv|first4=Guocheng|last5=Mei|first5=Lefu|last6=Liao|first6=Libing|date=2020|title=Nanosized Zinc Sulfide/Reduced Graphene Oxide Composite Synthesized from Natural Bulk Sphalerite as Good Performance Anode for Lithium-Ion Batteries|url=http://link.springer.com/10.1007/s11837-020-04372-5|journal=JOM|language=en|volume=72|issue=12|pages=4505–4513|doi=10.1007/s11837-020-04372-5|bibcode=2020JOM....72.4505H|s2cid=224897123|issn=1047-4838}}</ref>
* [[宝石]]<ref>{{Cite journal|last1=Voudouris|first1=Panagiotis|last2=Mavrogonatos|first2=Constantinos|last3=Graham|first3=Ian|last4=Giuliani|first4=Gaston|last5=Tarantola|first5=Alexandre|last6=Melfos|first6=Vasilios|last7=Karampelas|first7=Stefanos|last8=Katerinopoulos|first8=Athanasios|last9=Magganas|first9=Andreas|date=2019-07-29|title=Gemstones of Greece: Geology and Crystallizing Environments|journal=Minerals|language=en|volume=9|issue=8|pages=461|doi=10.3390/min9080461|bibcode=2019Mine....9..461V|issn=2075-163X|doi-access=free}}</ref><ref>{{Cite journal|last1=Murphy|first1=Jack|last2=Modreski|first2=Peter|date=2002-08-01|title=A Tour of Colorado Gemstone Localities|url=http://www.tandfonline.com/doi/abs/10.1080/00357529.2002.9925639|journal=Rocks & Minerals|language=en|volume=77|issue=4|pages=218–238|doi=10.1080/00357529.2002.9925639|s2cid=128754037|issn=0035-7529}}</ref>
* [[宝石]]<ref>{{Cite journal|last1=Voudouris|first1=Panagiotis|last2=Mavrogonatos|first2=Constantinos|last3=Graham|first3=Ian|last4=Giuliani|first4=Gaston|last5=Tarantola|first5=Alexandre|last6=Melfos|first6=Vasilios|last7=Karampelas|first7=Stefanos|last8=Katerinopoulos|first8=Athanasios|last9=Magganas|first9=Andreas|date=2019-07-29|title=Gemstones of Greece: Geology and Crystallizing Environments|journal=Minerals|language=en|volume=9|issue=8|pages=461|doi=10.3390/min9080461|bibcode=2019Mine....9..461V|issn=2075-163X|doi-access=free}}</ref><ref>{{Cite journal|last1=Murphy|first1=Jack|last2=Modreski|first2=Peter|date=2002-08-01|title=A Tour of Colorado Gemstone Localities|url=http://www.tandfonline.com/doi/abs/10.1080/00357529.2002.9925639|journal=Rocks & Minerals|language=en|volume=77|issue=4|pages=218–238|doi=10.1080/00357529.2002.9925639|s2cid=128754037|issn=0035-7529|access-date=2022-08-07|archive-date=2022-08-07|archive-url=https://web.archive.org/web/20220807063345/https://www.tandfonline.com/doi/abs/10.1080/00357529.2002.9925639|dead-url=no}}</ref>


==画廊==
==圖集==
<gallery>
<gallery>
File:Sphalerite-barite (Cumberland Mine, Smith County, Tennessee, USA).jpg|美国田纳西州坎伯兰矿的闪锌矿和重晶石
File:Sphalerite-barite (Cumberland Mine, Smith County, Tennessee, USA).jpg|美国田纳西州坎伯兰矿的闪锌矿和重晶石
第96行: 第95行:
{{Reflist}}
{{Reflist}}


==参考文献==
==延伸閱讀==
*Dana's Manual of Mineralogy {{ISBN|0-471-03288-3}}
*Dana's Manual of Mineralogy {{ISBN|0-471-03288-3}}
*Webster, R., Read, P. G. (Ed.) (2000). ''Gems: Their sources, descriptions and identification'' (5th ed.), p.&nbsp;386. Butterworth-Heinemann, Great Britain. {{ISBN|0-7506-1674-1}}
*Webster, R., Read, P. G. (Ed.) (2000). ''Gems: Their sources, descriptions and identification'' (5th ed.), p.&nbsp;386. Butterworth-Heinemann, Great Britain. {{ISBN|0-7506-1674-1}}
第103行: 第102行:
{{Commons category|Sphalerite}}
{{Commons category|Sphalerite}}
*[https://web.archive.org/web/20081019230935/http://cst-www.nrl.navy.mil/lattice/struk/b3.html The sphalerite structure]
*[https://web.archive.org/web/20081019230935/http://cst-www.nrl.navy.mil/lattice/struk/b3.html The sphalerite structure]
*[http://www.physorg.com/news85048433.html Possible relation of Sphalerite to origins of life and precursor chemicals in 'Primordial Soup']
*[http://www.physorg.com/news85048433.html Possible relation of Sphalerite to origins of life and precursor chemicals in 'Primordial Soup'] {{Wayback|url=http://www.physorg.com/news85048433.html |date=20111019043642 }}
*[http://www.minerals.net/mineral/sulfides/sphaleri/sphaleri.htm Minerals.net]
*[http://www.minerals.net/mineral/sulfides/sphaleri/sphaleri.htm Minerals.net] {{Wayback|url=http://www.minerals.net/mineral/sulfides/sphaleri/sphaleri.htm |date=20100612045432 }}
*[http://simplethinking.com/palache/sphalerite.stm Minerals of Franklin, NJ]
*[http://simplethinking.com/palache/sphalerite.stm Minerals of Franklin, NJ] {{Wayback|url=http://simplethinking.com/palache/sphalerite.stm |date=20051102003504 }}


{{Authority control}}
{{Authority control}}

2024年6月11日 (二) 14:59的最新版本

闪锌矿
黑色闪锌矿晶体,含有少量黄铜矿方解石
基本資料
類別硫化物矿物
化学式ZnS
IMA記號Sp[1]
施特龙茨分类2.CB.05a
戴納礦物分類02.08.02.01
晶体分类六面体 (43m)
H-M记号:(4 3m)
晶体空间群F43m (No. 216)
晶胞a = 5.406 Å; Z = 4
性質
顏色浅至深棕色、红棕色、黄色、红色、绿色、浅蓝色、黑色和无色。
晶体惯态自面体晶体——形成良好的晶体,表现出良好的外部形状。粒状——通常在基质中以自面体到半面体晶体的形式出现。
晶系立方
雙晶简单的接触孪晶或复杂的层状形式,双轴[111]
解理[011]完全解理
断口参差状到贝壳状
莫氏硬度3.5–4
光澤金刚光泽,树脂光泽,油脂光泽
條痕棕白色,淡黄色
透明性透明到半透明,富含铁时不透明
比重3.9–4.2
光學性質各向同性
折射率nα = 2.369
其他特徵荧光和摩擦发光
參考文獻[2][3][4]

闪锌矿(英語:Sphalerite)是一种硫化物矿物,化学式为ZnS。[5]它是最重要的锌矿石。闪锌矿存在于多种矿床类型中,但主要存在于沉积喷流型、密西西比河谷型和块状硫化物矿床中。它与方铅矿黄铜矿黄铁矿(和其他硫化物)、方解石白云石石英菱锰矿萤石伴生。[6]

德国地质学家欧内斯特·弗里德里希·格洛克英语Ernst Friedrich Glocker在1847年最早发现了闪锌矿,并根据希腊语sphaleros命名,意思是“欺骗”,因为这种矿物难以识别。[7]

除锌外,闪锌矿是的矿石。铁闪锌矿(英語:Marmatite)是一种不透明的黑色品种,含铁量高。[8]

晶体习性和结构

[编辑]
闪锌矿的晶体结构

闪锌矿以面心立方闪锌矿结构结晶,[9][10]这种结构以此矿物命名。该结构属于六面体晶体种类(空间群F43m)。在结构中,硫和锌(或铁离子)都占据了面心立方晶胞的点,两个晶格相互位移,而硫原子与它们呈四面体配位。反之亦然。[11]与闪锌矿相似的矿物包括闪锌矿族中的矿物,包括闪锌矿、碲汞矿方硫镉矿黑辰砂方硒锌矿灰硒汞矿[12]这种结构与金刚石结构密切相关。[9]闪锌矿的六方晶型是纤锌矿[12]纤锌矿是较高温度的多形体,在高于1,020 °C(1,870 °F)的温度下稳定。[13]闪锌矿晶体结构中硫化锌的晶格常数为0.541nm[14]闪锌矿可被发现为假晶型,其晶体结构为方铅矿黝铜矿重晶石方解石[13][15]闪锌矿可以有尖晶石规则孪晶,其中孪晶轴为[111]。[12]

该材料可以被认为是二元端点ZnSFeS之间的三元化合物,其成分为ZnxFe(1-x)S,其中x的范围可以从1(纯ZnS)到0.6。

所有天然闪锌矿都含有一定浓度的各种杂质,一般在晶格中取代锌的阳离子位置;最常见的阳离子杂质是,但也可能以相对较高的浓度存在(数百至数千ppm)。[16][17]镉可以替代高达1%的锌,而锰通常存在于具有铁丰度高的闪锌矿中。[12]阴离子位置的硫可以被取代。[12]这些杂质的丰度受闪锌矿形成的条件控制;地层温度、压力、元素可用性和流体成分是重要的控制因素。[17]

特性

[编辑]

物理性质

[编辑]

闪锌矿具有完美的十二面体解理,有六个解理面。[9][18]在纯粹的形式中,它是一种半导体,但随着铁含量的增加而转变为导体。[19] 在矿物硬度的莫氏硬度范围内,它的硬度为3.5 - 4 。[20]

它可以通过完美的解理、独特的树脂光泽和深色品种的红棕色条纹与类似矿物区分开来。[21]

光学特性

[编辑]
闪锌矿在紫外光下发出荧光。(森肯伯格自然历史博物馆)

纯净的硫化锌是一种宽带隙半导体,带隙约为3.54电子伏特,这使得纯物质在可见光谱中是透明的。增加铁含量会使材料变得不透明,而各种杂质可以赋予晶体多种颜色。[20]在薄片中,闪锌矿呈现出非常高的正浮凸,呈无色至淡黄色或棕色,无多色性[6]

根据杂质的不同,它会在紫外线下发出荧光

闪锌矿的折射率(通过钠光测量,平均波长589.3 nm)从纯ZnS时的2.37到铁含量为40%时的2.50不等。[6]闪锌矿在交叉偏振光下是各向同性的,但如果闪锌矿与其多形体纤锌矿共生,则会发生双折射;双折射可以从0(0%纤锌矿)增加到0.022(100%纤锌矿)。[6][13]

用途

[编辑]

金属矿石

[编辑]

闪锌矿是重要的锌矿石;大约95%的原生锌是从闪锌矿中提取的。[22]然而,由于其微量元素含量可变,闪锌矿也是其他几种金属的重要来源,例如替代锌的镉[23]、镓[24]、锗[25]、和铟[26]。这种矿石最初被矿工称为blende(来自德语blinddeceiving),因为它类似于方铅矿,但不产生[21]

黄铜和青铜

[编辑]

闪锌矿中的锌用于生产黄铜,这是一种铜与3 – 45%锌的合金。[18]黄铜物体的合金主要元素成分提供了证据,证明闪锌矿被伊斯兰用于生产黄铜,早在公元7世纪至16世纪之间的中世纪时代。[27] 在公元12世纪至13世纪(晋朝)中国北方的黄铜胶结过程中也可能使用了闪锌矿。[28]与黄铜类似,闪锌矿中的锌也可用于生产某些类型的青铜;青铜主要是铜与、锌、铅、等其他金属形成合金。[29]

其他

[编辑]

圖集

[编辑]

參考資料

[编辑]
  1. ^ Warr, L.N. IMA–CNMNC approved mineral symbols. Mineralogical Magazine. 2021, 85 (3): 291–320 [2022-08-07]. Bibcode:2021MinM...85..291W. S2CID 235729616. doi:10.1180/mgm.2021.43. (原始内容存档于2022-07-22). 
  2. ^ Sphalerite, WebMineral.com 
  3. ^ Sphalerite, MinDat.org 
  4. ^ Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. Sphalerite (PDF). Handbook of Mineralogy. Mineral Data Publishing. 2005 [14 March 2022]. (原始内容存档 (PDF)于2022-10-24). 
  5. ^ Muntyan, Barbara L. Colorado Sphalerite. Rocks & Minerals. 1999, 74 (4): 220–235 [2022-08-07]. ISSN 0035-7529. doi:10.1080/00357529909602545. (原始内容存档于2022-06-17) –通过Scholars Portal Journals (英语). 
  6. ^ 6.0 6.1 6.2 6.3 Nesse, William D. Introduction to optical mineralogy 4th. New York: Oxford University Press. 2013: 121. ISBN 978-0-19-984627-6. OCLC 817795500. 
  7. ^ Glocker, Ernst Friedrich. Generum et specierum mineralium, secundum ordines naturales digestorum synopsis, omnium, quotquot adhuc reperta sunt mineralium nomina complectens. : Adjectis synonymis et veteribus et recentioribus ac novissimarum analysium chemicarum summis. Systematis mineralium naturalis prodromus.. OCLC 995480390. 
  8. ^ Zhou, Jiahui; Jiang, Feng; Li, Sijie; Zhao, Wenqing; Sun, Wei; Ji, Xiaobo; Yang, Yue. Natural marmatite with low discharge platform and excellent cyclicity as potential anode material for lithium-ion batteries. ElectrochimicaActa. 2019, 321: 134676. S2CID 202080193. doi:10.1016/j.electacta.2019.134676 –通过Elsevier SD Freedom Collection (英语). 
  9. ^ 9.0 9.1 9.2 Klein, Cornelis. Earth materials: introduction to mineralogy and petrology. Anthony R. Philpotts 2nd. Cambridge, United Kingdom. 2017. ISBN 978-1-107-15540-4. OCLC 962853030. 
  10. ^ Philpotts, Anthony R. Earth materials : introduction to mineralogy and petrology. Second. Cambridge, United Kingdom https://www.worldcat.org/oclc/962853030. 2017. ISBN 978-1-107-15540-4. OCLC 962853030.  缺少或|title=为空 (帮助)
  11. ^ Klein, Cornelis; Hurlbut, Cornelius S., Jr. Manual of mineralogy : (after James D. Dana) 21st. New York: Wiley. 1993: 211–212. ISBN 047157452X. 
  12. ^ 12.0 12.1 12.2 12.3 12.4 Cook, Robert B. Connoisseur's Choice: Sphalerite, Eagle Mine, Gilman, Eagle County, Colorado. Rocks & Minerals. 2003, 78 (5): 330–334 [2022-08-04]. ISSN 0035-7529. S2CID 130762310. doi:10.1080/00357529.2003.9926742. (原始内容存档于2022-08-04) (英语). 
  13. ^ 13.0 13.1 13.2 Deer, W. A. An introduction to the rock-forming minerals. R. A. Howie, J. Zussman 3rd. London. 2013. ISBN 978-0-903056-27-4. OCLC 858884283. 
  14. ^ International Centre for Diffraction Data reference 04-004-3804页面存档备份,存于互联网档案馆), ICCD reference 04-004-3804.
  15. ^ Kloprogge, J. Theo. Photo atlas of mineral pseudomorphism. Robert M. Lavinsky. Amsterdam, Netherlands. 2017. ISBN 978-0-12-803703-4. OCLC 999727666. 
  16. ^ Cook, Nigel J.; Ciobanu, Cristiana L.; Pring, Allan; Skinner, William; Shimizu, Masaaki; Danyushevsky, Leonid; Saini-Eidukat, Bernhardt; Melcher, Frank. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta. 2009, 73 (16): 4761–4791 [2022-08-07]. Bibcode:2009GeCoA..73.4761C. doi:10.1016/j.gca.2009.05.045. (原始内容存档于2021-11-08) (英语). 
  17. ^ 17.0 17.1 Frenzel, Max; Hirsch, Tamino; Gutzmer, Jens. Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis. Ore Geology Reviews. July 2016, 76: 52–78. doi:10.1016/j.oregeorev.2015.12.017. 
  18. ^ 18.0 18.1 Klein, Cornelis; Philpotts, Anthony. Earth materials : introduction to mineralogy and petrology 2nd. Cambridge: Cambridge University Press. 2017. ISBN 978-1-107-15540-4. OCLC 975051556. 
  19. ^ Deng, Jiushuai; Lai, Hao; Chen, Miao; Glen, Matthew; Wen, Shuming; Zhao, Biao; Liu, Zilong; Yang, Hua; Liu, Mingshi; Huang, Lingyun; Guan, Shiliang; Wang, Ping. Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study. Minerals Engineering. June 2019, 136: 168–174. S2CID 182111130. doi:10.1016/j.mineng.2019.02.012. 
  20. ^ 20.0 20.1 Hobart M. King, Sphalerite页面存档备份,存于互联网档案馆), geology.com. Retrieved 22 Feb. 2022.
  21. ^ 21.0 21.1 Klein & Hurlbut 1993,第357頁.
  22. ^ Zinc Statistics and Information. www.usgs.gov. [2021-02-25]. (原始内容存档于2021-11-30). 
  23. ^ Cadmium - In: USGS Mineral Commodity Summaries. United States Geological Survey. 2017 [2022-08-07]. (原始内容存档于2019-01-09). 
  24. ^ Frenzel, Max; Ketris, Marina P.; Seifert, Thomas; Gutzmer, Jens. On the current and future availability of gallium. Resources Policy. March 2016, 47: 38–50. doi:10.1016/j.resourpol.2015.11.005. 
  25. ^ Frenzel, Max; Ketris, Marina P.; Gutzmer, Jens. On the geological availability of germanium. Mineralium Deposita. 2014-04-01, 49 (4): 471–486. Bibcode:2014MinDe..49..471F. ISSN 0026-4598. S2CID 129902592. doi:10.1007/s00126-013-0506-z (英语). 
  26. ^ Frenzel, Max; Mikolajczak, Claire; Reuter, Markus A.; Gutzmer, Jens. Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium. Resources Policy. June 2017, 52: 327–335. doi:10.1016/j.resourpol.2017.04.008可免费查阅. 
  27. ^ Craddock, P.T. Brass in the medieval Islamic world; 2000 years of zinc and brass. British Museum Publications Ltd. 1990: 73–101. ISBN 0-86159-050-3. 
  28. ^ Xiao, Hongyan; Huang, Xin; Cui, Jianfeng. Local cementation brass production during 12th–13th century CE, North China: Evidences from a royal summer palace of Jin Dynasty. Journal of Archaeological Science: Reports. 2020, 34: 102657. S2CID 229414402. doi:10.1016/j.jasrep.2020.102657 (英语). 
  29. ^ Tylecote, R. F. A history of metallurgy. Institute of Materials 2nd. London: Maney Pub., for the Institute of Materials. 2002. ISBN 1-902653-79-3. OCLC 705004248. 
  30. ^ Major Commodity Organizations. Zinc. Agricultural and Mineral Commodities Year Book 0 (Routledge). 2003-09-02: 358–366 [2021-02-25]. ISBN 978-0-203-40355-6. doi:10.4324/9780203403556-47 (英语). 
  31. ^ Hai, Yun; Wang, Shuonan; Liu, Hao; Lv, Guocheng; Mei, Lefu; Liao, Libing. Nanosized Zinc Sulfide/Reduced Graphene Oxide Composite Synthesized from Natural Bulk Sphalerite as Good Performance Anode for Lithium-Ion Batteries. JOM. 2020, 72 (12): 4505–4513. Bibcode:2020JOM....72.4505H. ISSN 1047-4838. S2CID 224897123. doi:10.1007/s11837-020-04372-5 (英语). 
  32. ^ Voudouris, Panagiotis; Mavrogonatos, Constantinos; Graham, Ian; Giuliani, Gaston; Tarantola, Alexandre; Melfos, Vasilios; Karampelas, Stefanos; Katerinopoulos, Athanasios; Magganas, Andreas. Gemstones of Greece: Geology and Crystallizing Environments. Minerals. 2019-07-29, 9 (8): 461. Bibcode:2019Mine....9..461V. ISSN 2075-163X. doi:10.3390/min9080461可免费查阅 (英语). 
  33. ^ Murphy, Jack; Modreski, Peter. A Tour of Colorado Gemstone Localities. Rocks & Minerals. 2002-08-01, 77 (4): 218–238 [2022-08-07]. ISSN 0035-7529. S2CID 128754037. doi:10.1080/00357529.2002.9925639. (原始内容存档于2022-08-07) (英语). 

延伸閱讀

[编辑]
  • Dana's Manual of Mineralogy ISBN 0-471-03288-3
  • Webster, R., Read, P. G. (Ed.) (2000). Gems: Their sources, descriptions and identification (5th ed.), p. 386. Butterworth-Heinemann, Great Britain. ISBN 0-7506-1674-1

外部链接

[编辑]