Λέοναρντ Όιλερ
Ο Λέοναρντ Όιλερ (Leonhard Euler, 15 Απριλίου 1707 – 18 Σεπτεμβρίου 1783) ήταν πρωτοπόρος Ελβετός μαθηματικός και φυσικός. Έκανε σημαντικές ανακαλύψεις σε τομείς όπως ο απειροστικός λογισμός και η θεωρία γραφημάτων. Επίσης καθιέρωσε τη μοντέρνα μαθηματική ορολογία και σημειογραφία, κυρίως στον τομέα της μαθηματικής ανάλυσης, όπως την έννοια της μαθηματικής συνάρτησης.[29] Είναι φημισμένος για τη δουλειά του στη μηχανική, τη ρευστοδυναμική, την οπτική και την αστρονομία. Ο Όιλερ πέρασε μεγάλο μέρος της ενήλικης ζωής του στην Αγία Πετρούπολη, Ρωσία και στο Βερολίνο, Πρωσία. Θεωρείται ως ο κατ' εξοχήν μαθηματικός του 18ου αιώνα, και ένας από τους σημαντικότερους μαθηματικούς που έχουν υπάρξει ποτέ. Είναι επιπλέον ένας από τους πιο παραγωγικούς μαθηματικούς όλων των εποχών, τα άπαντά του καταλαμβάνουν 60-80 οκτασέλιδους τόμους.[30] Μία δήλωση που έγινε από τον Πιέρ Σιμόν Λαπλάς εκφράζει την επίδραση του Όιλερ στα μαθηματικά: «Διαβάστε Όιλερ, διαβάστε Όιλερ, είναι ο κύριος όλων μας».[31]
Βιογραφία
ΕπεξεργασίαΤα πρώτα χρόνια
ΕπεξεργασίαΟ Όιλερ γεννήθηκε στη Βασιλεία της Ελβετίας στις 15 Απριλίου 1707 και ήταν γιος του Πάουλ Όιλερ, πάστορα της αναμορφωμένης εκκλησίας, και της Μαργκερίτε Μπρούκερ, (Marguerite Brucker), κόρης πάστορα. Είχε δύο μικρότερες αδελφές, τις Άννα Μαρία και Μαρία Μαγδαληνή. Μετά τη γέννησή του, η οικογένειά του μετακόμισε από τη Βασιλεία στο Ρίχεν (Riehen), όπου πέρασε και το μεγαλύτερο μέρος της παιδικής του ηλικίας. Ο πατέρας του ήταν φίλος με την οικογένεια Μπερνούλι και ειδικότερα με τον Γιόχαν Μπερνούλι ο οποίος τότε θεωρούνταν ως ο καλύτερος μαθηματικός της Ευρώπης, θα αποτελέσει τελικά την πιο σημαντική επιρροή στον νεαρό Λέοναρντ. Η πρώτη επίσημη εκπαίδευση του Όιλερ ξεκινά στη Βασιλεία, όπου είχε σταλθεί για να μείνει μαζί με τη γιαγιά του. Σε ηλικία δεκατριών ετών εγγράφηκε στο πανεπιστήμιο της Βασιλείας και το 1723 έλαβε μάστερ στη φιλοσοφία με διατριβή στη σύγκριση των φιλοσοφιών των Ρενέ Ντεκάρτ και Νιούτον. Εκείνη την περίοδο έκανε μαθήματα με τον Γιόχαν Μπερνούλι, ο οποίος γρήγορα ανακάλυψε το απίστευτο ταλέντο του νέου του μαθητή στα μαθηματικά.[32] Ο Όιλερ εκείνη την εποχή σπούδαζε Ελληνική και Εβραϊκή θεολογία, ύστερα από προτροπή του πατέρα του, με σκοπό να γίνει πάστορας, αλλά ο Μπερνούλι κατάφερε να πείσει τον Πάουλ Όιλερ ότι ο Λέοναρντ επρόκειτο να γίνει ένας σπουδαίος μαθηματικός. Το 1726 ο Όιλερ ολοκλήρωσε τη διατριβή του στη διάδοση του ήχου με τίτλο De Sono (Περί Ήχου).[33]Τότε ήταν που επιχείρησε εντελώς αποτυχημένα να αποκτήσει μία θέση στο πανεπιστήμιο της Βασιλείας. Το 1727, πήρε μέρος για πρώτη φορά στο Paris academy στο διαγωνισμό Prize problem. Το ζητούμενο εκείνης της χρονιάς ήταν οι διαγωνιζόμενοι να βρουν τον καλύτερο τρόπο να τοποθετηθούν τα κατάρτια σε ένα πλοίο. Ο Πιερ Μπουγκέ (Pierre Bouguer) έγινε γνωστός ως "ο πατέρας της ναυτικής αρχιτεκτονικής" και κέρδισε, ενώ ο Όιλερ πήρε τη δεύτερη θέση. Ο Όιλερ αργότερα κέρδισε αυτό το ετήσιο βραβείο 12 φορές.[34]
Αγία Πετρούπολη
ΕπεξεργασίαΣε αυτήν την περίοδο,οι δύο γιοι του Γιόχαν Μπερνούλι, Ντάνιελ και Νίκολας, εργάζονταν στην Αυτοκρατορική Ρωσική Ακαδημία Επιστημών στην Αγία Πετρούπολη. Στις 10 Ιουλίου του 1726 ο Νίκολας πέθανε από σκωληκοειδίτιδα, αφού είχε παραμείνει για έναν χρόνο στη Ρωσία και, όταν ο Ντάνιελ ανέλαβε τη θέση του αδελφού του στα μαθηματικά / φυσική διαίρεση, συνέστησε ότι η θέση στη φυσιολογία που είχε εκκενωθεί από τον ίδιο θα έπρεπε να συμπληρωθεί από τον φίλο του Όιλερ. Τον Νοέμβριο του 1726 ο Όιλερ αποδέχτηκε διακαώς την προσφορά, αλλά καθυστέρησε να κάνει το ταξίδι στην Αγία Πετρούπολη καθώς είχε κάνει ανεπιτυχώς αίτηση για μια θέση καθηγητή φυσικής στο Πανεπιστήμιο της Βασιλείας.[35]
Ο Όιλερ έφτασε στη ρωσική πρωτεύουσα στις 17 του Μάη του 1727. Προήχθη από την κατώτερη θέση του στο ιατρικό τμήμα της ακαδημίας σε μια θέση στο Τμήμα Μαθηματικών. Διέμεινε με τον Ντάνιελ Μπερνούλι, με τον οποίο είχε συχνά στενή συνεργασία. Ο Όιλερ έμαθε τη ρωσική γλώσσα και προσαρμόστηκε στη ζωή στην Αγία Πετρούπολη. Ανέλαβε επίσης πρόσθετη εργασία ως γιατρός στο Ρωσικό Ναυτικό. [36]
Η Ακαδημία στην Αγία Πετρούπολη, που είχε ιδρυθεί από τον Μεγάλο Πέτρο, είχε ως στόχο να βελτιώσει την εκπαίδευση στη Ρωσία και να κλείσει το επιστημονικό χάσμα με τη Δυτική Ευρώπη. Ως εκ τούτου, είχε γίνει ιδιαίτερα ελκυστική για τους ξένους μελετητές, όπως ο Όιλερ. Η ακαδημία διέθετε άφθονους οικονομικούς πόρους και μια περιεκτική βιβλιοθήκη που προερχόταν από τις ιδιωτικές βιβλιοθήκες του ίδιου του Πέτρου και της αριστοκρατίας. Πολύ λίγοι μαθητές φοιτούσαν στην ακαδημία, προκειμένου να περιοριστεί το βάρος της διδασκαλίας της σχολής, και η ακαδημία έδινε έμφαση στη έρευνα και προσέφερε στη σχολή της τόσο το χρόνο όσο και την ελευθερία να επιδιώξει επιστημονικές ερωτήσεις.[37]
Η ευεργέτιδα της Ακαδημίας, Αικατερίνη Α΄, η οποία συνέχισε τις προοδευτικές πολιτικές του πρώην συζύγου της, πέθανε την ημέρα της άφιξης του Όιλερ. Κατόπιν, η ρωσική αριστοκρατία απέκτησε εξουσία μετά την ενθρόνιση του δωδεκάχρονου Πέτρου Β΄. Η αριστοκρατία ήταν καχύποπτη απέναντι στους ξένους επιστήμονες της ακαδημίας, και ως εκ τούτου διέκοψε τη χρηματοδότηση και προκάλεσε άλλες δυσκολίες στον Όιλερ και τους συνεργάτες του.
Οι συνθήκες βελτιώθηκαν ελαφρώς μετά το θάνατο του Πέτρου Β΄, και ο Όιλερ γρήγορα αναδείχθηκε μέσω των τάξεων στην ακαδημία και έγινε καθηγητής της φυσικής το 1731. Δύο χρόνια αργότερα, ο Ντάνιελ Μπερνούλι, ο οποίος είχε αγανακτήσει με τη λογοκρισία και την εχθρότητα που αντιμετώπιζε στην Αγία Πετρούπολη, έφυγε για τη Βασιλεία. Ο Όιλερ τον διαδέχθηκε ως επικεφαλής του τμήματος μαθηματικών.[38]
Στις 7 Ιανουαρίου του 1734, νυμφεύτηκε την Katharina Gsell (1707–1773), κόρη του Georg Gsell, ενός ζωγράφου από το Ακαδημαϊκό Γυμνάσιο. Το νεαρό ζευγάρι αγόρασε ένα σπίτι δίπλα στον ποταμό Νέβα. Από τα δέκα παιδιά τους, μόνο πέντε επέζησαν μετά την παιδική ηλικία.[39]
Βερολίνο
ΕπεξεργασίαΑνήσυχος για τη συνεχή αναταραχή στη Ρωσία, ο Όιλερ έφυγε από την Αγία Πετρούπολη στις 17 Ιουνίου του 1741 για να αναλάβει μία θέση στην Ακαδημία του Βερολίνου, η οποία του είχε προσφερθεί από τον Φρειδερίκο Β΄ της Πρωσίας. Έζησε για εικοσιπέντε χρόνια στο Βερολίνο, όπου έγραψε πάνω από 380 άρθρα. Στο Βερολίνο δημοσίευσε δύο εργασίες του, για της οποίες θα γινόταν πιο γνωστός: την Εισαγωγή στην ανάλυση των απείρως μικρών, ένα κείμενο για συναρτήσεις το οποίο δημοσιεύτηκε το 1748 και το Institutiones calculi differentialis[40] ,που δημοσιεύτηκε το 1755 στο differential calculus[41]. Το 1755 εκλέχθηκε ως εξωτερικό μέλος στη Σουηδική Βασιλική Ακαδημία των Επιστημών.
Επιπρόσθετα, ζητήθηκε από τον Όιλερ να διδάξει την πριγκίπισσα του Άνχαλτ-Ντεσσάου (Anhalt-Dessau), ανεψιά του Φρειδερίκου. Ο Όιλερ της έγραψε πάνω από 200 γράμματα στις αρχές του 1760, τα οποία αργότερα συγχωνεύθηκαν σε έναν best-selling τόμο με τίτλο Γράμματα του Όιλερ για διάφορα θέματα στη φυσική φιλοσοφία προς μία Γερμανίδα πριγκίπισσα.[42] Αυτή η δουλειά περιείχε την έκθεση του Όιλερ σε ποικίλα θέματα που αφορούσαν τόσο τη φυσική και τα μαθηματικά, όσο πρόσφεραν πολύτιμες ιδέες για την προσωπικότητα και τα θρησκευτικά πιστεύω του Όιλερ. Αυτό το βιβλίο διαβάστηκε περισσότερο από κάθε μια από τις μαθηματικές του εργασίες και εκδόθηκε σε όλη την Ευρώπη και τις Η.Π.Α.. Η δημοσιότητα των «γραμμάτων» αποδεικνύει την ικανότητα του Όιλερ να επικοινωνεί για επιστημονικά θέματα αποτελεσματικά σε ένα ευρύ κοινό, μία σπάνια ικανότητα για έναν αφοσιωμένο ερευνητή επιστήμονα.[41]
Παρά την τεράστια συμβολή του Όιλερ στο κύρος της Ακαδημίας, ήταν τελικά αναγκασμένος να εγκαταλείψει το Βερολίνο. Αυτό ήταν εν μέρει λόγω της σύγκρουσης προσωπικοτήτων με τον Φρειδερίκο, ο οποίος θεωρούσε τον Όιλερ μη-εκλεπτυσμένο, ειδικά σε σύγκριση με τον κύκλο των φιλοσόφων που ο Γερμανός βασιλιάς έφερε στην Ακαδημία. Ο Βολταίρος ήταν μεταξύ αυτών των υπαλλήλων του Φρειδερίκου, και ο Γάλλος απολάμβανε εξέχουσα θέση μέσα στο κοινωνικό κύκλο του βασιλιά. Ο Όιλερ, ένας απλός θρησκευόμενος και σκληρά εργαζόμενος άνθρωπος, ήταν πολύ συμβατικός στις πεποιθήσεις και τα γούστα του. Ήταν με πολλούς τρόπους το αντίθετο του Βολταίρου. Ο Όιλερ είχε περιορισμένη εκπαίδευση στη ρητορική, και είχε την τάση να συζητά θέματα για τα οποία γνώριζε λίγα, καθιστώντας τον ένα συχνό στόχο του πνεύματος του Βολταίρου.[41] Ο Φρειδερίκος εξέφρασε επίσης την απογοήτευσή του σχετικά με τις πρακτικές ικανότητες του Όιλερ στη μηχανική:
Ήθελα να έχω ένα πίδακα νερού στον κήπο μου: ο Όιλερ υπολόγισε την απαραίτητη δύναμη των τροχών έτσι ώστε να αυξηθεί το νερό σε μια δεξαμενή, από όπου θα πρέπει να υποχωρήσει πάλι πίσω στα κανάλια, και τελικά να αναβλύζει στο Sanssouci. Ο μύλος μου διεξήχθη γεωμετρικά και δεν μπορούσαν να συγκεντρώσουν μια γουλιά νερό σε απόσταση μικρότερη από πενήντα βήματα προς τη δεξαμενή. Ματαιότης ματαιοτήτων! Ματαιότης της γεωμετρίας! [43]
Επιδείνωση της όρασης
ΕπεξεργασίαΗ όραση του Όιλερ επιδεινώθηκε κατά τη διάρκεια της μαθηματικής του σταδιοδρομίας. Τρία χρόνια μετά υπέφερε από ένα σχεδόν θανατηφόρο πυρετό το 1735, σχεδόν τυφλώθηκε από το δεξιό του μάτι, αλλά ο Όιλερ δεν κατηγόρησε το επίπονο έργο για τη χαρτογράφηση που πραγματοποιήθηκε για την Ακαδημία της Αγίας Πετρούπολης για την κατάστασή του. Η όραση του Όιλερ στο δεξιό μάτι επιδεινώθηκε κατά τη διάρκεια της παραμονής του στη Γερμανία, στο βαθμό που ο Φρειδερίκος αναφέρονται σε αυτόν ως «Κύκλωπα». Ο Όιλερ αργότερα ανέπτυξε καταρράκτη στο αριστερό μάτι του, καθιστώντας τον σχεδόν εντελώς τυφλό λίγες εβδομάδες μετά την ανακάλυψή του το 1766. Ωστόσο, η κατάστασή του φάνηκε να έχει μικρή επίδραση στην παραγωγικότητα του, όμως ο ίδιος αποζημιώθηκε για αυτό με ψυχικές ικανότητες υπολογισμού και φωτογραφική μνήμη. Για παράδειγμα, ο Όιλερ μπορούσε να επαναλάβει την Αινειάδα του Βιργιλίου από την αρχή μέχρι το τέλος, χωρίς δισταγμό, και για κάθε σελίδα στην έκδοση μπορούσε να δείξει ποια γραμμή ήταν η πρώτη και ποια η τελευταία. Με τη βοήθεια των γραφέων του, η παραγωγικότητα του Όιλερ σε πολλούς τομείς της μελέτης του αυξήθηκε. Παρήγαγε κατά μέσο όρο, μια μαθηματική μελέτη κάθε εβδομάδα κατά το έτος 1775.[30]
Επιστροφή στη Ρωσία
ΕπεξεργασίαΗ κατάσταση στη Ρωσία είχε βελτιωθεί σημαντικά μετά τον ερχομό στο θρόνο της Μεγάλης Αικατερίνης , και το 1766 ο Όιλερ αποδέχθηκε πρόσκληση για να επιστρέψει στην Ακαδημία της Αγίας Πετρούπολης και πέρασε το υπόλοιπο της ζωής του στη Ρωσία. Ωστόσο, η δεύτερη διαμονή του στη χώρα αμαυρώθηκε από μία τραγωδία. Μια πυρκαγιά στην Αγία Πετρούπολη το 1771 του κόστισε σπίτι του, και σχεδόν τη ζωή του. Το 1773, έχασε τη γυναίκα του Katharina μετά από 40 χρόνια γάμου. Τρία χρόνια μετά το θάνατο της συζύγου του, ο Όιλερ παντρεύτηκε την ετεροθαλή αδελφή της, Salome Abigail Gsell (1723-1794). [45] Αυτός ο γάμος διήρκεσε μέχρι το θάνατό του.
Στην Αγία Πετρούπολη στις 18 Σεπτεμβρίου 1783 μετά από ένα γεύμα με την οικογένειά του, κατά τη διάρκεια μιας συνομιλίας του με έναν πρώην συνάδελφό του, τον ακαδημαϊκό Anders Johan Lexell, για τον πρόσφατα ανακαλυφθέντα πλανήτη Ουρανό και την τροχιά του ο Όιλερ υπέστη εγκεφαλική αιμορραγία και πέθανε λίγες ώρες αργότερα.[46] Μια σύντομη νεκρολογία για τη Ρωσική Ακαδημία Επιστημών γράφτηκε από τον Jacob von Staehlin-Storcksburg και ένα πιο λεπτομερές εγκώμιο [47] γράφτηκε και παραδόθηκε σε μια συνάντηση σε ένα μνημείο από τον Ρώσο μαθηματικό Nicolas Fuss , έναn από τους μαθητές του Όιλερ. Στο εγκώμιο, γραμμένο για τη Γαλλική Ακαδημία από τον Γάλλο μαθηματικό και φιλόσοφο μαρκήσιο ντε Κοντορσέ (Marie Jean Antoine Nicolas de Caritat, Marquis of Condorcet), σχολίασε:
...il cessa de calculer et de vivre—... έπαυσε να υπολογίζει και να ζει.[48]
Τάφηκε δίπλα στην Katharina στο Λουθηρανικό νεκροταφείο του Σμολένσκ στο νησί Βασιλιέφσκι (Vasilievsky). Το 1785, η Ρωσική Ακαδημία Επιστημών τοποθετεί μια μαρμάρινη προτομή του Όιλερ σε ένα βάθρο δίπλα στο κάθισμα του διευθυντή και, το 1837, τοποθετήθηκε μια επιτύμβια στήλη στον τάφο του Όιλερ. Για να γιορτάσει την 250η επέτειο από τη γέννηση του Όιλερ, η επιτύμβια στήλη μεταφέρθηκε το 1956, μαζί με τα λείψανά του, στην νεκρόπολη του 18ου αιώνα στο Μοναστήρι Αλεξάντρ Νιέφσκι. [49]
Ο μαθηματικός και φιλόσοφος Ντε Κοντορσέ είπε στον επικήδειο: «Ο Όιλερ σταμάτησε να ζει και να υπολογίζει».[50]
Συνεισφορές στα μαθηματικά και τη φυσική
ΕπεξεργασίαΟ Όιλερ εργάστηκε σε όλους σχεδόν τους τομείς των μαθηματικών: γεωμετρία , απειροστικό λογισμό, τριγωνομετρία, άλγεβρα και θεωρία αριθμών καθώς και στη συνεχή φυσική τη σεληνιακή θεωρία και σε άλλους τομείς της φυσικής. Είναι δημιουργική φυσιογνωμία στην ιστορία των μαθηματικών: Αν τυπώνονταν, τα έργα του, πολλά από τα οποία είναι θεμελιώδους συμφέροντος, θα καταλάμβαναν μεταξύ 60 και 80 τόμους μεγέθους "quarto".[30] Το όνομα του Όιλερ συνδέεται με μεγάλο αριθμό θεμάτων.
Ο Όιλερ είναι ο μόνος μαθηματικός για τον οποίο δύο αριθμοί έχουν ονομαστεί προς τιμήν του: ο πάρα πολύ σημαντικός αριθμός του Όιλερ e (περίπου ίσος με 2,71828) στον απειροστικό λογισμό, και η σταθερά Όιλερ-Μασκερόνι γ, μερικές φορές αναφέρεται απλά ως «η σταθερά του Όιλερ", περίπου ίση σε 0,57721. Ακόμα και σήμερα, δεν είναι γνωστό αν το γ είναι ρητός αριθμός ή όχι.[51]
Μαθηματική σημειογραφία
ΕπεξεργασίαΟ Όιλερ εισήγαγε και διέδωσε αρκετούς συμβατικούς συμβολισμούς μέσα από τα πολυάριθμα και ευρείας κυκλοφορίας εγχειρίδιά του. Πιο συγκεκριμένα, εισήγαγε την έννοια της συνάρτησης [29] ,και ήταν ο πρώτος που έγραψε το , το οποίο χαρακτηρίζει τη συνάρτηση που εφαρμόζεται στη μεταβλητή . Εισήγαγε επίσης τη σύγχρονη σημειογραφία για τις τριγωνομετρικές συναρτήσεις, το γράμμα e για τη βάση του φυσικού λογαρίθμου (γνωστό σήμερα και ως αριθμός του Euler), το γράμμα Σ για τα αθροίσματα και το γράμμα να υποδηλώσει τη φανταστική μονάδα.[52] Η χρήση του γράμματος π για να υποδηλώσει την αναλογία περιφέρειας ενός κύκλου προς τη διάμετρό του επίσης διαδόθηκε από τον Όιλερ, αν και δεν προέρχεται από αυτόν. [53]
Ανάλυση
ΕπεξεργασίαΗ ανάπτυξη του απειροστικού λογισμού ήταν στην πρώτη γραμμή της μαθηματικής έρευνας του 18ου αιώνα, και η οικογένεια Μπερνούλι -οικογενειακοί φίλοι της οικογένειας Όιλερ- ήταν υπεύθυνη σε μεγάλο βαθμό για την πρόωρη ανάπτυξη αυτού του τομέα. Χάρη στην επιρροή της, η μελέτη των μαθηματικών έγινε το επίκεντρο του έργου του Όιλερ. Ενώ μερικές από τις αποδείξεις του Όιλερ δεν είναι αποδεκτές από τα σύγχρονα πρότυπα της μαθηματικής ακρίβειας[54] (ειδικότερα η στήριξή του στην αρχή της γενικότητας της άλγεβρας), οι ιδέες του οδήγησαν σε πολλές μεγάλες προόδους. Ο Euler είναι γνωστός στην ανάλυση για τη συχνή χρήση και την ανάπτυξη των δυναμοσειρών, την έκφραση των συναρτήσεων ως αθροίσματα άπειρων όρων, όπως
Ο Όιλερ απέδειξε άμεσα τη δυναμοσειρά για το e και τη συνάρτηση της αντίστροφης εφαπτομένης (Η τεχική για την έμμεση απόδειξη μέσω της δυναμοσειράς δόθηκε από τους Νεύτωνα και Λάιμπνιτς μεταξύ του 1670 και του 1680). Η τόλμη του να χρησιμοποιήσει αυτή τη δυναμοσειρά τον βοήθησε να λύσει το διάσημο πρόβλημα της Βασιλείας το 1735 (για το οποίο έδωσε ένα πιο περίτεχνο επιχείρημα το 1741):[54]
Ο Όιλερ εισήγαγε τη χρήση της εκθετικής συνάρτησης και των λογαρίθμων σε αναλυτικές αποδείξεις. Ανακάλυψε τρόπους για να εκφράσει τις διάφορες λογαριθμικές συναρτήσεις με δυναμοσειρές, και αυτός όρισε με επιτυχία τους λογάριθμους των αρνητικών και των μιγαδικών αριθμών, διευρύνοντας έτσι σημαντικά το πεδίο των μαθηματικών εφαρμογών των λογαρίθμων.[52] Όρισε επίσης την εκθετική συνάρτηση για τους μιγαδικούς αριθμούς, και ανακάλυψε της σχέση της με τις τριγωνομετρικές συναρτήσεις. Για κάθε πραγματικό αριθμό (μετρημένο σε ακτίνια), ο τύπος του Όιλερ αναφέρει ότι η σύνθετη εκθετική συνάρτηση ικανοποιεί τη σχέση:
Μια ειδική περίπτωση του παραπάνω τύπου είναι γνωστή ως ταυτότητα του Όιλερ,
και χαρακτηρίστηκε «ο πιο αξιοσημείωτος μαθηματικός τύπος" από τον Ριτσαρντ Φάινμαν για την χρήση των εννοιών της πρόσθεσης, του πολλαπλασιασμού, της ύψωσης σε δύναμη, και της ισότητας, και των ενιαίων χρήσεων των σημαντικών σταθερών 0, 1, e, i και π σε μία ταυτότητα.[55]
Το 1988, οι αναγνώστες του Mathematical Intelligencer την ψήφισαν ως «τον πιο όμορφο μαθηματικό τύπο που υπήρξε ποτέ». [56][56] Συνολικά, ο Όιλερ ήταν υπεύθυνος για τους τρεις από τους πέντε κορυφαίους τύπους σε αυτή τη δημοσκόπηση.
Ο τύπος του De Moivre είναι μια άμεση συνέπεια του τύπου του Όιλερ.
Επιπλέον, ο Όιλερ επεξεργάστηκε τη θεωρία των τριτοβάθμιων υπερβατικών συναρτήσεων με την εισαγωγή της συνάρτησης γάμμα και εισήγαγε μια νέα μέθοδο για την επίλυση τεταρτοβάθμιων εξισώσεων. Βρήκε επίσης έναν τρόπο για τον υπολογισμό ολοκληρωμάτων με πολύπλοκα όρια, προαναγγέλλοντας την ανάπτυξη της σύγχρονης μιγαδικής ανάλυσης. Εφηύρε επίσης τον λογισμό των μεταβολών, συμπεριλαμβανομένου και του πασίγνωστου αποτέλεσματός της, την εξίσωση Euler-Lagrange.
Ο Όιλερ πρωτοστάτησε επίσης στη χρήση αναλυτικών μεθόδων για την επίλυση των προβλημάτων της θεωρίας αριθμών. Με αυτό τον τρόπο, ένωσε δύο διαφορετικούς κλάδους των μαθηματικών και εισήγαγε ένα νέο πεδίο μελέτης, την αναλυτική θεωρία αριθμών. Κατά το σπάσιμο του εδάφους για αυτό το νέο πεδίο, ο Όιλερ δημιούργησε τη θεωρία της υπεργεωμετρικής σειράς , q-series , τις υπερβολικές τριγωνομετρικές συναρτήσεις και την αναλυτική θεωρία των συνεχών κλασμάτων. Για παράδειγμα, απέδειξε την απειρία των πρώτων αριθμών χρησιμοποιώντας ότι η αρμονική σειρά αποκλίνει, και χρησιμοποίησε αναλυτικές μεθόδους για να κατανοήσει τον τρόπο διάταξης των πρώτων αριθμών. Το έργο του Όιλερ στον τομέα αυτό οδήγησε στην ανάπτυξη του Θεωρήματος των πρώτων αριθμών.[57]
Θεωρία αριθμών
ΕπεξεργασίαΤο ενδιαφέρον του Όιλερ για την θεωρία αριθμών μπορεί να αποδοθεί στην επίδραση του Κρίστιαν Γκόλντμπαχ, φίλου του από την Ακαδημία της Αγίας Πετρούπολης. Ένα μεγάλο μέρος του αρχικού έργου του Όιλερ στην αριθμητική θεωρία βασίστηκε στο έργο του Πιέρ ντε Φερμά. Ο Όιλερ ανέπτυξε κάποιες από τις ιδέες του Φερμά και διέψευσε κάποιες από τις εικασίες του.
Ο Όιλερ συνέδεσε τη μορφή της κατάταξης των πρώτων αριθμών με ιδέες στην ανάλυση. Απέδειξε ότι το άθροισμα των αντίστροφων των πρώτων αριθμών αποκλίνει. Με αυτό τον τρόπο, ανακάλυψε τη σχέση μεταξύ της συνάρτησης Ζήτα και των πρώτων αριθμών, και αυτό είναι γνωστό ως ο τύπος του Όιλερ για τη συνάρτηση Ζήτα.
Ο Όιλερ απέδειξε τις ταυτότητες του Νεύτωνα, το μικρό θεώρημα του Φερμά, το θεώρημα του Φερμά για το άθροισμα των τετραγώνων δύο αριθμών, και συνέβαλε σημαντικά στο θεώρημα των τεσσάρων τετραγώνων του Λαγκράνζ. Επίσης όρισε τη συνάρτηση Όιλερ που μετράει το πλήθος των θετικών ακεραίων μικρότερων ή ίσων του που είναι σχετικά πρώτοι με το . Χρησιμοποιώντας τις ιδιότητες αυτής της συνάρτησης, ο ίδιος γενίκευσε το μικρό θεώρημα του Φερμά σε αυτό που είναι σήμερα γνωστό ως θεώρημα του Όιλερ. Συνέβαλε σημαντικά στη θεωρία των τέλειων αριθμών, η οποία είχε συναρπάσει τους μαθηματικούς από την εποχή του Ευκλείδη. Ο Όιλερ διατύπωσε επίσης τον νόμο της τετραγωνικής αμοιβαιότητας. Η έννοια αυτή θεωρείται ως το θεμελιώδες θεώρημα της θεωρίας των αριθμών, και οι ιδέες του, άνοιξαν το δρόμο για το έργο του Καρλ Φρίντριχ Γκάους.[58]
Το 1772 ο Όιλερ απέδειξε ότι o 2,147,483,647 είναι πρώτος αριρθμός Μερσέν. Μπορεί να παρέμεινε ο πιο μεγάλος γνωστός πρώτος αριθμός έως το 1867.[59]
Θεωρία γράφων
ΕπεξεργασίαΤο 1736, Όιλερ έλυσε το πρόβλημα που είναι γνωστό ως Επτά Γέφυρες του Κένιγκσμπεργκ.[60] Η πόλη του Κένιγκσμπεργκ, στην Πρωσία χτίστηκε στον ποταμό Πρέγκελ, και περιλάμβανε δύο μεγάλα νησιά που συνδέονταν μεταξύ τους και με την ηπειρωτική χώρα με επτά γέφυρες. Το πρόβλημα είναι να αποφασιστεί κατά πόσον είναι δυνατόν να ακολουθηθεί μια διαδρομή που διασχίζει κάθε γέφυρα ακριβώς μια φορά και να επιστρέφει στο σημείο εκκίνησης. Η απάντηση είναι ότι δεν είναι δυνατόν, δηλαδή δεν υπάρχει μονοπάτι του Όιλερ. Η λύση αυτή θεωρείται ότι είναι το πρώτο θεώρημα της θεωρίας γράφων, ειδικότερα της θεωρίας των επίπεδων γράφων.[60]
Ο Όιλερ επινόησε επίσης τον τύπο , που συσχετίζει τον αριθμό των κορυφών, των ακμών και των εδρών ενός κυρτού πολυέδρου[61], και ως εκ τούτου ενός επίπεδου γραφήματος. Η τιμή είναι σήμερα γνωστή ως η χαρακτηριστική Όιλερ του γραφήματος (ή κάποιου άλλο μαθηματικού αντικειμένου), και σχετίζεται με το γένος του αντικειμένου.[62] Η μελέτη και η γενίκευση αυτού του τύπου, ειδικά από Κωσύ[63] και L'Huillier, [64], αποτελεί την αρχή της τοπολογίας.
Εφαρμοσμένα μαθηματικά
ΕπεξεργασίαΜερικές από τις μεγαλύτερες επιτυχίες του Όιλερ ήταν στην επίλυση πραγματικών προβλημάτων αναλυτικά, και στην περιγραφή πολυάριθμων εφαρμογών των αριθμών Μπερνούλλι, των σειρών Φουριέ, των διαγραμμάτων Venn, των αριθμών Όιλερ, των σταθερών e και π, και στη συνέχεια κλασμάτων και ολοκληρωμάτων. Ενσωμάτωσε στον διαφορικό λογισμό του Λάιμπνιτς, τη μέθοδο των συνεχών αλλαγών του Νεύτωνα και ανέπτυξε εργαλεία που έκαναν ευκολότερη την εφαρμογή του λογισμού σε προβλήματα φυσικής. Έκανε μεγάλα βήματα για τη βελτίωση της αριθμητικής προσέγγισης των ολοκληρωμάτων, εφευρίσκοντας αυτό που είναι σήμερα γνωστό ως προσεγγίσεις Euler. Η πιο αξιοσημείωτη από αυτές τις προσεγγίσεις είναι η μέθοδος του Euler και ο τύπος Euler-Maclaurin. Διευκόλυνε επίσης την επίλυση διαφορικών εξισώσεων, ιδίως εισάγοντας τη σταθερά Euler-Mascheroni:
Ένα από τα πιο ασυνήθιστα ενδιαφέροντα του Όιλερ ήταν η εφαρμογή των μαθηματικών ιδεών στη μουσική. Το 1739 έγραψε το Tentamen novae Musicae theoriae, ελπίζοντας να ενσωματώσει τελικά τη θεωρία της μουσικής ως μέρος των μαθηματικών. Αυτό το μέρος του έργου του, όμως, δεν έλαβε μεγάλη προσοχή και είχε κάποτε περιγραφεί ως πολύ μαθηματικό για τους μουσικούς και πολύ μουσικό για τους μαθηματικούς.[65]
Φυσική και Αστρονομία
ΕπεξεργασίαΟ Όιλερ βοήθησε στην ανάπτυξη της εξίσωσης δοκού Euler-Bernoulli, η οποία έγινε ο ακρογωνιαίος λίθος της μηχανικής. Εκτός από την επιτυχή εφαρμογή των αναλυτικών εργαλείων του στα προβλήματα της κλασικής μηχανικής, ο Όιλερ εφάρμοσε αυτές τις τεχνικές και στα ουράνια προβλήματα. Το έργο του στην αστρονομία αναγνωρίστηκε με μια σειρά βραβείων από την Ακαδημία του Παρισιού κατά τη διάρκεια της καριέρας του. Επιτεύγματά του περιλαμβάνουν τον προσδιορισμό με μεγάλη ακρίβεια των τροχιών των κομητών και άλλων ουράνιων σωμάτων, την κατανόηση της φύσης των κομητών, καθώς και τον υπολογισμό της παράλλαξης του ήλιου. Οι υπολογισμοί του συνέβαλαν επίσης στην ανάπτυξη των ακριβών πινάκων γεωγραφικού μήκους .[66]
Επιπλέον, ο Όιλερ συνέβαλε σημαντικά στην οπτική. Διαφώνησε με τη σωματιδιακή θεωρία του φωτός του Νεύτωνα στα Opticks, η οποία ήταν τότε η επικρατούσα θεωρία. Το 1740 οι μελέτες του σχετικά με την οπτική βοήθησαν να διασφαλιστεί ότι η θεωρία των κυμάτων του φωτός που προτείνει ο Κρίστιαν Χόιχενς θα γίνει ο κυρίαρχος τρόπος σκέψης, τουλάχιστον μέχρι την ανάπτυξη της κβαντικής θεωρίας του φωτός. [67]
Το 1757 δημοσίευσε ένα σημαντικό σύνολο εξισώσεων για την ροή ιδανικού υγρού χωρίς τη χρήση ιξώδους, που είναι γνωστές σήμερα ως εξισώσεις Euler.
Λογική
ΕπεξεργασίαΣτον Όιλερ επίσης οφείλεται η χρήση κλειστών καμπυλών για να τονίσει τη συλλογιστική λογική (1768). Αυτά τα διαγράμματα έχουν γίνει γνωστά ως διαγράμματα Όιλερ . [68]
Προσωπική ιδεολογία και θρησκευτικές πεποιθήσεις
ΕπεξεργασίαΟ Όιλερ και ο φίλος του Ντάνιελ Μπερνούλι ήταν αντίπαλοι του Λάιμπνιτς για τον μοναδισμό και τη φιλοσοφία του Κρίστιαν Βολφ. Ο Όιλερ επέμεινε ότι η γνώση είναι εν μέρει βάσιμη, βάσει ακριβών ποσοτικών νόμων, κάτι που ο μοναδισμός και η θεωρία του Βολφ δεν ήταν σε θέση να παράσχουν. Οι θρησκευτικές τάσεις του Όιλερ ίσως επίσης να ευθύνονταν για την απέχθεια του δόγματος, έφτασε σε τέτοιο σημείο ώστε να ονομάσει τις ιδέες του Βολφ ως «ειδωλολατρικές και αθεϊστικές».[69]
Πολλά από όσα είναι γνωστά για τις θρησκευτικές πεποιθήσεις του Όιλερ μπορεί να συναχθούν από τις Επιστολές προς μια Γερμανίδα πριγκίπισσα και μια προηγούμενη εργασία, την Rettung der Göttlichen Offenbahrung Gegen die Einwürfe der Freygeister (Άμυνα της Θείας Αποκάλυψης κατά των κατηγοριών των Freethinkers). Τα έργα αυτά δείχνουν ότι ο Όιλερ ήταν ένας αφοσιωμένος Χριστιανός που πίστευε στην Αγία Γραφή για να εμπνευστεί, η Rettung ήταν κυρίως ένα επιχείρημα για την θεοπνευστία της Αγίας Γραφής.[70]
Υπάρχει ένας διάσημος μύθος [71], εμπνευσμένος από τα επιχειρήματα του Euler σε κοσμικούς φιλοσόφους πάνω στη θρησκεία, που ειπώθηκαν κατά τη διάρκεια της δεύτερης θητείας του Euler στην ακαδημία της Αγίας Πετρούπολης. Ο Γάλλος φιλόσοφος Ντενί Ντιντερό είχε επισκεφθεί τη Ρωσία μετά από πρόσκληση της Μεγάλης Αικατερίνης. Ωστόσο, η αυτοκράτειρα είχε θορυβηθεί ότι τα επιχειρήματα του φιλοσόφου για την αθεΐα επηρέαζαν τα μέλη του δικαστηρίου της και έτσι ο Όιλερ κλήθηκε να αντιμετωπίσει τον Γάλλο. Ο Ντιντερό ενημερώθηκε ότι ένας ειδικευμένος μαθηματικός είχε προσκομίσει μια απόδειξη για την ύπαρξη του Θεού: συμφώνησε να δει την απόδειξη, όπως αυτή παρουσιάστηκε στο δικαστήριο. Ο Όιλερ εμφανίστηκε, προχώρησε προς τον Ντιντερό και με έναν τόνο τέλειας καταδίκης ανακοίνωσε αυτό το ανακόλουθο: "Κύριε, ως εκ τούτου, υπάρχει Θεός-απαντήστε!" Ο Ντιντερό, για τον οποίο (όπως λέει η ιστορία) όλα τα μαθηματικά ήταν ασυναρτησίες, στάθηκε αποσβολωμένος καθώς ξέσπασαν δυνατά γέλια στην αίθουσα. Αμήχανος, ζήτησε να φύγει από τη Ρωσία, ένα αίτημα που χορηγήθηκε με ευχαρίστηση από την αυτοκράτειρα. Όσο ψυχαγωγικό μπορεί να είναι αυτό το ανέκδοτο, σε αυτό οφείλεται το ότι στη συνέχεια ο ίδιος ο Ντιντερό έκανε έρευνα στα μαθηματικά.[72] Ο μύθος φαίνεται να ειπώθηκε για πρώτη φορά από τον Dieudonné Thiébault[73], και με σημαντικά διακοσμητικά στοιχεία Augustus De Morgan.[74][75]
Επέτειοι
ΕπεξεργασίαΟ Όιλερ απεικονίστηκε στο ελβετικό χαρτονόμισμα των 10 φράγκων και σε πολυάριθμα γραμματόσημα της Ελβετίας, της Γερμανίας και της Ρωσίας. Ο αστεροειδής 2002 Euler ονομάστηκε προς τιμήν του. Επίσης μνημονεύεται από την Λουθηρανική Εκκλησία στο Ημερολόγιο των Αγίων της στις 24 Μαΐου-ήταν ένας αφοσιωμένος Χριστιανός (και πιστός στην αδιαμφισβήτητη αλήθεια της Βίβλου) που έγραψε απολογητική και πολέμησε σθεναρά εναντίον των επιφανών αθεϊστών της εποχής του. [70]
Στις 15 Απριλίου 2013, τα 306α γενέθλια του Όιλερ γιορτάστηκαν με ένα Google Doodle.
Έργο
ΕπεξεργασίαΔιακρίθηκε στα ανώτερα μαθηματικά και κυρίως στον διαφορικό και ολοκληρωτικό λογισμό. Οι σπουδαιότερες εργασίες του αναφέρονται στην ανάλυση των ισοπεριμέτρων, στη συσχέτιση των κυκλικών και των εκθετικών συναρτήσεων, στη θεωρία της περιστροφής σώματος γύρω από σταθερό σημείο, στην αναλυτική γεωμετρία (την οποία συμπλήρωσε και τελειοποίησε), στη θεωρία αριθμών κ.τ.λ. Ακόμη υπήρξε ο εισηγητής της συντομογραφίας και του συμβολισμού (τριγωνομετρία), κάνοντας πρώτος τη χρήση του συμβόλου e για τον προσδιορισμό της βάσης των φυσικών λογαρίθμων. Πολλοί μαθηματικοί όροι φέρουν το όνομά του, όπως η σταθερά του Όιλερ, ο αριθμός του Όιλερ (το γνωστό e), οι μεταβλητές, η γραμμή και η εξίσωση του Όιλερ κ.ά. Από τα έργα του σπουδαιότερα είναι: Η μηχανή ή η επιστήμη της κίνησης (1736), Θεωρία των κινήσεων πλανητών και κομητών (1744), Εισαγωγή στην ανάλυση των απείρως μικρών (1748, 2 τόμοι), Γενικές αρχές του διαφορικού λογισμού (1755), Γενικές αρχές του ολοκληρωτικού λογισμού (1768 - 1774), Εγχειρίδιο άλγεβρας (1770),Θεωρία των κινήσεων της Σελήνης (1772). Τα έργα του σήμερα ξεπερνούν τους 75 τόμους συνολικά.
Θεωρείται μάλιστα ο "πατέρας" του γνωστού παιχνιδιού σουντόκου, αφού ο ίδιος διατύπωσε πρώτος τους κανόνες του.[76]
Για την ακρίβεια, το έργο του αποτελείται από 75 τόμους, συνολικά 45.000 σελίδες μαθηματικών. Επίσης υπάρχουν 4.000 χειρόγραφα (αλληλογραφία με διάσημους σύγχρονους του μαθηματικούς).
Αναφορές στον Όιλερ και το έργο του
ΕπεξεργασίαΣε ταινίες
ΕπεξεργασίαThe Professor and his Beloved Equation
ΕπεξεργασίαΣτην ταινία του Takashi Koizumi του 2006, με τίτλο The Professor and his Beloved Equation (Hakase no Aishita Sûshiki)[77], η αγαπημένη εξίσωση του "Καθηγητή" που υποδύεται ο Akira Terao είναι η[78]
- .
Σε δημοσιεύσεις
ΕπεξεργασίαΕπιστημονικά συγγράμματα
ΕπεξεργασίαΣτον πρόλογο της αγγλικής έκδοσης του συγγράματος "Nuclear: Turkey like N. Korea?"[79][80][81] αναφέρεται πως η ανάπτυξη του θέματος των πυρηνικών βασίζεται σε Ευκλείδεια και Οϊλεριανή λογική. Αναφορικά με τον Όιλερ, ο συγγραφέας σημειώνει πως προκειμένου να δώσει απάντηση σε ένα τόσο λεπτό θέμα με εγκυρότητα και αποφεύγοντας θεωρίες συνομωσίας αποσυνδέει το θέμα των πυρηνικών από τα φυσικά χαρακτηριστικά του (εν προκειμένω: πρώτη ύλη, αντιδραστήρας) και εξετάζει το ενδεχόμενο μιας μελλοντικής τροπής υπό το πρίσμα των πολιτικών ενεργειακής αποδοτικότητας και κλιματικής αλλαγής της Ευρωπαϊκής Ένωσης. Πιο συγκεκριμένα, χρησιμοποιεί την τεχνική της αποσύνδεσης από τα φυσικά χαρακτηριστικά εμπνευσμένος από την λύση του Όιλερ στο γνωστό πρόβλημα των Επτά Γεφυρών του Κένιγκσμπεργκ[82].
Παραπομπές
Επεξεργασία- ↑ 1,00 1,01 1,02 1,03 1,04 1,05 1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 018751.
- ↑ 2,0 2,1 Εθνική Βιβλιοθήκη της Γαλλίας: (Γαλλικά) καθιερωμένοι όροι της Εθνικής Βιβλιοθήκης της Γαλλίας. 12157666x. Ανακτήθηκε στις 10 Οκτωβρίου 2015.
- ↑ 3,0 3,1 3,2 MacTutor History of Mathematics archive. Ανακτήθηκε στις 22 Αυγούστου 2017.
- ↑ 4,0 4,1 4,2 (Αγγλικά) SNAC. w66d66q0. Ανακτήθηκε στις 9 Οκτωβρίου 2017.
- ↑ Εθνική Βιβλιοθήκη της Γερμανίας: (Γερμανικά) Gemeinsame Normdatei. Ανακτήθηκε στις 10 Δεκεμβρίου 2014.
- ↑ 6,0 6,1 «Большая советская энциклопедия» (Ρωσικά) Η Μεγάλη Ρωσική Εγκυκλοπαίδεια. Μόσχα. 1969. Ανακτήθηκε στις 28 Σεπτεμβρίου 2015.
- ↑ «Nationalencyklopedin» (Σουηδικά) leonhard-euler. Ανακτήθηκε στις 9 Οκτωβρίου 2017.
- ↑ 8,0 8,1 8,2 8,3 8,4 (Αγγλικά) ECARTICO. www
.vondel .humanities .uva .nl /ecartico /persons /57353. Ανακτήθηκε στις 14 Αυγούστου 2023. - ↑ «Эйлер, Леонард» (Ρωσικά)
- ↑ «Педагоги и психологи мира» (Ρωσικά)
- ↑ Εθνική Βιβλιοθήκη της Γερμανίας: (Γερμανικά) Gemeinsame Normdatei. Ανακτήθηκε στις 30 Δεκεμβρίου 2014.
- ↑ 12,0 12,1 «Эйлер, Леонард» (Ρωσικά)
- ↑ 13,0 13,1 Εθνική Βιβλιοθήκη της Γαλλίας: (Γαλλικά) καθιερωμένοι όροι της Εθνικής Βιβλιοθήκης της Γαλλίας. data
.bnf .fr /ark: /12148 /cb12157666x. Ανακτήθηκε στις 17 Φεβρουαρίου 2019. - ↑ 14,0 14,1 Τσεχική Εθνική Βάση Δεδομένων Καθιερωμένων Όρων. ola2002161287. Ανακτήθηκε στις 1 Μαρτίου 2022.
- ↑ Εθνική Βιβλιοθήκη της Γαλλίας: (Γαλλικά) καθιερωμένοι όροι της Εθνικής Βιβλιοθήκης της Γαλλίας. data
.bnf .fr /ark: /12148 /cb12157666x. Ανακτήθηκε στις 10 Οκτωβρίου 2015. - ↑ CONOR.SI. 6669155.
- ↑ 17,0 17,1 17,2 17,3 17,4 «Становление физиологии в России: XVIII век» (Ρωσικά) 2016. σελ. 9-24.
- ↑ www
.nndb .com /cemetery /803 /000208179 /. - ↑ www
.worldatlas .com /webimage /countrys /europe /switzerland /chfamous .htm. - ↑ blogcritics
.org /culture /article /a-nasty-mathematical-myth /. - ↑ Dora Musielak: «Euler: Genius Blind Astronomer Mathematician» 28 Ιουνίου 2014.
- ↑ www
.famousscientists .org /leonhard-euler /. - ↑ 23,0 23,1 Τσεχική Εθνική Βάση Δεδομένων Καθιερωμένων Όρων. ola2002161287. Ανακτήθηκε στις 15 Δεκεμβρίου 2022.
- ↑ Τσεχική Εθνική Βάση Δεδομένων Καθιερωμένων Όρων. ola2002161287. Ανακτήθηκε στις 3 Ιανουαρίου 2023.
- ↑ Ανακτήθηκε στις 4 Ιουλίου 2019.
- ↑ 26,0 26,1 26,2 26,3 Leo van de Pas: (Αγγλικά) Genealogics. 2003.
- ↑ www
.amacad .org /sites /default /files /academy /multimedia /pdfs /publications /bookofmembers /ChapterE .pdf. - ↑ www
.amacad .org /sites /default /files /media /document /2019-10 /electionIndex1780-1799 .pdf. - ↑ 29,0 29,1 Dunham 1999, σελ. 17
- ↑ 30,0 30,1 30,2 Finkel, B. F. (1897). «Biography—Leonard Euler». The American Mathematical Monthly 4 (12): 297–302. https://archive.org/details/sim_american-mathematical-monthly_1897-12_4_12/page/297.
- ↑ Dunham 1999, σελ. xiii "Lisez Euler, lisez Euler, c'est notre maître à tous."
- ↑ James, Ioan (2002). Remarkable Mathematicians: From Euler to von Neumann. Cambridge. σελ. 2. ISBN 0-521-52094-0.
- ↑ Euler's Dissertation De Sono : E002. Translated & Annotated by Ian Bruce. (PDF) . 17centurymaths.com. Retrieved on 2011-09-14.
- ↑ Calinger 1996, σελ. 156
- ↑ Calinger 1996, σελ. 125
- ↑ Calinger 1996, σελ. 127
- ↑ Calinger 1996, σελ. 124
- ↑ Calinger 1996, σελίδες 128–9
- ↑ Fuss, Nicolas. «Eulogy of Euler by Fuss». Ανακτήθηκε στις 30 Μαΐου 2006.
- ↑ «E212 – Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum». Dartmouth.
- ↑ 41,0 41,1 41,2 Dunham 1999, σελίδες xxiv–xxv
- ↑ Euler, Leonhard. «Letters to a German Princess on Diverse Subjects of Natural Philosophy». Internet Archive, Digitzed by Google. Ανακτήθηκε στις 15 Απριλίου 2013.
- ↑ Frederick II of Prussia (1927). Letters of Voltaire and Frederick the Great, Letter H 7434, 25 January 1778. Richard Aldington. New York: Brentano's.
- ↑ Calinger 1996, σελίδες 154–5
- ↑ Gekker & Euler 2007, σελ. 405
- ↑ A. Ya. Yakovlev (1983). Leonhard Euler. M.: Prosvesheniye.
- ↑ «Eloge de M. Leonhard Euler. Par M. Fuss». Nova Acta Academia Scientarum Imperialis Petropolitanae 1: 159–212. 1783.
- ↑ Marquis de Condorcet. «Eulogy of Euler – Condorcet». Ανακτήθηκε στις 30 Αυγούστου 2006.
- ↑ 15567379 Λέοναρντ Όιλερ στο Find a Grave (Αγγλικά)
- ↑ Επικήδειος
- ↑ Derbyshire, John (2003). Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. Washington, D.C.: Joseph Henry Press. σελ. 422.
- ↑ 52,0 52,1 Carl B. Boyer· Uta C. Merzbach (1991). A History of Mathematics. John Wiley & Sons. σελίδες 439–445. ISBN 0-471-54397-7.
- ↑ Wolfram, Stephen. «Mathematical Notation: Past and Future». Ανακτήθηκε στις 30 Αυγούστου 2006.
- ↑ 54,0 54,1 Gerhard Wanner· Ernst Harrier (Μάρτιος 2005). Analysis by its history (1η έκδοση). Springer. σελ. 62.
- ↑ Feynman, Richard (Ιούνιος 1970). «Chapter 22: Algebra». The Feynman Lectures on Physics: Volume I. σελ. 10.
- ↑ 56,0 56,1 Wells, David (1990). «Are these the most beautiful?». Mathematical Intelligencer 12 (3): 37–41. doi:. https://archive.org/details/sim_mathematical-intelligencer_summer-1990_12_3/page/37.
Wells, David (1988). «Which is the most beautiful?». Mathematical Intelligencer 10 (4): 30–31. doi:. https://archive.org/details/sim_mathematical-intelligencer_fall-1988_10_4/page/30.
Δείτε επίσης: Peterson, Ivars. «The Mathematical Tourist». Αρχειοθετήθηκε από το πρωτότυπο στις 31 Μαρτίου 2007. Ανακτήθηκε στις 1 Μαρτίου 2008. - ↑ Dunham 1999, Ch. 3, Ch. 4
- ↑ Dunham 1999, Ch. 1, Ch. 4
- ↑ Caldwell, Chris. The largest known prime by year
- ↑ 60,0 60,1 Alexanderson, Gerald (Ιούλιος 2006). «Euler and Königsberg's bridges: a historical view». Bulletin of the American Mathematical Society 43 (4): 567. doi: .
- ↑ Cromwell, Peter R. (1999). Polyhedra. Cambridge University Press. σελίδες 189–190. ISBN 978-0-521-66405-9.
- ↑ Gibbons, Alan (1985). Algorithmic Graph Theory. Cambridge University Press. σελ. 72. ISBN 978-0-521-28881-1.
- ↑ Cauchy, A. L. (1813). «Recherche sur les polyèdres—premier mémoire». Journal de l'École Polytechnique 9 (Cahier 16): 66–86.
- ↑ L'Huillier, S.-A.-J. (1861). «Mémoire sur la polyèdrométrie». Annales de Mathématiques 3: 169–189.
- ↑ Calinger 1996, σελίδες 144–5
- ↑ Youschkevitch, A P; Biography in Dictionary of Scientific Biography (New York 1970–1990).
- ↑ Home, R. W. (1988). «Leonhard Euler's 'Anti-Newtonian' Theory of Light». Annals of Science 45 (5): 521–533. doi:. https://archive.org/details/sim_annals-of-science_1988-09_45_5/page/521.
- ↑ Baron, M. E. (May 1969). «A Note on The Historical Development of Logic Diagrams». The Mathematical Gazette LIII (383): 113–125.
- ↑ Calinger 1996, σελίδες 153–4
- ↑ 70,0 70,1 Euler, Leonhard (1960). Orell-Fussli, επιμ. «Rettung der Göttlichen Offenbahrung Gegen die Einwürfe der Freygeister». Leonhardi Euleri Opera Omnia (series 3) 12.
- ↑ Brown, B. H. (Μάιος 1942). «The Euler-Diderot Anecdote». The American Mathematical Monthly 49 (5): 302–303. doi:. https://archive.org/details/sim_american-mathematical-monthly_1942-05_49_5/page/302.; Gillings, R. J. (Φεβρουάριος 1954). «The So-Called Euler-Diderot Incident». The American Mathematical Monthly 61 (2): 77–80. doi:. https://archive.org/details/sim_american-mathematical-monthly_1954-02_61_2/page/77.
- ↑ Marty, Jacques. «Quelques aspects des travaux de Diderot en Mathematiques Mixtes».
- ↑ Brown, B.H. (Μάιος 1942). «The Euler-Diderot Anecdote». American Mathematical Monthly 49 (5): 302–303. https://archive.org/details/sim_american-mathematical-monthly_1942-05_49_5/page/302.
- ↑ Struik, Dirk J. (1967). A Concise History of Mathematics (3rd revised έκδοση). Dover Books. σελ. 129. ISBN 0486602559.
- ↑ Gillings, R.J. (Φεβρουάριος 1954). «The So-Called Euler-Diderot Anecdote». American Mathematical Monthly 61 (2): 77–80. https://archive.org/details/sim_american-mathematical-monthly_1954-02_61_2/page/77.
- ↑ Ιστορία του sudoku
- ↑ «IMDB: The Professor and his Beloved Equation».
- ↑ «The Mathematical Movie Database». Ανακτήθηκε στις 23 Δεκεμβρίου 2017.
- ↑ Zizopoulos, Georgios (Δεκεμβρίου 2017). Nuclear: Turkey like N. Korea?. Thessaloniki: Zizopoulos Georgios. ISBN 9789609397100. Αρχειοθετήθηκε από το πρωτότυπο στις 9 Μαρτίου 2018. Ανακτήθηκε στις 26 Δεκεμβρίου 2017.
- ↑ «Nuclear: Turkey like N. Korea? (Sneak Preview)- Zizopoulos Georgios» (PDF). Αρχειοθετήθηκε από το πρωτότυπο (PDF) στις 8 Απριλίου 2022. Ανακτήθηκε στις 23 Δεκεμβρίου 2017.
- ↑ «Interview: Zizopoulos Georgios». Αρχειοθετήθηκε από το πρωτότυπο στις 9 Μαρτίου 2018. Ανακτήθηκε στις 23 Δεκεμβρίου 2017.
- ↑ «Nuclear: Θαλής + Φίλοι: οι γέφυρες του Königsberg». Ανακτήθηκε στις 23 Δεκεμβρίου 2017.
Εξωτερικοί σύνδεσμοι
Επεξεργασία- Βιογραφία
- Ιστορία του su doku Αρχειοθετήθηκε 2007-09-29 στο Wayback Machine..