פורטל:מתמטיקה
המתמטיקה מוגדרת לעיתים קרובות כלמידת הדפוסים והתבניות של מבנה, שינוי ומרחב, ואפיונם. מנקודת מבט מודרנית, מתמטיקה היא השימוש בלוגיקה פורמלית לחקירת מערכות ומבנים מופשטים שהוגדרו אקסיומטית.
מוצאם של רוב המבנים הנחקרים במתמטיקה הוא ממדעי הטבע, לרוב מפיזיקה, אך מתמטיקאים מרבים להגדיר ולחקור מבנים מסיבות פנימיות לחלוטין למתמטיקה עצמה, למשל לשם ביצוע הכללה מאחדת של תחומים מתמטיים אחדים או ככלי שימושי לביצוע חישובים. יש אפוא מתמטיקאים רבים שחוקרים תחומים מסוימים מסיבות אסתטיות לחלוטין, בראיית המתמטיקה כאמנות במידת מה יותר מכמדע שימושי.
עריכהערכים מומלצים במתמטיקה
עריכהמאמר נבחר
האריתמטיקה היא הענף העתיק ביותר במתמטיקה ואחד השימושיים שבו לצורכי יום-יום. ההיסטוריה של האריתמטיקה משתרעת על פני תקופות שונות, תרבויות ומקומות שונים בהם התפתח ענף זה. בחלק מהמקרים היו אלה התפתחויות שנצברו על סמך ניסיון רב-שנים ובחלק מהמקרים היו אלה פירות מחקר של מתמטיקאים בודדים. עד לעת החדשה התפתחה האריתמטיקה באופן שונה באזורים גאופוליטיים שונים, ולפיכך כרוכה היסטוריה זו גם בהיסטוריה הדתית, החברתית והגאופוליטית של מקומות אלה. כך, למשל, עם כיבוש הבבלים את מסופוטמיה, ירשו אלה את השימוש בבסיס 60 מקודמיהם האשורים. כדוגמה נוספת, רוחבית, ניתן להסתכל על מושג האפס. פיתוחו, כפי שהוא מוכר היום, עבר שלבים רבים והושפע רבות מהקשיים התפיסתיים, הדתיים והפילוסופיים שעורר בתרבויות השונות. |
עריכהמומלצי פורטל נוספים
עריכהמתמטיקאי נבחר
ג'ון פורבס נאש הבן (13 ביוני 1928 – 23 במאי 2015), מתמטיקאי אמריקאי המתמחה בתורת המשחקים וגאומטריה דיפרנציאלית. בשנת 1994 קבל פרס נובל לכלכלה, עבור עבודתו החלוצית משנות ה-50 בתורת המשחקים. עם הישגיו האקדמיים הבולטים נמנים פתוח 'שיווי משקל נאש' ופתרון 'בעיית המיקוח של נאש', המהווים מושגי יסוד בפתרון בעיות 'משחקים שיתופיים' ו'משחקים אי-שיתופיים' בתורת המשחקים בתחומי הכלכלה, הביולוגיה ומדע המדינה. הקריירה האקדמית המזהירה של נאש עומדת בצל מחלת הסכיזופרניה, שבה לקה בסמוך לפריצתו כמתמטיקאי מחונן בשנות ה-50. בשל המחלה נפסקה הקריירה האקדמית של נאש למשך כ-30 שנה (1966-1996) ורק בשנות ה-90 שב לחקר המתמטיקה. נאש נולד בבלופילד שבמערב וירג'יניה, בן לג'ון נאש האב, טכנאי אלקטרוניקה, ווירג'יניה מרטין, מורה לשפות. בשנים (1945-1948) למד לתואר ראשון ושני במכון הטכנולוגי קרנגי בפיטסבורג, פנסילבניה (כיום אוניברסיטת קרנגי מלון), והוכתר על ידי מוריו כגאון. ב-1950 קבל נאש תואר דוקטור מאוניברסיטת פרינסטון על חיבורו "משחקים אי-שיתופיים". בעבודה זו פיתח לראשונה את פתרונו הבסיסי למשחקים אי-שיתופיים שזכה מאוחר יותר לכינוי 'שיווי משקל נאש'. 40 שנה מאוחר יותר, ב-1994, זיכתה אותו עבודתו זו משנותיו הראשונות בפרינסטון בפרס נובל לכלכלה. על עבודה זו קיבל נאש ב-1978 גם את פרס ג'ון פון ניומן לתאוריה. |
עריכהתמונה נבחרת
ציור של לוקה פאצ'ולי מלמד, מיוחס ליאקופו דה ברברי מ-1495. השולחן מלא בכלים גאומטריים: לוח צפחה, גיר, מחוגה, הספר שכתב ודגם של דודקהדרון. רומביקובוקטהדרון שחציו מלא במים תלוי מהתיקרה. פאצ'ולי מדגים משפט מתמטי של אוקלידס. |
עריכהאנימציה נבחרת
אנימציה המדגימה את הרעיון העומד מאחורי משולש פסקל המאפשר חישוב של המקדמים הבינומיים.
|
המתמטיקאי ההודי האוטודידקט סריניוואסה רמנוג'אן עבד כחשבונאי חסר כל השכלה פורמלית, כאשר מכתב ובו הישגיו המתמטיים נשלח למתמטיקאי הבריטי גודפרי הרולד הארדי. האחרון חשב תחילה שמדובר במשוגע, אך לאחר מכן הוא זיהה את גאוניותו הטבעית, הביא אותו לבריטניה והחליט לאמצו יחד עם ג'ון אדנזור ליטלווד. אנקדוטה מפורסמת עליו היא שהוא היה כה מסור למתמטיקה, עד שגם במיטת חוליו, כשהארדי העיר לו שמספר המונית בה נסע, 1729, הוא משעמם במיוחד, השיב לו רמנוג'אן מיד: "לא, זה מספר מעניין מאוד; זה המספר הקטן ביותר שניתן לבטאו כסכום של שתי חזקות שלישיות בשתי דרכים שונות" (ואכן 1729 = 123 + 13 = 103 + 93).
שניים אוחזין בטלית, זה אומר: "אני מצאתיה", וזה אומר: "אני מצאתיה"; זה אומר: "כולה שלי", וזה אומר: "כולה שלי" - זה יישבע שאין לו בה פחות מחציהּ, וזה יישבע שאין לו בה פחות מחציהּ, ויחלוקו. זה אומר: "כולה שלי:, וזה אומר: "חציהּ שלי" - האומר "כולה שלי", יישבע שאין לו בה פחות משלושה חלקים, והאומר "חציהּ שלי", יישבע שאין לו בה פחות מרביע. זה נוטל שלושה חלקים, וזה נוטל רביע.
— משנה, מסכת בבא מציעא, פרק א', משנה א'. הדגמה של שניים אוחזים בטלית, עקרון קדום במשפט העברי בעל בסיס מתמטי. ראו גם מי שהיה נשוי שלוש נשים
נוסחאות למציאת פתרונות למשוואות פולינומיות ממעלות 1 עד 4. השורשים ממעלה שלישית הם אלגבריים, זאת אומרת שניתן להציב במקומם כל אחד משלושת השורשים המרוכבים. עם זאת בשתי הנוסחאות האחרונות, לא כל הצבה כזאת (כמו גם בחירה של הסימן ) תיתן שורש, אבל כל שורש אפשר לקבל כהצבה. הנוסחה האחרונה לא תקפה כשהמכנים מתאפסים, יש נוסחאות שונות למקרים אלה. שתי הנוסחאות האחרונות נחשבות לאחד ההישגים המשמעותיים של המתמטקה של הרנסאנס. בגלל החזרות הרבות, אפשר לפשט משמעותית את שתי הנוסחאות הארחונות אם מכניסים סימוני עזר בשביל חלקים של הנוסחה שחוזרים על עצמם. לפי תורת גלואה, לא ניתן לפתח נוסחאות המבוססות על ארבע פעולות החשבון ושורשים עבור משוואות ממעלה גבוהה יותר.
ארבעה בנים נדרשים לשאול ארבע קושיות, כך שכל בן ישאל קושיה אחת. בכמה דרכים שונות ניתן להקצות את הקושיות לבנים? בכמה דרכים שונות ניתן להקצות את הקושיות לבנים, כך שלא יהיה מצב שבו בן ישאל קושיה שמספרה הסידורי זהה לשלו (כלומר אסור מצב שבו, למשל, הבן השני שואל את הקושיה השנייה)?
פתרון | |
---|---|
|
עריכהאוצרות הרשת
בחלון זה מופיעה תצוגה מתחלפת של אתרי אינטרנט הפועלים להנגשת המתמטיקה לציבור הרחב. אתר היום: אתר נבחרת ישראל במתמטיקה. האתר מהווה שער לתוכנית המיונים והאימונים של נבחרת ישראל במתמטיקה, ומכיל קישורים לאתרים רבים מהם אפשר ללמוד מתמטיקה. |
עריכהמדף הספרים
בחלון זה מופיעה תצוגה מתחלפת של ספרי מתמטיקה שנועדו להנגשת המתמטיקה לציבור הרחב. ספר היום: ג'ון אלן פאולוס, חרדת המספרים – בערות במתמטיקה ותוצאותיה, מאנגלית: עמנואל לוטם, זמורה-ביתן, 1997. "אי-התמצאות במספרים – חוסר היכולת לטפל בקלות במושגים בסיסיים הנוגעים למספרים ולסיכויים – היא רעה חולה המציקה לאנשים רבים, שניתן לראותם כמשכילים מכל בחינה אחרת" – משפט פתיחה זה משקף את תוכנו של הספר: הצגת שלל כשלים בהתייחסותם של אנשים למידע מספרי. הדוגמאות כוללות הבנה מוטעית של מידע הסתברותי וסטטיסטי, פסוודו-מדע המסתמך על בורות מספרית והקושי להבין מספרים גדולים. כן עוסק הספר בשורשיה של חרדת המספרים. עצתו של פאולוס לקוראיו: "במקרים מסוימים אפשר לשאוב מידע רב מתוך עובדות מספריות פשוטות, ואפשר להפריך טענות רבות על סמך המספרים כשלעצמם. אילו הייתה לבריות יכולת לאמוד מספרים ולערוך חישובים פשוטים, היה לאל ידם להסיק מסקנות (או להפריכן) במבט אחד, ומספר הרעיונות המגוחכים שהם מטפחים היה יורד פלאים." |
משפטים מפורסמים
|
השערות מפורסמות
|
אקסיומת המקבילים היא האקסיומה החמישית והאחרונה בספרו של אוקלידס, "יסודות", שבו פיתח את הגאומטריה האוקלידית מעקרונות היסוד שלה. האקסיומה ידועה גם בשם "האקסיומה החמישית של אוקלידס". האקסיומה קובעת כי דרך נקודה מחוץ לישר ניתן להעביר ישר אחד ויחיד שמקביל לישר הנתון.
האקסיומה בולטת בין שאר האקסיומות של הגאומטריה האוקלידית באורכה ובמורכבותה. רמז לכך שאוקלידס עצמו הסתייג ממנה ניתן למצוא בכך שהוא מוכיח את עשרים ושמונה הטענות הראשונות ב"יסודות" בלי להזדקק לה. מורכבותה החריגה של אקסיומת המקבילים הביאה למאמצים רבים, במשך כאלפיים שנה, להוכיח שהיא נובעת מהאקסיומות האחרות, כך שלא יהיה צורך להניחה בנפרד. המאמצים להוכחת האקסיומה עלו בתוהו, עד שבראשית המאה התשע-עשרה הבינו בויאי, לובצ'בסקי וגאוס שנדרש כיוון שונה. כתוצאה מכך פותחו גאומטריות לא אוקלידיות, שבהן אקסיומת המקבילים מוחלפת באקסיומה אחרת. כך למשל:
- בגאומטריה ההיפרבולית- דרך כל נקודה שמחוץ לישר עוברים אינסוף ישרים מקבילים לישר זה.
- בגאומטריה ספירית כל שני ישרים על פני הספירה נפגשים בנקודה כלשהי (אין ישרים מקבילים).
גאומטריות אילו אינן רק מושגים מדעיים מופשטים, אלא הן מתקבלות במידה והמשטח עליו נמצאת הצורה אינו מישורי.
נושאים במתמטיקה
| |||
---|---|---|---|
כמות | אינסוף - מספרים (טבעיים, שלמים, רציונליים, אי-רציונליים, ממשיים, מרוכבים) - מספרים סודרים - עוצמה - תורת המידה - קבועים מתמטיים | ||
שינוי | אנליזה מתמטית - אנליזה וקטורית - אנליזה מרוכבת - אריתמטיקה - חשבון אינפיניטסימלי - תורת הכאוס - משוואות דיפרנציאליות - אנליזה פונקציונלית | ||
מבנה | אלגברה - אנליזה מתמטית - אריתמטיקה - טופולוגיה - תורת הגרפים - תורת החבורות - תורת המספרים | ||
מרחב | אלגברה ליניארית - גאומטריה - טופולוגיה - טריגונומטריה - אנליזה וקטורית - חשבון טנזורים - מרחב מחויג | ||
מתמטיקה בדידה | חישוביות - קומבינטוריקה - קריפטוגרפיה - תורת הגרפים - תורת המשחקים | ||
יסודות ושיטות | לוגיקה - פילוסופיה של המתמטיקה - תורת הקבוצות - סימון מתמטי - תורת הקטגוריות | ||
מתמטיקה יישומית | אופטימיזציה - אנליזה נומרית - הסתברות - סטטיסטיקה - מתמטיקה פיננסית | ||
עולם המתמטיקה | הוראת המתמטיקה - האיחוד המתמטי הבינלאומי - היסטוריה של המתמטיקה - מדליית פילדס - מתמטיקאים - 23 הבעיות של הילברט | ||
עריכהמבט על תחום נבחר
תורת הקודים היא תחום במתמטיקה ובמדעי המחשב שעוסק בהעברה יעילה של מידע דרך מערכת מציאותית שיוצרת שגיאות ברצף. כאשר מעבירים מידע דרך מוליך טוב ככל שיהיה (גלי רדיו, קווי טלפון), נופלות טעויות במידע כתוצאה מרעשי רקע שנוצרים מסיבות טכניות בעיקר. שגיאה קטנה ככל שתהיה יכולה לעוות את המידע המתקבל ולהפוך אותו לחסר משמעות, או לבעל משמעות שונה מהרצוי. הבעיה קיימת מאז ומעולם גם בשפת הדיבור והכתיבה. ניתן לראות טעויות דפוס שנובעות מהחלפת אותיות כמעט בכל ספר שיוצא לשוק. בעיה זו נעשתה חריפה במיוחד בתקשורת בין מחשבים, בה שינוי של ביט אחד במסר יכול להרוס את החישוב כולו. בתורת הקודים מפותח מושג הקוד וכן גם כלים שמאפשרים הבחנה ותיקון שגיאות במידע המתקבל.
|
ערכים המחפשים עורכים |
דיונים, ייעוץ ועזרה
|