Кубический сплайн — гладкая функция, область определения которой разбита на конечное число отрезков, на каждом из которых она совпадает с некоторым кубическим многочленом (полиномом).
Функция задана на отрезке , разбитом на части , . Кубическимсплайном дефекта 1 (разность между степенью многочлена и порядком его производной) называется функция, которая:
на каждом отрезке является многочленом степени не выше третьей;
имеет непрерывные первую и вторую производные на всём отрезке ;
в точках выполняется равенство , т. е. сплайн интерполирует функцию в точках .
Для однозначного задания сплайна перечисленных условий недостаточно, для построения сплайна необходимо наложить дополнительные требования — граничные условия:
"Естественный сплайн" — граничные условия вида: ;
Непрерывность второй производной — граничные условия вида: ;
Периодический сплайн — граничные условия вида: и .
Теорема: Для любой функции и любого разбиения отрезка на части существует ровно один естественный сплайн , удовлетворяющий перечисленным выше условиям.
Эта теорема является следствием более общей теоремы Шёнберга-Уитни об условиях существования интерполяционного сплайна.
↑Аристова Е. Н., Завьялова Н. А., Лобанов А. И. Практические занятия по вычислительной математике Часть 1 (рус.). — 2014. — С. 159-160. — 243 с. — ISBN 978-5-7417-0541-4.