Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.
Kuramsal fizikte, Minkowski uzayı çoğunlukla Öklid uzayıyla karşılaştırılır. Öklid uzayında yalnızca uzaysal boyutlar varken Minkowski uzayında ayrıca bir zamansal boyut da bulunur. Bu yüzden Öklid uzayının bakışım grubu, Öklid grubu olup Minkowksi uzayınınki ise Poincaré grubudur.
Minkowski uzayında geometrik uzunluğa karşılık gelen uzayzaman aralığı ya uzaysal ya ışınsal ("yansız") ya da zamansaldır.
- Ana madde: Minkovski iççarpımı. Ayrıca vektör ve dörtvektör maddelerine bakınız.
Bir dörtvektör, dört adet koordinat bileşeni olan vektöre denir. Bu maddede dörtvektörler, koyu ve büyük harflerle gösterilecektir; koyu ve küçük harflerle gösterilenler de üçvektörler, yâni bilinen üç boyutlu vektörler olacaktır.
Bilindik iççarpıma oldukça benzeyen, hattâ bilindik iççarpım cinsinden yazılabilen Minkovski iççarpımı, dört boyutlu "hiperbolik" bir iççarpım sunmaktadır. Eğer dörtvektörleri ve olarak seçersek, Minkovski iççarpımı, bileşenler cinsinden
olarak tanımlanabilir. Bilindik iççarpım cinsinden de
biçimini alır. Buradan hareketle bir dörtvektörün boyu da,
|
|
|
|
|
|
|
|
|
olarak bulunur.
Minkovski iççarpımı, Einstein toplam uzlaşımı kullanılarak da tanımlanabilir. ifâdesi, birim vektörlerin olan bileşenlerini ifâde edecek şekilde her dörtvektör, ve olarak yazılabilir. Burada birim vektörlerin Minkovski iççarpımları Minkovski metriğinin birim öğesine eşit olarak tanımlanır:
Böylece Minkovski iççarpımı
olarak yazılmış olur. Burada
olarak tanımlandığında iççarpım,
biçimini alır. Bu gösterim genel görelilik kuramı çerçevesinde tensör gösterimlerinde sıkça kullanılmaktadır.
- Daha ilerisi için genel görelilik kuramının biçimsel gelişimi maddesine bakınız.
Bilinen vektörlerde olanın tersine, dörtvektörlerin boyları negatif çıkabilir. olduğu zaman dörtvektörün boyu sıfırdan küçük olacaktır. Bu durum hiperbolik sayılarda da böyle olduğundan bazen dörtvektörler hiperbolik dördübir sayılarla da ifâde edilir:
Burada olarak tanımlanan (ve hiçbiri 1e eşit olmayan) hiperbolik birim sayılardır. Dörtvektörün boyu yine aynı kalır. Bazen sadece,
olarak da gösterildiği olur. Burada aynı şekilde olarak tanımlanır. Bu durumda dörtvektörün boyu
olarak elde edilir.
Bilinen şekliyle uzayda vektörler, üç koordinatla gösterilirler: x, y, z. Ancak özel görelilikte ayrıca zaman koordinatı da uzayın, daha doğrusu uzayzamanın bir parçasıdır. Bu yüzden burada vektörler, dört koordinata sahip olurlar. Örneğin bilinen biçimiyle bir konum vektörü,
şeklindedir (Bu maddede küçük kalın harfler, üçvektörleri betimleyecektir). Bu vektör, metre birimindedir. Bu vektöre bir de t koordinatını eklersek birim karmaşası olacağından onun yerine dördüncü koordinat ct olarak alınır. Burada c ışık hızı olduğundan bu koordinat yine metre biriminde olacaktır. O halde bir dörtvektör,
olarak gösterilmiş olur.
Bir dörtkonumun boyu
olarak elde edilir. Burada dörtkonum bir Lorentz değişmezidir, yâni Lorentz dönüşümleri altında eylemsiz tüm başvuru çerçevelerine göre değişmezdir. dörtkonumu bir S başvuru çerçevesindeki gözlemcinin uzayzamandaki konumunu ve dörtkonumu da S 'ye göre sabit u hızında hareket eden bir başka çerçevesindeki gözlemcinin uzayzamandaki konumunu ifâde etsin. O halde,
olduğu Lorentz dönüşümleri kullanılarak kolaylıkla gösterilebilir. Bu durum ışık için de geçerlidir ki aslında ışık için dörtkonum doğrudan özel görelilik kuramının ikinci ilkesi olan ışık hızının her gözlemciye göre değişmezliği ilkesini ifâde eder. Eğer ışık her gözlemciye göre sabit hızla gidiyorsa, x=vt ifâdesinden dolayı her iki yönü de kapsayacak şekilde
olarak yazılır. Bu ifâdenin karesi alındığında
olur ve buradan
çıkarsanır. Minkovski uzayzamanında bu türden bir vektöre ışınsı vektör denir. Bu vektörler c ışık hızında giden parçacıkların hareket denklemidir. Herhangi bir gözlemci için
ise, bu tür vektörlere zamansı vektör denir. Bu vektörler, c hızından düşük hızlarda hareket eden gözlemcileri betimler. Yine eğer bir gözlemci için,
oluyorsa (olabildiği, Minkovski iççarpımı altbaşlığında irdelenmişti) bu durumda bu vektörlere uzamsı vektör denir. Bu vektörler de c hızından yüksek hızlardaki gözlemcileri betimler. Bu tür parçacıklara takyon dendiği de olur.
Bilindik biçimiyle bir hız vektörü üç koordinata sahiptir:
Bir hız vektörü, konum vektörünün zamana göre türevi şeklinde tanımlandığına göre, yani özel zaman olmak üzere;
olduğundan, dörthız vektörü de aynı şekilde dörtkonumun zaman göre türevi olarak tanımlanmalıdır:
Burada olduğundan
olduğu görülür.
Ayrıca dörthızın boyunun
|
|
|
|
|
|
|
|
|
olduğu görülebilir. Burada Lorentz çarpanı
olarak yeniden yazılabilir, o halde dörthız vektörünün,
olduğu görülür.
Momentum, kütle ile hızın çarpımıydı,
Burada da aynı usavurum devam ediyor ancak küçük ayrıntılar oluşmakta:
Burada durgun kütle ve m göreli kütledir.
Burada dikkat edilmesi gereken şey, dördüncü koordinatın sadece kütle oluşudur (sonuçta c bir sabit). Bu yüzden dörtmomentumun korunumu aslında Newton fiziğinde "momentumun korunumu" ile "kütlenin korunumu" ilkelerinin ikisini birden kapsar. Böylece iki denklemi
|
(momentumun korunumu)
|
|
(kütlenin korunumu)
|
olarak yazmak yerine,
- (4-momentumun korunumu)
gibi tek bir denklem yazılmış olur. Bunun yanı sıra olduğundan aslında bu enerjinin de korunumudur ve dörtmomentumun dördüncü bileşenini enerji yapar:
O halde dörtmomentumun boyu, yukarıdaki dörthızın boyunda elde edilen sonuç kullanılarak
|
|
|
|
|
|
şeklinde elde edilir. Ayrıca, doğrudan boyladığımızda
|
|
|
|
|
|
|
|
|
olduğundan, bu iki ifâde eşitlenince
ortaya özel göreliliğin en temel denklemlerinden biri olan momentum enerji bağıntısı, yâni
bağıntısı çıkar.
İvme, hızın zaman göre türevidir. Bilindik ivme
şeklinde idi. Bu durumda dörtivme,
|
|
|
|
|
|
|
|
|
|
|
|
olarak elde edilir (burada , üçivmedir). Bu ifādedeki 4. bileşen hızla ivmenin nokta çarpımıdır. Bu çarpım, merkezcil hareketlerde sıfır olur, yani;
olur. Eğer gözlemciyle aynı andaşlık düzlemindeki ivmeyi inceleyecek olursak, u=0 olacağından
bulunur. O halde, yalnız özel ivme olduğunda dörtivme olacaktır. Oysa olsa bile dörthız sıfırlanmıyordu.
|
---|
Özel görelilik | Genel bilgiler | |
---|
Ana başlıklar | |
---|
Tasvir | |
---|
Neticeler | |
---|
Uzayzaman | |
---|
| |
---|
Genel görelilik | Ana hatlar | |
---|
Ana kavramlar | |
---|
Doğa olayları | |
---|
Denklemler | |
---|
İleri kuramlar | |
---|
Çözümler | |
---|
|
---|
Bilim insanları | |
---|
Einstein alan denklemleri: ve Ernst denklemi aracılığı ile analitik çözümleri: |