לדלג לתוכן

משפט האינטגרל של קושי

מתוך ויקיפדיה, האנציקלופדיה החופשית

באנליזה מרוכבת, משפט האינטגרל של קושי-גורסה (על שמם של אוגוסטין קושי ואדואר גורסה (אנ')) הוא משפט מרכזי ובעל השלכות רבות על אינטגרלים קוויים של פונקציות מרוכבות הולומורפיות. המשפט אומר שאם פונקציה היא הולומורפית בתחום פשוט קשר מסוים אז האינטגרל שלה לאורך מסלול סגור המוכל בתחום מתאפס.

למשפט זה תוצאות חשובות רבות, כגון נוסחת האינטגרל של קושי, משפט ליוביל, המשפט היסודי של האלגברה, משפט השארית ועוד. מהמשפט ניתן גם להסיק כי פונקציות הולומורפיות הן אנליטיות, כלומר ניתן לפתח אותן לטור טיילור.

המשפט המקורי שקושי הוכיח כלל את ההנחה שהנגזרת רציפה. כחצי מאה לאחר קושי, הוכיח אדואר גורסה את המשפט אך ללא הנחה זו. הוכחה זו משמעותית כי לאחר מכן ניתן להוכיח את נוסחת האינטגרל של קושי עבור פונקציות הולומורפיות, וממנה ניתן להוכיח שכל פונקציה הולומורפית היא אנליטית.

ניסוח פורמלי

[עריכת קוד מקור | עריכה]
משפט האינטגרל של קושי־גורסה

יהא תחום פשוט קשר ופתוח במישור המרוכב. אם פונקציה הולומורפית בתחום זה ו־ מסלול סגור ובעל אורך, אז מתקיים .

המשפט נובע מהגרסה הבאה שלו: תהא קבוצה פתוחה כך שהשפה היא איחוד סופי של מסילות סגורות בעלות אורך . על כל מושרית מגמה[א]. בנוסף, תהא פונקציה הולומורפית ב-. אזי .

גרסה שנייה זו נובעת ממקרה פרטי שלה: תהי הולומורפית ב- ו- משולש המוכל ב-, אז .

הוכחת משפט קושי

[עריכת קוד מקור | עריכה]

אם מניחים ש־ רציפה, ניתן להוכיח את משפט האינטגרל של קושי ישירות ממשפט גרין ומהעובדה שהחלקים הממשיים והמדומים של מקיימים את משוואות קושי-רימן בתחום התחום ב־ בפרט ובסביבה הפתוחה של התחום בכלל. זו השיטה בה השתמש קושי להוכחת המשפט. מאוחר יותר הוכיח גורסה את המשפט בלי להניח את רציפות הנגזרת . הוא לא היה צריך להניח את רציפות הנגזרת משום שהוכחתו לא נסמכה על אנליזה וקטורית.

ניתן להפריד את האינטגרנד וכן את הדיפרנציאל לחלקיהם הממשיים והמדומים:

במקרה זה קיבלנו:

על פי משפט גרין, ניתן להחליף את האינטגרל הקווי על העקומה באינטגרל הכפול על התחום החסום על ידי כדלהלן:

אך החלק הממשי והחלק המדמה של פונקציה הולומורפית בתחום , ו־ חייבים לקיים את משוואות קושי-רימן בתחום:

ומכך נובע ששני האינטגרנדים הם 0, ולכן גם האינטגרלים הם 0:

ולכן:

מ.ש.ל

הוכחת משפט קושי-גורסה עבור מסלולים משולשיים

[עריכת קוד מקור | עריכה]

תחילה, נניח . מתקיים , ו-.

לכן , ומעקרון דיריכלה נובע שקיים כך ש-.

נסמן . נמשיך כך ונקבל סדרת משולשים , כאשר .

לפי הלמה של קנטור, קיים כך ש-. הנחנו ש- הולומורפית ב-, ולכן מתקיים , כאשר .

מכאן ש-.

עכשיו נסתכל על שני האיברים הראשונים: .

ניתן לראות שיש להם פונקציה קדומה, שהיא אנליטית בכל , ובפרט ב-, ולכן האינטגרל שלהם שווה ל-0 לפי המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי. ולכן מתקיים .

נביט באורכי המסילות: , כלומר, עבור , .

לפי הגדרת האינטגרל, אם מסילה חלקה למקוטעין ו- רציפה על , אז , כאשר על ו- הוא האורך של . לכן: .

מכאן נובע: , ולאחר הכפלת שני הצדדים ב- נקבל .

אבל (שכן מהגדרת מתקיים , ו- קבוע), ולכן נקבל וזו סתירה להנחה המקורית.

ולכן נקבל כלומר .

מ.ש.ל

  1. ^ על ידי בחירת הנורמל המצביע לתוך התחום

לקריאה נוספת

[עריכת קוד מקור | עריכה]

קישורים חיצוניים

[עריכת קוד מקור | עריכה]